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Abstract

Prions are a self-propagating misfolded conformation of a cellular protein. Prions are found 

in several eukaryotic organisms with mammalian prion diseases encompassing a wide range 

of disorders. The first recognized prion disease, the transmissible spongiform encephalopathies 

(TSEs), affect several species including humans. Alzheimer’s disease, synucleinopathies, and 

tauopathies share a similar mechanism of self-propagation of the prion form of the disease-

specific protein reminiscent of the infection process of TSEs. Strain diversity in prion disease is 

characterized by differences in the phenotype of disease that is hypothesized to be encoded by 

strain-specific conformations of the prion form of the disease-specific protein. Prion therapeutics 

that target the prion form of the disease-specific protein can lead to the emergence of drug-

resistant strains of prions, consistent with the hypothesis that prion strains exist as a dynamic 

mixture of a dominant strain in combination with minor substrains. To overcome this obstacle, 

therapies that reduce or eliminate the template of conversion are efficacious, may reverse 

neuropathology, and do not result in the emergence of drug resistance. Recent advancements 

in preclinical diagnosis of prion infection may allow for a combinational approach that treats the 

prion form and the precursor protein to effectively treat prion diseases.

1. Prion diseases

Prions are a self-propagating misfolded conformation of a cellular protein. The conversion 

of the normal isoform to the misfolded prion form occurs in a stepwise manner, but the exact 

mechanism is unknown.1–4 Prions are found in several eukaryotic organisms. Yeast prions 

are a dominant, non-Mendelian form of epigenetic inheritance that causes a detectable 

phenotype. For example, the [URE3], [SWI+], and [GAR+] prions in Saccharomyces 
cerevisiae enhance growth on nutrient-poor sources, while the [PSI+] prion enables 

translational readthrough.5–9 The prion state in yeast is dependent on a chromosomal gene 

and transient overproduction of the normal cellular protein promotes the prion state which 

can be reversibly cured.8,10,11 The [Het-s] prion of Podospora anserina is infectious and has 

a necessary role in heterokaryon incompatibility, a process that restricts fusion of hyphae 
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to genetically similar partners.12–14 Prions found in yeast, fungi, and mammals can have 

advantageous roles. Functional prion-like proteins involved in memory, RNA metabolism, 

and immunity have been identified.15–19 However, prions in mammals are most notably 

associated with neurodegenerative diseases.

Mammalian prion diseases encompass a wide range of disorders. The first recognized prion 

disease, the transmissible spongiform encephalopathies (TSEs), are characterized by long 

incubation periods followed by a relatively short duration of clinical signs that ultimately 

leads to death of the host.1,20 TSEs occur in both domesticated populations of sheep and 

goats (scrapie), cattle (bovine spongiform encephalopathy, BSE), and mink (transmissible 

mink encephalopathy, TME). Chronic wasting disease (CWD) is unique among TSEs as 

it can affect both wild and domestic populations of cervids.21–23 Camel prion disease 

(CPD) in domesticated dromedary camels was recently identified, but the geographic 

distribution and potential of transmission to wild populations is unknown.24 Human TSEs 

can have infectious (Kuru), inherited (Gerstmann-Sträussler-Scheinker, GSS), or sporadic 

(Creutzfeldt-Jakob disease, CJD) etiologies, with sporadic being the most prevalent.25 

Iatrogenic transmission of PrP prions can occur via cadaveric human growth hormone 

(c-hGH), dura mater grafts, or corneal transplants.26–29 TSE agent replication involves the 

misfolded infectious prion conformation of the prion protein, PrPSc, binding to the normal, 

cellular conformation, PrPC, initiating further seeded conversion.

Alzheimer’s disease, synucleinopathies, and tauopathies are characterized by the misfolding 

and aggregation of amyloid-β (Aβ; a peptide derived from the host cellular amyloid 

precursor protein (APP)), α-synuclein protein (α-syn), and tau protein, respectively. 

Similar to TSEs, these protein misfolding diseases share a similar mechanism of self-

propagation of the prion form of the disease-specific protein and cell to cell spreading 

of the host protein in the prion state.30–39 Experimental injection of the prion form of 

the protein into animals that express the respective precursor protein can accelerate the 

pathogenesis of disease, reminiscent of the infection process of TSEs (or PrP prions).34,40–46 

Although these non-prion protein disorders have both inherited and sporadic etiologies, 

conflicting evidence for infectious transmission has been reported. Epidemiological studies 

concluded that a history of one or more blood transfusions was not associated with a 

higher risk of developing AD compared to age- and gender-matched controls for each 

patient case.47,48 Injection of nonhuman primates with over 600 patient samples from 

individuals diagnosed with nonspongiform diseases (i.e., AD, PD, etc.) failed to transmit 

disease.49 No cases of AD or PD were identified among recipients of c-hGH in the 

United States despite finding mild amounts of pathological Aβ, tau, and α-synuclein 

by immunohistochemical analysis of pituitary glands from neurodegenerative disease and 

control patients.50 However, a recent study reported that recipients of c-hGH contaminated 

with PrP prions subsequently developed CJD with concurrent Aβ deposition in the brain, 

suggesting iatrogenic transmission of Aβ.51 Retrospective studies on the archived c-hGH 

samples identified significant amounts of tau, Aβ42 and Aβ40.52 Intracerebral injection 

of these c-hGH samples to transgenic mice expressing a human mutant of the amyloid 

precursor protein resulted in the development of brain pathology similar to the patients 

injected with the same material.52 This finding suggests, under certain conditions, iatrogenic 
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transmission of AD is possible. Overall, the aforementioned neurodegenerative disorders 

share profound similarities at the biochemical and cellular level.

2. Prion strain diversity

Prion strains are operationally defined by heritable differences in the biological properties of 

disease under controlled agent and host parameters.53–56 In yeast, prion strains are classified 

based on several traits that differ depending on the prion state (i.e., [PSI+] or [URE3]) but 

were initially distinguished by strength of phenotype (i.e., “strong” versus “weak”).57–59 

TSE strains are classified by differences in incubation period and neuropathology but can 

differ in their clinical signs and biochemical features of PrPSc.60,61 Similar to TSEs, Aβ, 

tau, and ɑ-synuclein strains are defined by differences in abnormal protein deposition and 

pathology in the brain as well as protein conformation or seeding activity of the prion form 

of the respective protein.38,44,62–64 The relationship between the strain-specific biochemical 

features of the prion form of the protein and the phenotype of disease is poorly understood.

2.1 Prion strain diversity in yeast

Studies of yeast prion strain diversity have added much to the knowledge of prion strain 

diversity. Yeast prion strains differ in strength of phenotype, stability of propagation, 

toxicity/lethality, ability to overcome inter- or intraspecies transmission barriers, and 

biochemical and physical properties.57–59,65–67 Nuclear magnetic resonance (NMR) 

spectroscopy identified conformational differences between [PSI+] yeast prion strains, and 

atomic force microscopy (AFM) reveals strain-specific differences in yeast prion fibril 

morphology.68 There are strong correlations between biochemical properties of the prion 

form of the protein and strain phenotype in yeast. The strength of the yeast prion phenotype 

corresponds with an increased fragility of protein aggregates.69 Mechanistically, increased 

fragility of prion aggregates results in rapid generation of new free ends, accelerating prion 

formation (Fig. 1, step 5).69

2.2 TSE strain diversity

Strain diversity is hypothesized to be encoded by strain-specific conformations of 

PrPSc.63,64,68,70–72 Strain-specific differences in the biochemical properties of PrPSc were 

first identified in mice.73 These differences were later observed in hamsters infected with the 

hyper (HY) or drowsy (DY) strains of hamster-adapted transmissible mink encephalopathy 

(TME).74 Detergent extraction and protease digestion of HY and DY PrPSc revealed 

strain-specific Western blot migration profiles suggesting strain-specific differences in 

the PK digestion site on PrPSc.75 Edman protein sequencing of PrPSc from HY or DY 

TME-infected hamsters confirmed that PrPSc from these two strains had different PK 

cleavage sites.70 Based on these observations, the authors proposed the hypothesis that 

strain-specific conformations of PrPSc encoded prion strain diversity.70,75,76 Consistent with 

this hypothesis, the molecular weight of the proteinase K-resistant fragment of PrPSc after 

deglycosylation in fatal familial insomnia is 19 kDa while the same fragment was 21 kDa 

in sporadic and familial Creutzfeldt Jakob disease.72 When inoculated into mice, the strain-

specific migration pattern of PrPSc from human prion strains was preserved supporting the 

hypothesis that strain-specific conformations of PrPSc is the basis of strain diversity.72
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The presence of cellular cofactors during prion conversion may be responsible for the 

maintenance of strain-specific, infectious conformations of PrPSc. Development of synthetic, 

in vitro-generated prions able to successfully infect wild-type rodents relied on cofactors 

such as polyanions and lipids.77,78 Propagation of a recombinant prion strain in PMCA 

in the presence of both recombinant murine PrP and the lipid phosphatidylethanolamine 

(PE) retained infectivity.79 Withdrawal of the cofactor (PE) led to the emergence of a 

protein-only strain, named OSU, that did not cause disease in mice suggesting cellular 

cofactors are required for infectivity. Additionally, in vitro PMCA propagation of three 

distinct prion strains with PE as the sole cofactor resulted in the three strains evolving 

into a single strain.79 This work on the directed evolution of prions suggests that cellular 

cofactors are involved in prion strain diversity. Recent work has clarified the role of prion 

cofactors. Using a novel in vitro system where protein only PrPSc preparations, in the 

absence of PMCA adaptation, are directly infectious to animals, but only in the presence 

of co-factors.80 Importantly, protein-only and cofactor generated PrPSc had identical strain 

properties indicating that the conformation of PrPSc is sufficient to encode prion strain 

information and that cellular co-factors are needed for prion propagation.80 Overall, these 

data provide a unified model of prion infectivity where strain information is encoded by 

the structure of PrPSc and host cellular cofactors are necessary for prion conversion and 

subsequent infectivity.

Lesion profiles, cellular assays, and the biochemical properties of PrPSc are used to 

differentiate prion strains. The scrapie cell assay (SCA) and the cell panel assay (CPA) 

assess the relative susceptibility or resistance of murine neuroblastoma cell lines to infection 

by different prion strains.81–83 The Western blot migration profile, conformational stability, 

and sensitivity to proteolytic digestion of PrPSc can be strain specific. It is unclear which, 

if any, of the strain-specific biochemical differences of PrPSc directly contributes the 

strain-specific phenotype of disease. For example, in murine PrP prions, decreased PrPSc 

conformational stability is positively correlated with a shorter incubation period, however, 

in humans and hamsters the inverse relationship between PrPSc conformational stability and 

incubation period was identified.71,84–87

2.3 Aβ strain diversity

The heterogeneous clinical presentation of AD may be attributed to strain diversity.88 The 

Arctic and Swedish APP mutations in humans result in distinct AD pathologies.89–92 It 

was hypothesized that the two AD clinical disease outcomes were a result of two distinct 

Aβ strains. Conformational stability studies of Aβ from patient brains with Arctic AD 

and Swedish AD mutations established that aggregates of Aβ found in the Arctic AD 

patients were significantly more sensitive to denaturation with guanidine hydrochloride 

compared to Swedish AD.44 Further, injecting transgenic mice expressing human APP 

containing the Swedish mutation with the Arctic or Swedish AD brain material resulted in 

two distinct phenotypes of disease that were maintained upon serial passage consistent with 

the predicted behavior of prion strains.44 Luminescent conjugated oligothiophenes, a class 

of amyloid binding dyes, to investigate how the Aβ amyloid structure in familial AD differs 

from sporadic AD.93 The emission spectra of luminescent conjugated oligothiophenes 

changes when bound to amyloid of differing structure. The emission spectra of luminescent 
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conjugated oligothiophenes bound to Aβ some of the subtypes of familial and sporadic AD 

varied significantly, suggesting a variety of Aβ structures exist in different AD cases.93 

Solid state nuclear magnetic resonance imaging analysis of Aβ from patient tissue samples 

from PCA-AD or rp-AD indicated that Aβ from PCA-AD resembled typical AD with 

predominant Aβ40 fibril structure while rp-AD samples were composed of a cloud of variant 

Aβ40 structures.94 Overall, this data is consistent with the hypothesis that Aβ structural 

variance contribute to the clinical and pathological heterogeneity of AD.

2.4 Tau strain diversity

Alzheimer’s disease (AD), corticobasal degeneration (CBD), progressive supranuclear 

palsy (PSP), Pick’s disease (PiD), and argyrophilic grain disease (AGD) are unique 

tauopathies defined by the pattern of tau deposition in the brain along with distinct 

clinical phenotypes.95 Transmission studies in wild-type and transgenic mouse models 

have established that tau extracts from various tauopathies transmit distinct tau 

neuropathology.38,64,96–98 For example, AD-tau variants can differentially seed tau 

pathology after intracranial injection of wild-type mice; the tau variants were determined 

to be structurally different by trypsin digests that resulted in three distinct trypsin resistant 

fragments.38 Injecting wild-type mice with tau from AD, CBD, or PSP resulted in 

differences in tau conversion efficiency and cellular tropism in the CNS suggesting the 

three tau isolates are distinct prion strains.64 Consistent with this hypothesis, tau fibrils from 

the tau strains showed varying resistance to Gdn-HCl denaturation with CBD-tau, AD-tau, 

and PSP-tau having the lowest to highest stability, respectively.64 Two recombinant tau 

strains in HEK293 cells expressing the tau repeat domain that propagated conformationally 

distinct forms of tau that could be serially passaged in PS19 transgenic tau mice that 

retained the strain-specific conformation of tau.99 Further, the HEK293 cell model was used 

to examine AD, CBD, and AGD patient samples, and each tauopathy induced unique tau 

inclusion morphology.99 Consistent with this finding, 18 tau strains were identified based 

on differences in limited proteolysis and in vitro seeding activity of tau in combination 

with hippocampal tau pathology when transmitted to PS19 transgenic tau mice.100 Taken 

together, these data support that tau structural variance may explain the distinct pathologies 

and clinical presentation of the tauopathies.

2.5 ɑ-synuclein strain diversity

Strain-specific prion forms of α-synuclein have been identified in synucleinopathies 

including Parkinson’s disease (PD), dementia with Lewy bodies, and multiple system 

atrophy (MSA). Synthetic α-synuclein fibrils generated under varying salt concentrations 

form distinct conformations with differences in seeding ability and toxicity in vivo and 

in vitro.62,101,102 Recombinant fibrillar α-synuclein created under different laboratory 

conditions varied in ability to cross-seed tau aggregation in cell culture and in vivo.63 

Consistent with this observation, proteinase K digestion revealed differences in protein 

cleavage between the synthetic α-synuclein as well as two distinct α-synuclein digestion 

products isolated from Parkinson’s disease with dementia (PDD) patient brains.63 Distinct 

digestion products are suggestive of two α-synuclein conformations reminiscent of prior 

observations in PrP prions.72,75,103–105 In vitro seeding assays utilizing a cell line that 

readily propagates MSA α-synuclein was not susceptible to α-synuclein from PD patient 
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brains suggesting that PD contains a different strain of α-synuclein.106 Brain material from 

PD and MSA patients has distinct seeding activity and cellular inclusion pathology in 

HEK293T cells, suggestive of distinct strain of α-synuclein.107 Overall, α-synuclein strains 

share many features of PrP prion strains that include differences in biochemical features, 

neuropathology, incubation period, and clinical manifestation of disease.38,62,63

3. Prion strains exist as a mixture

Multiple prion strains can co-exist in an individual host. In cases of sporadic Creutzfeldt-

Jakob disease (sCJD), the polymorphism at codon 129 and different proteinase K cleavage 

patterns via Western blot classify disease as Type 1 (21 kDa) or 2 sCJD (19 kDa).103 

Type 1 and Type 2 sCJD PrPSc can co-exist in the CNS of the same patient.108–116 It 

is suggested that up to 40% of sCJD cases contain more than one strain, however, the 

prevalence rate is controversial since methodological differences in strain typing and the 

region of the brain that is evaluated can both affect the outcome.108–116 It is not well 

understood if strains of Aβ can co-exist in a single host, however, distinct strains of Aβ 
have been identified raising the possibility that sporadic AD may be a mixture of strains.44 

Mapping phospho-tau patterns of deposition in the hippocampal regions of individuals with 

various tauopathies established that the pattern of pathology is disease-specific with regional 

selectivity reminiscent of strain targeting in TSE’s.117 This same study determined that 

AD-related tau hippocampal deposition is greatly influenced by simultaneous argyrophilic 

grain disease (AGD), another tauopathy, suggesting that coexisting tau strains can create 

heterogeneous brain pathologies and overlapping clinical features highlighting the need 

for discriminatory methods of post-mortem diagnosis.117 Antibodies that distinguish AD 

tau from non-AD tau deposits of CBD, PSP, and Pick’s Disease (PiD) can discern the 

differential deposition in co-occurring pathologies.118 While ample experimental evidence 

suggests that different α-synucleinopathy strains exist, the coexistence of α-synucleinopathy 

strains has not been described.

Coexisting prion strains can interfere with each other. Strain interference is a phenomenon in 

which a slowly-converting blocking strain can delay or prevent the emergence of a quickly-

converting strain. A number of parameters govern prion strain interference. Increasing 

the titer of the blocking strain results in a corresponding increase in the interference 

effect.119–122 Importantly, prion conversion in a common population of cells is required 

for interference to occur as the strains compete for a limiting cellular resource, PrPC.123,124 

Consistent with this hypothesis, co-infection of two low conversion efficiency prion strains 

results in each strain converting independently without interference that is due to PrPC 

not becoming limiting.125 Overall, strain interference is an important parameter in the 

emergence of a dominant strain from a mixture.

Currently, strain interference has not been reported for mammalian non-PrP prions, and 

further investigation is required to determine if this phenomenon is a common property 

of mammalian prions. In yeast, there is evidence that strain variants compete within a 

cell during and after mating, with “strong” variants outcompeting “weak” variants for the 

template of conversion.126 Mechanistically, “weak” variants are characterized by quick 

growth but low frangibility, whereas “strong” variants grow slowly but are more easily 
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fragmented, leading to increased free ends for growth and therefore a competitive advantage 

over “weak” variants.69

4. Prion therapeutics

Therapeutics that target prion conversion can work via several mechanisms. Drugs can 

target PrPC prior to its interaction with PrPSc by affecting the post-translational processing, 

metabolism, cellular trafficking, or localization of PrPC (Fig. 1, step 1). Drugs that bind to or 

induce a conformational change in PrPC can hinder the interaction between PrPC and PrPSc 

(Fig. 1, step 2). Drugs can target PrPSc by stabilizing or redistributing PrPSc, interfering with 

the interaction between PrPC and PrPSc (Fig. 1, step 3). The conversion of PrPC to PrPSc 

can be targeted by drugs that block the PrPSc binding site on PrPC, cap PrPSc aggregate 

growth, or inhibit cofactors that enable conversion (Fig. 1, step 4). Therapeutics that target 

clearance of PrPSc either increase fragmentation of PrPSc aggregates (Fig. 1, step 5) or 

promote clearance of PrPSc from cells (Fig. 1, step 6).

4.1 Treatments that target PrPSc

Several drugs that directly interact with PrPSc have anti-prion effects (Table 1 and Fig. 1). 

Congo red, an amyloid binding dye, was one of the first compounds identified to extend 

the incubation period of prion-infected animals and can reduce the formation of PrPSc 

in scrapie-infected mouse neuroblastoma cells (Sc+ MNB).127 Congo red is hypothesized 

to directly bind and over-stabilize PrPSc, preventing further prion formation.127–129 Oral 

administration of Compound B, an amyloidophilic compound, extends the incubation 

period of TSEs and is hypothesized to inhibit formation of PrPSc by directly binding 

PrPSc or by interacting with cofactors/chaperones necessary for prion conversion.134,135 

The diphenyl-pyrazole anle138b inhibits PrPSc amplification and reduces neurotoxicity by 

shifting PrPSc oligomers to a smaller size by reducing intermolecular hydrogen bonding 

and obstructing the formation of higher order oligomers, modulating the formation of toxic 

PrPSc aggregates.136,137 Anle138b has anti-prion activity both in vitro and in vivo and 

substantially prolonged survival even when treatment began after onset of signs of prion 

disease.137

Cellular redistribution of PrPSc can inhibit prion formation. Chlorpromazine (CPZ), an 

antipsychotic, redistributes PrPSc from the early endosomal/endocytic recycling pathway 

to the late endosomal/lysosomal pathway resulting in an inhibition of prion conversion in 

prion-infected N2a cells; however, CPZ was ineffective in vivo.139 A cholesterol synthesis 

inhibitor, U18666A, can redistribute PrPSc from the early endosomal/endocytic recycling 

pathway to the late endosomal/lysosomal pathway, causing an increase in PrPSc degradation 

that corresponds to a decrease in total PrPSc in prion-infected N2a cells.139

Increasing degradation of PrPSc can ameliorate prion infection (Fig. 1, step 6). The tyrosine 

kinase inhibitor STI571 decreases the half-life of PrPSc in prion-infected ScN2a cells 

via interaction with the tyrosine kinase c-Abl without affecting the cellular location or 

trafficking of PrPSc.208 Several drugs increase degradation of PrPSc by inducing autophagy. 

A-12 and A-14, derivatives of the antitumor drug celecoxib, can reduce or eliminate PrPSc 

in prion-infected neuronal cells lines by stimulating autophagy.209 Lithium, which is used to 
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treat depression, reduces PrPSc in prion-infected neuronal and non-neuronal cells cultures by 

inducing autophagy.210

Pentosan polysulfate (PPS), a cysteine protease inhibitor, induces a reduction in prion 

conversion by causing fragmentation of PrPSc at the cell surface or utilizing endogenous 

glycosaminoglycans (GAGs) to competitively interfere with the binding of PrPC to 

PrPSc.139,140 Treatment of prion-infected mice with PPS decreased PrPSc accumulation and 

prolonged survival compared to untreated controls even when administered after the onset 

of PrPSc deposition in the CNS.139,140 While effective in rodents, treatment of human prion 

diseases with PPS has varied results. In some patients treated with intravenous PPS, there 

is a significant increase in survival compared with untreated patients141–143; however, there 

are several cases indicating treatment is not effective at extending survival or ameliorating 

clinical features of disease.144–146

Treatment of prion disease with heterologous prion proteins (HetPrP) can interfere with the 

formation of PrPSc in both Sc+MNB cells and in vivo.148–151 Treatment of RML-infected 

mice with hamster HetPrP significantly delayed onset of clinical symptoms and significantly 

decreased PrPSc accumulation in brain and spleen.150 Mechanistically, it is hypothesized that 

HetPrP either incorporates itself into a growing PrPSc aggregate and, unable to be converted 

to PrPSc by the host species PrPSc, hinders conversion or binds directly to the conversion 

site on PrPSc blocking the PrPC conversion site.148 Overall, drugs that target PrPSc that are 

effective in prion-infected cell cultures and animals are ineffective in human clinical trials. 

The lack of efficacy in human clinical trials could be partly due to timing of treatment 

initiation. In prion-infected rodents, anti-prion drugs administered prior to or shortly after 

prion infection have the highest efficacy, with administration at the onset of clinical disease 

being less effective. In human prion disease, treatment is typically not begun until after 

onset of clinical signs, decreasing treatment efficacy.211 In an attempt to overcome this, 

an ongoing study is treating subjects at risk for developing fatal familial insomnia with 

doxycycline.212

4.2 Strain-specific efficacy of anti-prion treatments

Treatment of prion-infected animals or cell cultures with anti-prion drugs can lead to the 

emergence of drug resistant prion strains. Swainsonine inhibits the processing of asparagine-

linked glycoproteins by impeding the action of Golgi α-mannosidase II as well as lysosomal 

mannosidase.213–215 Treatment of prion-infected neuroblastoma-derived R33 cells with 

swainsonine can result in the emergence of swainsonine-resistant prions.216 Importantly, 

PrPSc from swainsonine-resistant and swainsonine-sensitive prions from cell culture have 

different PrPSc conformational stabilities suggesting they are distinct prion strains.216,217 

Treatment of prion-infected cells with swainsonine selected for a drug resistant substrain, 

but when the inhibitor is removed, the susceptible substrain reverted to a drug sensitive 

population in cell culture.218 Additionally, passage of swainsonine-resistant RML prions 

from AMO10 to PK1 cells in the presence of swainsonine resulted in the selection of 

swainsonine-dependent prion variants with an increased efficiency to propagate in the 

presence of the drug.219 However, passaging the swainsonine-dependent prions in the 

absence of drug resulted in reversion to a swainsonine-sensitive prion population in cells.219
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RML-infected ScN2a cells treated with the 2-aminothiazole IND24 resulted in the 

emergence of an IND24-resistant prion strain (RML [IND24]) that had a different host 

cell range, biochemical and neurological features compared to RML-infected mice treated 

with vehicle (RML [V]).152 In addition to IND24, this drug-resistant prion strain was also 

resistant to the anti-prion drugs Compound B and quinacrine.152 This suggests that the 

mechanism of resistance between the three anti-prion compounds is similar. Susceptibility 

of the RML[IND24] strain to IND24 could be restored when passaged in the absence of 

IND24 resulting in the reversion of the RML[IND24] phenotype to the RML[V] phenotype 

in mice.152

The mechanism underlying the emergence of drug-resistant prion strains is not known. Anti-

prion treatments can be strain specific.152,157 One hypothesis is that compounds effective 

against the most predominant, but not all, strains in a mixture can allow for the emergence of 

a drug resistant strain. Prion strains are thought to exist as a dynamic mixture of substrains, 

or mutant spectra.220,221 In this scenario, the dominant strain suppresses the emergence of 

substrains and, once the dominant strain is removed by the anti-prion drug, the suppressive 

effect is diminished allowing for emergence of a preexisting drug resistant strain. Studies of 

strain interference have established the conditions and mechanism of how a dominant strain 

can suppress the emergence of a minor strain consistent with this hypothesis.121,123,221–223 

Selective removal of a dominant strain from a mixture using strain-specific differences in 

the stability of PrPSc can allow for the emergence of a highly pathogenic substrain from a 

mixture, providing additional support for this hypothesis.224 Alternatively, it is possible that 

anti-prion compounds directly interact with PrPSc altering its conformation (i.e., mutation) 

and therefore strain properties. Anti-prion compounds can bind to PrPSc consistent with 

this hypothesis, however, RML[IND24] remained resistant to IND24 for up to 20 passages 

in CAD5 cells in the absence of IND24 suggesting that IND24 interaction with PrPSc is 

not required for the resistant phenotype.152 Overall, it is unclear if the emergence of drug 

resistant prion strains is due to selection of a preexisting mutant strain from the mutant 

spectra and/or if the anti-prion drug acts as a prion mutagen to generate the drug resistant 

strain.

Maintenance of a drug resistant phenotype may have a high fitness cost. Passage of drug 

resistant prion strains in the absence of the anti-prion drug can result in rapid reversion to the 

original drug sensitive strain. This suggests that the drug resistant prion strain has relatively 

poor fitness for the host. In the absence of drug, the mutant spectra that arises from prion 

conversion produces mutants that have increased fitness for the host. This observation raises 

several questions. First, reversion of the drug resistant strain in the drug-free environment 

leads to the emergence of the original drug sensitive strain. It is unclear why the drug 

resistant strain would revert to the parent strain as opposed to another strain if generation 

of the mutant spectra is random. This suggests that the drug resistant strain may contain 

a “memory” that favors reversion to the original strain. Second, treatment of a host with 

an anti-prion drug can extend the incubation period of disease without the emergence of 

a drug resistant strain. The mechanism behind this observation is unknown. It is possible 

that certain strains can still retain sufficient suppressive effect of substrains during anti-prion 

treatment. The relative distribution of the mutant spectra in any given isolate may differ 

depending on its passage history. For example, biologically cloned strains may have a more 
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limited mutant spectra compared to uncloned or field isolates. Finally, highly stable class 

I strains may have a more limited mutant spectra compared to unstable class III strains.225 

Overall, very little is known about how the interaction between the host and the strain 

influences prion strain fitness.

The emergence of drug resistant prions is a significant barrier to the development of 

effective treatments of prion diseases that target the prion form of the protein. Treatments 

that reduce or eliminate the abundance or the ability of the conversion template to form the 

prion form of the protein may offer an alternative strategy for anti-prion therapies.

4.3 Treatments that target PrPC

Prion conversion is dependent on the presence of the template of conversion (Fig. 1, step 

2). Genetic ablation of PrP in mice results in complete resistance to prion infection with 

little known detriment to development or function.226,227 Similarly, ablation of PrPC in cattle 

does not result in major functional or immunological deficits and tissue from these animals 

does not support prion conversion.228 In a conditional PrPC knockout model, transgenic 

mice express PrPC until approximately 12 weeks of age before undergoing gene-directed 

depletion of PrPC.229 When these mice are challenged with RML prions at 3–4 weeks 

of age, prion infection was established, but the depletion of PrPC at 12 weeks halted 

progression to the clinical phase of prion disease and reversed spongiosis.229 Overall, these 

studies provide evidence that elimination of PrPC, even after the establishment of prion 

infection, has potential as a therapeutic strategy.

Antisense oligonucleotides (ASOs) can modulate expression of PrPC. Sequence-specific 

ASOs lower levels of PrPC and PrPSc in ScN2a cells.165 When sequence specific ASOs 

were administered to mice via either i.p. or intracerebroventricular (ICV) routes, ASOs were 

well tolerated and resulted in a decrease in Prnp mRNA levels in the brain compared 

to PBS negative controls.165,166 When ASOs were administered prophylactically or at 

time of inoculation with the RML prion strain, there was diminished PrPC expression 

and a corresponding reduction in PrPSc in the brains of ASO-treated mice compared to 

PBS controls. Reduction of PrPSc levels correlated to a prolongation of the incubation 

period of disease, but animals ultimately succumbed to prion disease.165,166 When ASOs 

are administered just prior to the onset of clinical signs of disease, this resulted in 

many of the animals rapidly succumbing to the toxic effect of ASO administration.166 

Encouragingly, the mice that survived the ASO treatment had a delayed onset of clinical 

disease as well as an extended clinical duration of disease that was three times longer 

than saline treated controls.166 Overall, ASOs can delay the onset of prion disease whether 

given prophylactically or after the establishment of infection and, one issues of toxicity 

are addressed, may be an attractive method of depressing PrPC expression to treat prion 

diseases.

Treatments that alter the expression of PrPC on the cell surface can reduce prion conversion. 

For example, a group of chalcones and oxadiazoles can directly bind to PrPC and decrease 

its cell surface expression arresting PrPC trafficking to the endoplasmic reticulum resulting 

in a decrease in PrPSc abundance and aggregation in prion-infected N2a cells.167,168 
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Alternatively, some of these compounds prevent conversion of PrPC to PrPSc by binding 

to and stabilizing PrPC or directly binding to PrPC at the seeding surface.168,184,185

Alteration of post translational processing of PrPC can inhibit prion formation. PrPC 

can undergo either α- or β-endoproteolytic cleavage resulting in C1 and C2 fragments, 

respectively.230 The C2 amino acid sequence approximately aligns with that of the PrPSc 

protease resistant core, and has been found in abundance in prion infected brains.231–237 

The production of proteolytic cleavage products with varying pathogenic propensities is 

similar to what is observed of amyloid precursor protein, where APP cleavage is central to 

the development of AD.238 Processing of APP by the enzymes β-secretase and γ-secretase 

leads to production of the peptides Aβ-40 and Aβ-42. While Aβ-40 has neuroprotective 

qualities,239,240 Aβ-42 has been implicated in AD pathogenesis.241,242 Endopeptidase 

cleavage of α-synuclein results in aggregation and toxicity that ultimately causes PD.243 

Pharmacological alteration of cellular proteolytic cleavage of the precursor proteins is an 

attractive druggable target. For example, a drug that preferentially inhibits the production of 

the C2 fragment would be a viable anti-prion treatment as the unfavorable PrPC cleavage 

product (C2) would be sequestered while the C1 fragment would be preserved and able 

to continue to perform a protective function.244 The metalloprotease, ADAM10, plays 

a role PrPC shedding from the cell surface, but has also been suggested to contribute 

the α-cleavage of PrPC.232,245–249 Inhibition of ADAM10 resulted in an earlier onset 

of prion disease and slower spread to other brain regions in mice as a result of PrPC 

sequestration, suggesting ADAM10 may cleave newly formed PrPSc from the surface of 

infected cells.247,250 These data suggest that a therapeutic that increases PrPC shedding, 

instead of inhibiting post-translational processing of PrPC, may be more effective at 

dampening disease progression.

Monoclonal antibodies (mAb) directed against PrPC can inhibit prion conversion. Several 

mAbs (D18, 6H4, ICSM 18, 31C6, etc.) are able to abrogate prion conversion and cure 

prion-infected N2a cells.171,172,176–180,251 In prion-infected N2a cells, the inhibition of 

prion conversion depends on the binding affinity between the mAb and PrPC at the cell 

surface, with the most potent inhibitors often binding the ɑ-helical domain of PrP.174,176,177 

Inhibition of PrPSc formation by antibodies in cell culture has been proposed to occur 

via several mechanisms. The antibodies D18 and 6D11 can abolish prion conversion 

by binding to PrPC at the cell surface and hindering PrPSc-templated conversion.171,177 

Similarly, treatment of prion-infected N2a cells with mAb 44B1 retains PrPC at the cell 

surface in an antigen–antibody complex rendering it unavailable for conversion resulting 

in a significant decrease of PrPSc levels.139 A group of N-terminal monoclonal antibodies 

(DE10, DC2, EB8, and EF2) are hypothesized to directly bind to a region on PrPC that 

has been shown to tightly bind PrPSc, effectively blocking the PrPC-PrPSc interaction.186 

Antibodies that disrupt PrPC metabolism or trafficking either by preventing internalization 

of PrPC or reducing the half-life of PrPC, result in a decrease in PrPSc in cell culture 

models.176,178,251 Although the aforementioned antibodies were reported to have no effect 

on cell growth or induce cellular toxicity, there are reports of anti-PrP antibodies (e.g., 

POM1) that are neurotoxic.181,252–255 Anti-PrP antibodies that are toxic tend to bind 

epitopes in the globular domain of PrP and may trigger similar pathogenic cell signaling 

pathways as prion disease.181,254
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Monoclonal antibodies directed against PrPC can alter prion pathogenesis and delay the 

onset of clinical signs of prion infection. ICSM 18, when administered to mice either 

intraperitoneal (i.p.) or i.c. 7 or 30 days after i.p. inoculation with RML was found to 

decrease PrPSc levels in the spleen and delay the onset of clinical signs of prion infection 

compared to untreated controls.175 However, treatment was ineffective when administered at 

the onset of clinical signs or if mice were i.c. inoculated with RML.175 Treatment of mice 

infected with the Chandler strain of murine-adapted scrapie with mAb 31C6 120 dpi led 

to an increase in the incubation period, a decrease in PrPSc levels, and delayed progression 

of neuropathological lesions in the cerebellum.201 Creating PrP0/0 mice expressing the 

6H4 antibody as a transgene (Prnp0/0-6H4μ) led to these mice producing anti-PrP titers 

in sera.173 Crossbreeding of Prnp0/0-6H4μ mice with C57BL/6 mice led to re-introduction 

of one or two PrP alleles, generating Prnp+/0-6H4μ and Prnp+/+-6H4μ mice, respectively, 

which developed anti-PrP serum levels.173 Following intraperitoneal inoculation of the RML 

strain of scrapie, Prnp+/0 6H4μ mice lacked deposition of PrPSc in the spleen or the brain, 

whereas Prnp+/0 mice had deposition in both tissues.173 Expression of the 6H4 antibody as a 

transgene drastically delayed prion pathogenesis in mice.173 Overall, anti-PrP antibodies can 

reduce or eliminate PrPSc formation in cells and animals and provides proof of principle of 

the efficacy of this approach.

Vaccines that result in host induced production of antibodies that recognize PrPSc or PrPC 

have been attempted. Vaccination of mice or white-tailed deer with attenuated Salmonella 
expressing PrP resulted in significant prolongation of onset of clinical disease in the 

vaccinated group with complete protection in a portion of the animals as determined by 

the absence of PrPSc deposition; however, these studies involved a relatively small sample 

size.256,257 Vaccines consisting of peptides derived from the primary amino acid sequence 

of the prion protein resulted in a humoral immune response to all peptides and delayed 

the onset of clinical signs of prion infection compared to control prion-infected mice.258 

Other studies have focused on protein epitopes specific to PrPSc with strong induction of 

antibody responses after vaccination of mice, sheep, and white-tailed deer, strengthening 

the possibility of an effective PrPSc-specific vaccine.259–262 In contrast to the previous 

studies, vaccinating elk to induce a antibody response against PrPSc resulted in a significant 

shortening of incubation period of CWD.263 The acceleration in disease onset could be 

attributed to antibody-mediated misfolding of PrPC or by promoting the uptake of PrPSc 

in the gut.263 Since PrPC is a host-encoded protein, development of an effective vaccine 

directed immune response is impeded by host tolerance. While many approaches have aimed 

to overcome tolerance, there are negative consequences of inducing an antibody response 

to a host-encoded cellular protein. The effects of antibodies directed at the globular domain 

of PrPC results in varying degrees of neurotoxicity while other PrPC-specific antibodies 

lead to apoptosis and improper signaling cascades.181,253,264 Vaccination strategies have 

successfully induced strong humoral and mucosal immune responses in multiple animal 

models; however, more work is required to evaluate the most effective vaccination strategy 

to prevent disease onset while avoiding toxicity.
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5. Future prospects

Development of ultra-sensitive methods of PrPSc detection have greatly improved and may 

lead to routine detection of prion infection in asymptomatic individuals. Protein misfolding 

cyclic amplification (PMCA) and real time quaking induced conversion (RT-QuIC) can 

detect a single infectious prion particle.265,266 Both in vitro methods can detect PrPSc in 

urine, feces, blood, saliva, and cerebrospinal fluid (CSF).267–272 PMCA detects PrPSc from 

vCJD patient blood and urine samples, while RT-QuIC is currently being used for the 

diagnosis of sCJD from CSF and nasal mucosa swab samples.267,269–271,273 Advancements 

in in vitro techniques have enabled reliable preclinical detection in experimental prion 

disease. PMCA can detect prions in the blood or skin from pre-clinical prion-infected 

mice and hamsters.274–276 The sensitivity of RT-QuIC can detect prions in the blood of 

prion-infected preclinical hamsters and deer at timepoints as early as 5 days and 1 month 

post inoculation, respectively.277,278 Like PrPSc, Aβ, tau, and α-synuclein are present in 

biological fluids making these in vitro techniques promising for preclinical diagnosis.279–283 

Overall, preclinical diagnosis of prion diseases will provide a larger window for therapeutic 

treatments and consequently a greater likelihood of success. Challenging this is the presence 

of multiple prion strains. Strain-specific efficacy of anti-prion drugs or vaccines can result 

in emergence of resistant strains that may be more pathogenic or have a different host range 

compared to the original dominant strain. These challenges are reminiscent of those faced 

by bacterial, fungal, and viral drug development and a successful anti-prion therapy may 

require a multidrug approach. The unique nature of prions, however, provides an additional 

therapeutic target, namely the precursor protein. Treatments that target the prion precursor 

protein can inhibit prion formation and may reverse pathological changes. A combinational 

approach that treats the prion form and the precursor protein will likely be needed to 

effectively treat the broad spectrum of prion diseases.
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Fig. 1. 
Mechanistic location of therapeutic targets for PrP prion diseases. Therapeutic targets: ❶ 
PrPC post-translational processing, metabolism, cellular trafficking, or localization; ❷ PrPC 

by binding or inducing conformational change that prevents PrPC interaction; ❸ PrPSc 

by stabilization, redistribution; ❹ conversion process by blocking binding site on PrPC, 

capping growth, inhibition of cofactor interactions, or ❺ promoting fragmentation or ❻ 
clearance from the host.
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