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Abstract

Prions are a self-propagating misfolded conformation of a cellular protein. Prions are found

in several eukaryotic organisms with mammalian prion diseases encompassing a wide range

of disorders. The first recognized prion disease, the transmissible spongiform encephalopathies
(TSEs), affect several species including humans. Alzheimer’s disease, synucleinopathies, and
tauopathies share a similar mechanism of self-propagation of the prion form of the disease-
specific protein reminiscent of the infection process of TSEs. Strain diversity in prion disease is
characterized by differences in the phenotype of disease that is hypothesized to be encoded by
strain-specific conformations of the prion form of the disease-specific protein. Prion therapeutics
that target the prion form of the disease-specific protein can lead to the emergence of drug-
resistant strains of prions, consistent with the hypothesis that prion strains exist as a dynamic
mixture of a dominant strain in combination with minor substrains. To overcome this obstacle,
therapies that reduce or eliminate the template of conversion are efficacious, may reverse
neuropathology, and do not result in the emergence of drug resistance. Recent advancements

in preclinical diagnosis of prion infection may allow for a combinational approach that treats the
prion form and the precursor protein to effectively treat prion diseases.

1. Prion diseases

Prions are a self-propagating misfolded conformation of a cellular protein. The conversion
of the normal isoform to the misfolded prion form occurs in a stepwise manner, but the exact
mechanism is unknown.1=4 Prions are found in several eukaryotic organisms. Yeast prions
are a dominant, non-Mendelian form of epigenetic inheritance that causes a detectable
phenotype. For example, the [URE3], [SWI+], and [GAR+] prions in Saccharomyces
cerevisiae enhance growth on nutrient-poor sources, while the [PSI+] prion enables
translational readthrough.5—2 The prion state in yeast is dependent on a chromosomal gene
and transient overproduction of the normal cellular protein promotes the prion state which
can be reversibly cured.81011 The [Het-s] prion of Podospora anserina is infectious and has
a necessary role in heterokaryon incompatibility, a process that restricts fusion of hyphae
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to genetically similar partners.12-14 Prions found in yeast, fungi, and mammals can have
advantageous roles. Functional prion-like proteins involved in memory, RNA metabolism,
and immunity have been identified.2>-1% However, prions in mammals are most notably
associated with neurodegenerative diseases.

Mammalian prion diseases encompass a wide range of disorders. The first recognized prion
disease, the transmissible spongiform encephalopathies (TSEs), are characterized by long
incubation periods followed by a relatively short duration of clinical signs that ultimately
leads to death of the host.1:20 TSEs occur in both domesticated populations of sheep and
goats (scrapie), cattle (bovine spongiform encephalopathy, BSE), and mink (transmissible
mink encephalopathy, TME). Chronic wasting disease (CWD) is unique among TSES as

it can affect both wild and domestic populations of cervids.21~23 Camel prion disease
(CPD) in domesticated dromedary camels was recently identified, but the geographic
distribution and potential of transmission to wild populations is unknown.?* Human TSEs
can have infectious (Kuru), inherited (Gerstmann-Straussler-Scheinker, GSS), or sporadic
(Creutzfeldt-Jakob disease, CJD) etiologies, with sporadic being the most prevalent.2>
latrogenic transmission of PrP prions can occur via cadaveric human growth hormone
(c-hGH), dura mater grafts, or corneal transplants.26-2° TSE agent replication involves the
misfolded infectious prion conformation of the prion protein, PrPSC, binding to the normal,
cellular conformation, PrPC, initiating further seeded conversion.

Alzheimer’s disease, synucleinopathies, and tauopathies are characterized by the misfolding
and aggregation of amyloid-p (AB; a peptide derived from the host cellular amyloid
precursor protein (APP)), a-synuclein protein (a-syn), and tau protein, respectively.
Similar to TSEs, these protein misfolding diseases share a similar mechanism of self-
propagation of the prion form of the disease-specific protein and cell to cell spreading

of the host protein in the prion state.39-39 Experimental injection of the prion form of

the protein into animals that express the respective precursor protein can accelerate the
pathogenesis of disease, reminiscent of the infection process of TSEs (or PrP prions).34:40-46
Although these non-prion protein disorders have both inherited and sporadic etiologies,
conflicting evidence for infectious transmission has been reported. Epidemiological studies
concluded that a history of one or more blood transfusions was not associated with a

higher risk of developing AD compared to age- and gender-matched controls for each
patient case.*”#8 Injection of nonhuman primates with over 600 patient samples from
individuals diagnosed with nonspongiform diseases (i.e., AD, PD, etc.) failed to transmit
disease.*® No cases of AD or PD were identified among recipients of c-hGH in the

United States despite finding mild amounts of pathological Ap, tau, and a-synuclein

by immunohistochemical analysis of pituitary glands from neurodegenerative disease and
control patients.>0 However, a recent study reported that recipients of c-hGH contaminated
with PrP prions subsequently developed CJD with concurrent A deposition in the brain,
suggesting iatrogenic transmission of AB.5! Retrospective studies on the archived c-hGH
samples identified significant amounts of tau, AB4, and AB,o.52 Intracerebral injection

of these c-hGH samples to transgenic mice expressing a human mutant of the amyloid
precursor protein resulted in the development of brain pathology similar to the patients
injected with the same material.>2 This finding suggests, under certain conditions, iatrogenic
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transmission of AD is possible. Overall, the aforementioned neurodegenerative disorders
share profound similarities at the biochemical and cellular level.

2. Prion strain diversity

Prion strains are operationally defined by heritable differences in the biological properties of
disease under controlled agent and host parameters.53-56 |n yeast, prion strains are classified
based on several traits that differ depending on the prion state (i.e., [PSI1+] or [URE3]) but
were initially distinguished by strength of phenotype (i.e., “strong” versus “weak).>7-59
TSE strains are classified by differences in incubation period and neuropathology but can
differ in their clinical signs and biochemical features of PrPS¢,60.61 Similar to TSEs, AB,
tau, and a-synuclein strains are defined by differences in abnormal protein deposition and
pathology in the brain as well as protein conformation or seeding activity of the prion form
of the respective protein.38:44.62-64 The relationship between the strain-specific biochemical
features of the prion form of the protein and the phenotype of disease is poorly understood.

2.1 Prion strain diversity in yeast

Studies of yeast prion strain diversity have added much to the knowledge of prion strain
diversity. Yeast prion strains differ in strength of phenotype, stability of propagation,
toxicity/lethality, ability to overcome inter- or intraspecies transmission barriers, and
biochemical and physical properties.>’~59.65-67 Nuclear magnetic resonance (NMR)
spectroscopy identified conformational differences between [ PSH] yeast prion strains, and
atomic force microscopy (AFM) reveals strain-specific differences in yeast prion fibril
morphology.®8 There are strong correlations between biochemical properties of the prion
form of the protein and strain phenotype in yeast. The strength of the yeast prion phenotype
corresponds with an increased fragility of protein aggregates.59 Mechanistically, increased
fragility of prion aggregates results in rapid generation of new free ends, accelerating prion
formation (Fig. 1, step 5).5°

2.2 TSE strain diversity

Strain diversity is hypothesized to be encoded by strain-specific conformations of

PrpSc 63.64,68,70-72 strain-specific differences in the biochemical properties of PrPS¢ were
first identified in mice.”® These differences were later observed in hamsters infected with the
hyper (HY) or drowsy (DY) strains of hamster-adapted transmissible mink encephalopathy
(TME)." Detergent extraction and protease digestion of HY and DY PrPSC revealed
strain-specific Western blot migration profiles suggesting strain-specific differences in

the PK digestion site on PrPSC.”> Edman protein sequencing of PrPS¢ from HY or DY
TME-infected hamsters confirmed that PrPSC from these two strains had different PK
cleavage sites.”0 Based on these observations, the authors proposed the hypothesis that
strain-specific conformations of PrPSC encoded prion strain diversity.”9:75.76 Consistent with
this hypothesis, the molecular weight of the proteinase K-resistant fragment of PrPSC after
deglycosylation in fatal familial insomnia is 19 kDa while the same fragment was 21 kDa

in sporadic and familial Creutzfeldt Jakob disease.”? When inoculated into mice, the strain-
specific migration pattern of PrPSC from human prion strains was preserved supporting the
hypothesis that strain-specific conformations of PrPSC is the basis of strain diversity.’2
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The presence of cellular cofactors during prion conversion may be responsible for the
maintenance of strain-specific, infectious conformations of PrPSC. Development of synthetic,
in vitro-generated prions able to successfully infect wild-type rodents relied on cofactors
such as polyanions and lipids.””:"8 Propagation of a recombinant prion strain in PMCA

in the presence of both recombinant murine PrP and the lipid phosphatidylethanolamine
(PE) retained infectivity.”® Withdrawal of the cofactor (PE) led to the emergence of a
protein-only strain, named OSU, that did not cause disease in mice suggesting cellular
cofactors are required for infectivity. Additionally, /n vitro PMCA propagation of three
distinct prion strains with PE as the sole cofactor resulted in the three strains evolving

into a single strain.”® This work on the directed evolution of prions suggests that cellular
cofactors are involved in prion strain diversity. Recent work has clarified the role of prion
cofactors. Using a novel /n vitro system where protein only PrPSC preparations, in the
absence of PMCA adaptation, are directly infectious to animals, but only in the presence
of co-factors.8% Importantly, protein-only and cofactor generated PrPSC had identical strain
properties indicating that the conformation of PrPSC is sufficient to encode prion strain
information and that cellular co-factors are needed for prion propagation.8? Overall, these
data provide a unified model of prion infectivity where strain information is encoded by
the structure of PrPSC and host cellular cofactors are necessary for prion conversion and
subsequent infectivity.

Lesion profiles, cellular assays, and the biochemical properties of PrPSC are used to
differentiate prion strains. The scrapie cell assay (SCA) and the cell panel assay (CPA)
assess the relative susceptibility or resistance of murine neuroblastoma cell lines to infection
by different prion strains.81-83 The Western blot migration profile, conformational stability,
and sensitivity to proteolytic digestion of PrPSC can be strain specific. It is unclear which,

if any, of the strain-specific biochemical differences of PrPSC directly contributes the
strain-specific phenotype of disease. For example, in murine PrP prions, decreased PrPSC
conformational stability is positively correlated with a shorter incubation period, however,
in humans and hamsters the inverse relationship between PrPS¢ conformational stability and
incubation period was identified.”1.84-87

2.3 AP strain diversity

The heterogeneous clinical presentation of AD may be attributed to strain diversity.88 The
Avrctic and Swedish APP mutations in humans result in distinct AD pathologies.89-92 It
was hypothesized that the two AD clinical disease outcomes were a result of two distinct
AB strains. Conformational stability studies of A from patient brains with Arctic AD

and Swedish AD mutations established that aggregates of A found in the Arctic AD
patients were significantly more sensitive to denaturation with guanidine hydrochloride
compared to Swedish AD.* Further, injecting transgenic mice expressing human APP
containing the Swedish mutation with the Arctic or Swedish AD brain material resulted in
two distinct phenotypes of disease that were maintained upon serial passage consistent with
the predicted behavior of prion strains.*4 Luminescent conjugated oligothiophenes, a class
of amyloid binding dyes, to investigate how the Ap amyloid structure in familial AD differs
from sporadic AD.%3 The emission spectra of luminescent conjugated oligothiophenes
changes when bound to amyloid of differing structure. The emission spectra of luminescent

Prog Mol Biol Transl Sci. Author manuscript; available in PMC 2022 March 22.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Holec et al.

Page 5

conjugated oligothiophenes bound to Ap some of the subtypes of familial and sporadic AD
varied significantly, suggesting a variety of Ap structures exist in different AD cases.%3

Solid state nuclear magnetic resonance imaging analysis of Ap from patient tissue samples
from PCA-AD or rp-AD indicated that Ap from PCA-AD resembled typical AD with
predominant Ap40 fibril structure while rp-AD samples were composed of a cloud of variant
AB40 structures.9 Overall, this data is consistent with the hypothesis that Ap structural
variance contribute to the clinical and pathological heterogeneity of AD.

2.4 Tau strain diversity

Alzheimer’s disease (AD), corticobasal degeneration (CBD), progressive supranuclear
palsy (PSP), Pick’s disease (PiD), and argyrophilic grain disease (AGD) are unique
tauopathies defined by the pattern of tau deposition in the brain along with distinct

clinical phenotypes.%® Transmission studies in wild-type and transgenic mouse models
have established that tau extracts from various tauopathies transmit distinct tau
neuropathology.38:64.96-98 For example, AD-tau variants can differentially seed tau
pathology after intracranial injection of wild-type mice; the tau variants were determined
to be structurally different by trypsin digests that resulted in three distinct trypsin resistant
fragments.38 Injecting wild-type mice with tau from AD, CBD, or PSP resulted in
differences in tau conversion efficiency and cellular tropism in the CNS suggesting the
three tau isolates are distinct prion strains.54 Consistent with this hypothesis, tau fibrils from
the tau strains showed varying resistance to Gdn-HCI denaturation with CBD-tau, AD-tau,
and PSP-tau having the lowest to highest stability, respectively.64 Two recombinant tau
strains in HEK293 cells expressing the tau repeat domain that propagated conformationally
distinct forms of tau that could be serially passaged in PS19 transgenic tau mice that
retained the strain-specific conformation of tau.%® Further, the HEK293 cell model was used
to examine AD, CBD, and AGD patient samples, and each tauopathy induced unique tau
inclusion morphology.?® Consistent with this finding, 18 tau strains were identified based
on differences in limited proteolysis and /n vitro seeding activity of tau in combination
with hippocampal tau pathology when transmitted to PS19 transgenic tau mice.190 Taken
together, these data support that tau structural variance may explain the distinct pathologies
and clinical presentation of the tauopathies.

2.5 a-synuclein strain diversity

Strain-specific prion forms of a-synuclein have been identified in synucleinopathies
including Parkinson’s disease (PD), dementia with Lewy bodies, and multiple system
atrophy (MSA). Synthetic a-synuclein fibrils generated under varying salt concentrations
form distinct conformations with differences in seeding ability and toxicity /n vivo and
in vitro.82.101.102 Recombinant fibrillar a-synuclein created under different laboratory
conditions varied in ability to cross-seed tau aggregation in cell culture and Jn vivo.53
Consistent with this observation, proteinase K digestion revealed differences in protein
cleavage between the synthetic a.-synuclein as well as two distinct a-synuclein digestion
products isolated from Parkinson’s disease with dementia (PDD) patient brains.®3 Distinct
digestion products are suggestive of two a-synuclein conformations reminiscent of prior
observations in PrP prions.”275103-105 /p yjtrp seeding assays utilizing a cell line that
readily propagates MSA a-synuclein was not susceptible to a-synuclein from PD patient
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brains suggesting that PD contains a different strain of a.-synuclein.1%6 Brain material from
PD and MSA patients has distinct seeding activity and cellular inclusion pathology in
HEK?293T cells, suggestive of distinct strain of a-synuclein.107 Overall, a-synuclein strains
share many features of PrP prion strains that include differences in biochemical features,
neuropathology, incubation period, and clinical manifestation of disease.38:62:63

3. Prion strains exist as a mixture

Multiple prion strains can co-exist in an individual host. In cases of sporadic Creutzfeldt-
Jakob disease (sCJD), the polymorphism at codon 129 and different proteinase K cleavage
patterns via Western blot classify disease as Type 1 (21 kDa) or 2 sCJD (19 kDa).103

Type 1 and Type 2 sCJD PrPSC can co-exist in the CNS of the same patient.108-116 ¢

is suggested that up to 40% of sCJD cases contain more than one strain, however, the
prevalence rate is controversial since methodological differences in strain typing and the
region of the brain that is evaluated can both affect the outcome.108-116 |t js not well
understood if strains of Ap can co-exist in a single host, however, distinct strains of Ap

have been identified raising the possibility that sporadic AD may be a mixture of strains.*4
Mapping phospho-tau patterns of deposition in the hippocampal regions of individuals with
various tauopathies established that the pattern of pathology is disease-specific with regional
selectivity reminiscent of strain targeting in TSE’s.117 This same study determined that
AD-related tau hippocampal deposition is greatly influenced by simultaneous argyrophilic
grain disease (AGD), another tauopathy, suggesting that coexisting tau strains can create
heterogeneous brain pathologies and overlapping clinical features highlighting the need

for discriminatory methods of post-mortem diagnosis.11? Antibodies that distinguish AD
tau from non-AD tau deposits of CBD, PSP, and Pick’s Disease (PiD) can discern the
differential deposition in co-occurring pathologies.11® While ample experimental evidence
suggests that different a-synucleinopathy strains exist, the coexistence of a-synucleinopathy
strains has not been described.

Coexisting prion strains can interfere with each other. Strain interference is a phenomenon in
which a slowly-converting blocking strain can delay or prevent the emergence of a quickly-
converting strain. A number of parameters govern prion strain interference. Increasing

the titer of the blocking strain results in a corresponding increase in the interference
effect.119-122 |mportantly, prion conversion in a common population of cells is required

for interference to occur as the strains compete for a limiting cellular resource, PrpC 123124
Consistent with this hypothesis, co-infection of two low conversion efficiency prion strains
results in each strain converting independently without interference that is due to PrPC

not becoming limiting.12° Overall, strain interference is an important parameter in the
emergence of a dominant strain from a mixture.

Currently, strain interference has not been reported for mammalian non-PrP prions, and
further investigation is required to determine if this phenomenon is a common property
of mammalian prions. In yeast, there is evidence that strain variants compete within a
cell during and after mating, with “strong” variants outcompeting “weak” variants for the
template of conversion.128 Mechanistically, “weak” variants are characterized by quick
growth but low frangibility, whereas “strong” variants grow slowly but are more easily
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fragmented, leading to increased free ends for growth and therefore a competitive advantage
over “weak” variants.%9

4. Prion therapeutics

Therapeutics that target prion conversion can work via several mechanisms. Drugs can
target PrPC prior to its interaction with PrPSC by affecting the post-translational processing,
metabolism, cellular trafficking, or localization of PrPC (Fig. 1, step 1). Drugs that bind to or
induce a conformational change in PrPC can hinder the interaction between PrPC and PrPS¢
(Fig. 1, step 2). Drugs can target PrPSC by stabilizing or redistributing PrPSC, interfering with
the interaction between PrPC and PrPS¢ (Fig. 1, step 3). The conversion of PrPC to PrpS¢

can be targeted by drugs that block the PrPSC binding site on PrPC, cap PrPS¢ aggregate
growth, or inhibit cofactors that enable conversion (Fig. 1, step 4). Therapeutics that target
clearance of PrPSC either increase fragmentation of PrPSC aggregates (Fig. 1, step 5) or
promote clearance of PrPSC from cells (Fig. 1, step 6).

4.1 Treatments that target PrpS¢

Several drugs that directly interact with PrPSC have anti-prion effects (Table 1 and Fig. 1).
Congo red, an amyloid binding dye, was one of the first compounds identified to extend
the incubation period of prion-infected animals and can reduce the formation of PrPSC

in scrapie-infected mouse neuroblastoma cells (Sct MNB).127 Congo red is hypothesized
to directly bind and over-stabilize PrPSC, preventing further prion formation.127-129 QOral
administration of Compound B, an amyloidophilic compound, extends the incubation
period of TSEs and is hypothesized to inhibit formation of PrPSC by directly binding
PrPSC or by interacting with cofactors/chaperones necessary for prion conversion.134.135
The diphenyl-pyrazole anle138b inhibits PrPS¢ amplification and reduces neurotoxicity by
shifting PrPSC oligomers to a smaller size by reducing intermolecular hydrogen bonding
and obstructing the formation of higher order oligomers, modulating the formation of toxic
PrpPSC aggregates.136:137 Anle138b has anti-prion activity both 7 vitroand in vivo and
substantially prolonged survival even when treatment began after onset of signs of prion
disease. 137

Cellular redistribution of PrPSC can inhibit prion formation. Chlorpromazine (CPZ), an
antipsychotic, redistributes PrPSC from the early endosomal/endocytic recycling pathway

to the late endosomal/lysosomal pathway resulting in an inhibition of prion conversion in
prion-infected N2a cells; however, CPZ was ineffective in vivo.13% A cholesterol synthesis
inhibitor, U18666A, can redistribute PrPSC from the early endosomal/endocytic recycling
pathway to the late endosomal/lysosomal pathway, causing an increase in PrPSC degradation
that corresponds to a decrease in total PrPSC in prion-infected N2a cells.13°

Increasing degradation of PrPSC can ameliorate prion infection (Fig. 1, step 6). The tyrosine
kinase inhibitor STI1571 decreases the half-life of PrPSC in prion-infected ScN2a cells

via interaction with the tyrosine kinase c-Abl without affecting the cellular location or
trafficking of PrPS¢.208 Several drugs increase degradation of PrPSC by inducing autophagy.
A-12 and A-14, derivatives of the antitumor drug celecoxib, can reduce or eliminate PrPSC
in prion-infected neuronal cells lines by stimulating autophagy.2%® Lithium, which is used to
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treat depression, reduces PrPSC in prion-infected neuronal and non-neuronal cells cultures by
inducing autophagy.?10

Pentosan polysulfate (PPS), a cysteine protease inhibitor, induces a reduction in prion
conversion by causing fragmentation of PrPSC at the cell surface or utilizing endogenous
glycosaminoglycans (GAGs) to competitively interfere with the binding of PrPC to

PrpSc 139,140 Treatment of prion-infected mice with PPS decreased PrPS¢ accumulation and
prolonged survival compared to untreated controls even when administered after the onset
of PrPSC deposition in the CNS.139.140 While effective in rodents, treatment of human prion
diseases with PPS has varied results. In some patients treated with intravenous PPS, there
is a significant increase in survival compared with untreated patients141-143: however, there
are several cases indicating treatment is not effective at extending survival or ameliorating
clinical features of disease.144-146

Treatment of prion disease with heterologous prion proteins (HetPrP) can interfere with the
formation of PrPSC in both Sc*MNB cells and /in vivo.148-151 Treatment of RML-infected
mice with hamster HetPrP significantly delayed onset of clinical symptoms and significantly
decreased PrPS¢ accumulation in brain and spleen.159 Mechanistically, it is hypothesized that
HetPrP either incorporates itself into a growing PrPSC aggregate and, unable to be converted
to PrPSC by the host species PrPSC, hinders conversion or binds directly to the conversion
site on PrPSC blocking the PrPC conversion site.148 Overall, drugs that target PrPSC that are
effective in prion-infected cell cultures and animals are ineffective in human clinical trials.
The lack of efficacy in human clinical trials could be partly due to timing of treatment
initiation. In prion-infected rodents, anti-prion drugs administered prior to or shortly after
prion infection have the highest efficacy, with administration at the onset of clinical disease
being less effective. In human prion disease, treatment is typically not begun until after
onset of clinical signs, decreasing treatment efficacy.2! In an attempt to overcome this,

an ongoing study is treating subjects at risk for developing fatal familial insomnia with
doxycycline.212

4.2 Strain-specific efficacy of anti-prion treatments

Treatment of prion-infected animals or cell cultures with anti-prion drugs can lead to the
emergence of drug resistant prion strains. Swainsonine inhibits the processing of asparagine-
linked glycoproteins by impeding the action of Golgi a-mannosidase Il as well as lysosomal
mannosidase.?13-215 Treatment of prion-infected neuroblastoma-derived R33 cells with
swainsonine can result in the emergence of swainsonine-resistant prions.216 Importantly,
PrPSC from swainsonine-resistant and swainsonine-sensitive prions from cell culture have
different PrPSC conformational stabilities suggesting they are distinct prion strains.216:217
Treatment of prion-infected cells with swainsonine selected for a drug resistant substrain,
but when the inhibitor is removed, the susceptible substrain reverted to a drug sensitive
population in cell culture.218 Additionally, passage of swainsonine-resistant RML prions
from AMO10 to PK1 cells in the presence of swainsonine resulted in the selection of
swainsonine-dependent prion variants with an increased efficiency to propagate in the
presence of the drug.219 However, passaging the swainsonine-dependent prions in the
absence of drug resulted in reversion to a swainsonine-sensitive prion population in cells.219
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RML-infected ScN2a cells treated with the 2-aminothiazole IND24 resulted in the
emergence of an IND24-resistant prion strain (RML [IND24]) that had a different host

cell range, biochemical and neurological features compared to RML-infected mice treated
with vehicle (RML [V]).152 In addition to IND24, this drug-resistant prion strain was also
resistant to the anti-prion drugs Compound B and quinacrine.152 This suggests that the
mechanism of resistance between the three anti-prion compounds is similar. Susceptibility
of the RML[IND24] strain to IND24 could be restored when passaged in the absence of
IND24 resulting in the reversion of the RML[IND24] phenotype to the RML[V] phenotype
in mice.152

The mechanism underlying the emergence of drug-resistant prion strains is not known. Anti-
prion treatments can be strain specific.152157 One hypothesis is that compounds effective
against the most predominant, but not all, strains in a mixture can allow for the emergence of
a drug resistant strain. Prion strains are thought to exist as a dynamic mixture of substrains,
or mutant spectra.220-221 |n this scenario, the dominant strain suppresses the emergence of
substrains and, once the dominant strain is removed by the anti-prion drug, the suppressive
effect is diminished allowing for emergence of a preexisting drug resistant strain. Studies of
strain interference have established the conditions and mechanism of how a dominant strain
can suppress the emergence of a minor strain consistent with this hypothesis.121123221-223
Selective removal of a dominant strain from a mixture using strain-specific differences in
the stability of PrPSC can allow for the emergence of a highly pathogenic substrain from a
mixture, providing additional support for this hypothesis.224 Alternatively, it is possible that
anti-prion compounds directly interact with PrPSC altering its conformation (i.e., mutation)
and therefore strain properties. Anti-prion compounds can bind to PrPS¢ consistent with

this hypothesis, however, RML[IND24] remained resistant to IND24 for up to 20 passages
in CADS5 cells in the absence of IND24 suggesting that IND24 interaction with PrPSC is

not required for the resistant phenotype.152 Overall, it is unclear if the emergence of drug
resistant prion strains is due to selection of a preexisting mutant strain from the mutant
spectra and/or if the anti-prion drug acts as a prion mutagen to generate the drug resistant
strain.

Maintenance of a drug resistant phenotype may have a high fitness cost. Passage of drug
resistant prion strains in the absence of the anti-prion drug can result in rapid reversion to the
original drug sensitive strain. This suggests that the drug resistant prion strain has relatively
poor fitness for the host. In the absence of drug, the mutant spectra that arises from prion
conversion produces mutants that have increased fitness for the host. This observation raises
several questions. First, reversion of the drug resistant strain in the drug-free environment
leads to the emergence of the original drug sensitive strain. It is unclear why the drug
resistant strain would revert to the parent strain as opposed to another strain if generation

of the mutant spectra is random. This suggests that the drug resistant strain may contain

a “memory” that favors reversion to the original strain. Second, treatment of a host with

an anti-prion drug can extend the incubation period of disease without the emergence of

a drug resistant strain. The mechanism behind this observation is unknown. It is possible
that certain strains can still retain sufficient suppressive effect of substrains during anti-prion
treatment. The relative distribution of the mutant spectra in any given isolate may differ
depending on its passage history. For example, biologically cloned strains may have a more
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limited mutant spectra compared to uncloned or field isolates. Finally, highly stable class
| strains may have a more limited mutant spectra compared to unstable class 111 strains.225
Overall, very little is known about how the interaction between the host and the strain
influences prion strain fitness.

The emergence of drug resistant prions is a significant barrier to the development of
effective treatments of prion diseases that target the prion form of the protein. Treatments
that reduce or eliminate the abundance or the ability of the conversion template to form the
prion form of the protein may offer an alternative strategy for anti-prion therapies.

4.3 Treatments that target PrP¢

Prion conversion is dependent on the presence of the template of conversion (Fig. 1, step
2). Genetic ablation of PrP in mice results in complete resistance to prion infection with
little known detriment to development or function.226:227 Similarly, ablation of PrPC in cattle
does not result in major functional or immunological deficits and tissue from these animals
does not support prion conversion.228 In a conditional PrPC knockout model, transgenic
mice express PrPC until approximately 12 weeks of age before undergoing gene-directed
depletion of PrPC.229 When these mice are challenged with RML prions at 3—4 weeks

of age, prion infection was established, but the depletion of PrPC at 12 weeks halted
progression to the clinical phase of prion disease and reversed spongiosis.?2? Overall, these
studies provide evidence that elimination of PrPC, even after the establishment of prion
infection, has potential as a therapeutic strategy.

Antisense oligonucleotides (ASOs) can modulate expression of PrPC. Sequence-specific
ASOs lower levels of PrPC and PrPS¢ in ScN2a cells.165 When sequence specific ASOs
were administered to mice via either i.p. or intracerebroventricular (ICV) routes, ASOs were
well tolerated and resulted in a decrease in Prinp mRNA levels in the brain compared

to PBS negative controls.165166 \When ASOs were administered prophylactically or at
time of inoculation with the RML prion strain, there was diminished PrPC expression

and a corresponding reduction in PrPSC in the brains of ASO-treated mice compared to
PBS controls. Reduction of PrPSC levels correlated to a prolongation of the incubation
period of disease, but animals ultimately succumbed to prion disease.165166 \WWhen ASOs
are administered just prior to the onset of clinical signs of disease, this resulted in

many of the animals rapidly succumbing to the toxic effect of ASO administration.166
Encouragingly, the mice that survived the ASO treatment had a delayed onset of clinical
disease as well as an extended clinical duration of disease that was three times longer

than saline treated controls.266 Overall, ASOs can delay the onset of prion disease whether
given prophylactically or after the establishment of infection and, one issues of toxicity
are addressed, may be an attractive method of depressing PrPC expression to treat prion
diseases.

Treatments that alter the expression of PrPC on the cell surface can reduce prion conversion.
For example, a group of chalcones and oxadiazoles can directly bind to PrPC and decrease
its cell surface expression arresting PrPC trafficking to the endoplasmic reticulum resulting
in a decrease in PrPSC abundance and aggregation in prion-infected N2a cells.167.168
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Alternatively, some of these compounds prevent conversion of PrPC to PrPSC by binding
to and stabilizing PrPC or directly binding to PrPC at the seeding surface.168.184.185

Alteration of post translational processing of PrPC can inhibit prion formation. PrP¢

can undergo either a- or p-endoproteolytic cleavage resulting in C1 and C2 fragments,
respectively.230 The C2 amino acid sequence approximately aligns with that of the PrPS¢
protease resistant core, and has been found in abundance in prion infected brains.231-237
The production of proteolytic cleavage products with varying pathogenic propensities is
similar to what is observed of amyloid precursor protein, where APP cleavage is central to
the development of AD.238 Processing of APP by the enzymes B-secretase and y-secretase
leads to production of the peptides AB-40 and AB-42. While AB-40 has neuroprotective
qualities, 239240 AB-42 has been implicated in AD pathogenesis.241:242 Endopeptidase
cleavage of a-synuclein results in aggregation and toxicity that ultimately causes PD.243
Pharmacological alteration of cellular proteolytic cleavage of the precursor proteins is an
attractive druggable target. For example, a drug that preferentially inhibits the production of
the C2 fragment would be a viable anti-prion treatment as the unfavorable PrPC cleavage
product (C2) would be sequestered while the C1 fragment would be preserved and able

to continue to perform a protective function.244 The metalloprotease, ADAM10, plays

a role PrPC shedding from the cell surface, but has also been suggested to contribute

the a-cleavage of PrPC,232.245-249 |nhibition of ADAM10 resulted in an earlier onset

of prion disease and slower spread to other brain regions in mice as a result of PrPC
sequestration, suggesting ADAM10 may cleave newly formed PrPSC from the surface of
infected cells.247.250 These data suggest that a therapeutic that increases PrPC shedding,
instead of inhibiting post-translational processing of PrPC, may be more effective at
dampening disease progression.

Monoclonal antibodies (mAb) directed against PrPC can inhibit prion conversion. Several
mAbs (D18, 6H4, ICSM 18, 31C6, etc.) are able to abrogate prion conversion and cure
prion-infected N2a cells,171.172.176-180.251 | prion-infected N2a cells, the inhibition of
prion conversion depends on the binding affinity between the mAb and PrPC at the cell
surface, with the most potent inhibitors often binding the a-helical domain of Prp.174.176.177
Inhibition of PrPSC formation by antibodies in cell culture has been proposed to occur

via several mechanisms. The antibodies D18 and 6D11 can abolish prion conversion

by binding to PrPC at the cell surface and hindering PrPSC-templated conversion.171.177
Similarly, treatment of prion-infected N2a cells with mAb 44B1 retains PrPC at the cell
surface in an antigen—antibody complex rendering it unavailable for conversion resulting
in a significant decrease of PrPSC levels.139 A group of N-terminal monoclonal antibodies
(DE10, DC2, EBS, and EF?2) are hypothesized to directly bind to a region on PrPC that
has been shown to tightly bind PrPS¢, effectively blocking the PrPC-PrPSC interaction.186
Antibodies that disrupt PrPC metabolism or trafficking either by preventing internalization
of PrPC or reducing the half-life of PrPC, result in a decrease in PrPSC in cell culture
models.176:178.251 Ajthough the aforementioned antibodies were reported to have no effect
on cell growth or induce cellular toxicity, there are reports of anti-PrP antibodies (e.g.,
POML1) that are neurotoxic.181:252-255 Antj-PrP antibodies that are toxic tend to bind
epitopes in the globular domain of PrP and may trigger similar pathogenic cell signaling
pathways as prion disease.181.254

Prog Mol Biol Transl Sci. Author manuscript; available in PMC 2022 March 22.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Holec et al.

Page 12

Monoclonal antibodies directed against PrPC can alter prion pathogenesis and delay the
onset of clinical signs of prion infection. ICSM 18, when administered to mice either
intraperitoneal (i.p.) or i.c. 7 or 30 days after i.p. inoculation with RML was found to
decrease PrPSC levels in the spleen and delay the onset of clinical signs of prion infection
compared to untreated controls.1”> However, treatment was ineffective when administered at
the onset of clinical signs or if mice were i.c. inoculated with RML.175 Treatment of mice
infected with the Chandler strain of murine-adapted scrapie with mAb 31C6 120 dpi led

to an increase in the incubation period, a decrease in PrPSC levels, and delayed progression
of neuropathological lesions in the cerebellum.20! Creating PrP%0 mice expressing the

6H4 antibody as a transgene (Prnp??-6H4y) led to these mice producing anti-PrP titers

in sera.173 Crossbreeding of Prnp?°-6H4p mice with C57BL/6 mice led to re-introduction
of one or two PrP alleles, generating Prip™?-6H4u and Pript!*-6H4p mice, respectively,
which developed anti-PrP serum levels.173 Following intraperitoneal inoculation of the RML
strain of scrapie, Prnp*/® 6H4p mice lacked deposition of PrPSC in the spleen or the brain,
whereas Prip*”? mice had deposition in both tissues.1”3 Expression of the 6H4 antibody as a
transgene drastically delayed prion pathogenesis in mice.173 Overall, anti-PrP antibodies can
reduce or eliminate PrPSC¢ formation in cells and animals and provides proof of principle of
the efficacy of this approach.

Vaccines that result in host induced production of antibodies that recognize PrPSC or PrPC
have been attempted. Vaccination of mice or white-tailed deer with attenuated Sa/monella
expressing PrP resulted in significant prolongation of onset of clinical disease in the
vaccinated group with complete protection in a portion of the animals as determined by

the absence of PrPSC deposition; however, these studies involved a relatively small sample
size.256:257 \/accines consisting of peptides derived from the primary amino acid sequence
of the prion protein resulted in a humoral immune response to all peptides and delayed

the onset of clinical signs of prion infection compared to control prion-infected mice.258
Other studies have focused on protein epitopes specific to PrPS¢ with strong induction of
antibody responses after vaccination of mice, sheep, and white-tailed deer, strengthening
the possibility of an effective PrPSC-specific vaccine.254-262 In contrast to the previous
studies, vaccinating elk to induce a antibody response against PrPSC resulted in a significant
shortening of incubation period of CWD.263 The acceleration in disease onset could be
attributed to antibody-mediated misfolding of PrPC or by promoting the uptake of PrPSC

in the gut.283 Since PrPC is a host-encoded protein, development of an effective vaccine
directed immune response is impeded by host tolerance. While many approaches have aimed
to overcome tolerance, there are negative consequences of inducing an antibody response
to a host-encoded cellular protein. The effects of antibodies directed at the globular domain
of PrPC results in varying degrees of neurotoxicity while other PrPC-specific antibodies
lead to apoptosis and improper signaling cascades.181:253.264 \/accination strategies have
successfully induced strong humoral and mucosal immune responses in multiple animal
models; however, more work is required to evaluate the most effective vaccination strategy
to prevent disease onset while avoiding toxicity.
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5. Future prospects

Development of ultra-sensitive methods of PrPSC detection have greatly improved and may
lead to routine detection of prion infection in asymptomatic individuals. Protein misfolding
cyclic amplification (PMCA) and real time quaking induced conversion (RT-QuIC) can
detect a single infectious prion particle.265266 Both /i vitro methods can detect PrPSC in
urine, feces, blood, saliva, and cerebrospinal fluid (CSF).267-272 PMCA detects PrPSC from
vCJD patient blood and urine samples, while RT-QuIC is currently being used for the
diagnosis of sCID from CSF and nasal mucosa swab samples.267:269-271.273 Advancements
in in vitro techniques have enabled reliable preclinical detection in experimental prion
disease. PMCA can detect prions in the blood or skin from pre-clinical prion-infected

mice and hamsters.274-276 The sensitivity of RT-QuIC can detect prions in the blood of
prion-infected preclinical hamsters and deer at timepoints as early as 5 days and 1 month
post inoculation, respectively.2’7278 |ike PrPSC¢, AB, tau, and a-synuclein are present in
biological fluids making these /7 vitro techniques promising for preclinical diagnosis.279-283
Overall, preclinical diagnosis of prion diseases will provide a larger window for therapeutic
treatments and consequently a greater likelihood of success. Challenging this is the presence
of multiple prion strains. Strain-specific efficacy of anti-prion drugs or vaccines can result
in emergence of resistant strains that may be more pathogenic or have a different host range
compared to the original dominant strain. These challenges are reminiscent of those faced
by bacterial, fungal, and viral drug development and a successful anti-prion therapy may
require a multidrug approach. The unique nature of prions, however, provides an additional
therapeutic target, namely the precursor protein. Treatments that target the prion precursor
protein can inhibit prion formation and may reverse pathological changes. A combinational
approach that treats the prion form and the precursor protein will likely be needed to
effectively treat the broad spectrum of prion diseases.
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PrPSc Prpsc

Prpsec
(6

Mechanistic location of therapeutic targets for PrP prion diseases. Therapeutic targets: €@
PrPC post-translational processing, metabolism, cellular trafficking, or localization; @ PrP¢
by binding or inducing conformational change that prevents PrPC interaction; @ PrPSC

by stabilization, redistribution; @ conversion process by blocking binding site on PrPC,
capping growth, inhibition of cofactor interactions, or @ promoting fragmentation or @
clearance from the host.
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