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Abstract

Protein model refinement is the last step applied to improve the quality of a predicted protein 

model. Currently the most successful refinement methods rely on extensive conformational 

sampling and thus, take hours or days to refine even a single protein model. Here we propose 

a fast and effective model refinement method that applies GNN (graph neural networks) to predict 

refined inter-atom distance probability distribution from an initial model and then rebuilds 3D 

models from the predicted distance distribution. Tested on the CASP (Critical Assessment of 

Structure Prediction) refinement targets, our method has comparable accuracy as two leading 

human groups Feig and Baker, but runs substantially faster. Our method may refine one protein 

model within ~11 minutes on 1 CPU while Baker needs ~30 hours on 60 CPUs and Feig needs 

~16 hours on 1 GPU. Finally, our study shows that GNN outperforms ResNet (convolutional 

residual neural networks) for model refinement when very limited conformational sampling is 

allowed.

Editor summary:

Deep graph neural networks can refine a predicted protein model efficiently with less computing 

resources. The accuracy is comparable to that of the leading physics-based methods that rely on 

time consuming conformation sampling.
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Introduction

High-accuracy protein structure prediction can facilitate the understanding of biological 

processes at the molecular level. In the past few years, protein structure prediction has 

been greatly improved, mainly due to deep convolutional residual networks (ResNet)1–4 

introduced by RaptorX and lately Transformer-like networks implemented in AlphaFold2. 

However, some predicted protein structural models still deviate much from their native 

structures, which limits their value in downstream applications. To further improve model 

quality, much effort has been devoted into developing model refinement methods5–7. The 

main goal is to refine an initial model towards its native structure and then, to generate new 

models of higher quality. This is very challenging since the space of worse models is much 

larger than that of better models. Many refined models submitted to Critical Assessment of 

Structure Prediction (CASP) have worse quality than their starting models5.

A typical model refinement method involves side-chain repacking, energy minimization 

and constrained structure sampling8–11. Since it is challenging to optimize energy 

function, large-scale conformational sampling is often resorted. Currently, the most 

successful refinement methods use large-scale conformational sampling either through 

molecular dynamics (MD) simulations6 or fragment assembly7,12. For example, the Feig 

group employs iterative MD simulation with flat-bottom harmonic restraints to sample 

conformations. The Baker group7 uses local error estimation to guide conformational 

sampling by fragment assembly, and iteratively refines the models by recombining 

secondary structure segments and replacing torsional angles. DeepAccNet13, developed by 

the Baker group recently, uses both 3D and 2D convolution networks to estimate residue-

wise accuracy and inter-residue distance error, which are then converted into restraints to 

guide conformational sampling. GalaxyRefine212 developed by the Seok group employs 

multiple conformation search strategies. Although performing well on some proteins, these 

methods rely on extensive conformational sampling and thus, a lot of computing resources 

for even refining a single protein model 13,14. There are also some fast refinement methods 

such as ModRefiner, 3DRefine and ReFold that do not use extensive conformational 

sampling8–11, but their performances lag far behind Feig’s and Baker’s.

Here we propose a model refinement method GNNRefine that may quickly improve model 

quality with only limited conformational sampling. GNNRefine represents an initial protein 

model as a graph and then employs graph neural networks (GNN) to refine it. Compared 

to contact and distance matrix representation (used by ResNet) of a protein model, graph 

representation may capture multiple-residue correlation and the global information of 

a protein more easily. GNN has been used to predict protein model quality15,16, but 

not to refine protein models so far. GNNRefine predicts inter-atom distance probability 

distribution and converts it into distance potential, which is then fed into PyRosetta17 

FastRelax18 to produce refined models. Our experimental results show that GNNRefine may 

improve model quality with very limited confirmation sampling, outperforms a majority 

number of existing methods and is slightly worse than Feig’s method that uses large-scale 

conformational sampling. Another advantage is that GNNRefine produces fewer degraded 

models than the others.
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In practice it is important to be able to refine protein models quickly. This is because many 

biologists do not have human and computational resources for in-house protein structure 

modeling and thus, have to rely on protein structure prediction web servers. In order to 

respond to many users in a short time, a web server shall be able to refine protein models 

quickly without sacrificing accuracy. It is challenging for a structure prediction server to run 

Baker’s or Feig’s refinement programs without a large number of GPUs or CPUs.

Results

Overview of the method

As shown in Fig. 1a, our method GNNRefine mainly includes three steps: 1) represent 

the initial model as a graph and extract atom, residue, and geometric features from the 

initial model, 2) predict refined distance distribution for each edge using GNN, and 3) 

convert the predicted distance probability into distance potential and feed it into PyRosetta17 

FastRelax18 to produce refined models by side-chain packing and energy minimization. 

Meanwhile, the GNN-based distance prediction is the key to the refined model quality. 

As shown in Fig. 1b, GNNRefine mainly consists of three modules: an atom embedding 

layer, multiple message passing layers, and an output layer. The atom embedding layer 

learns atom-level structure information of one residue and its output is concatenated with 

other residue features to form the final feature of a residue. The protein graph is built on 

the residue feature (node) and bond or contact feature (edge) between residue pairs. The 

multiple message passing layers iteratively update the node and edge features to capture 

global structural information. Finally, a linear layer and a softmax function are used to yield 

distance probability distribution from the edge feature.

Evaluation metrics

We evaluate the quality of a protein model by Global Distance Test High Accuracy (GDT-

HA), Global Distance Test Total Score (GDT-TS) and Local Distance Difference Test 

(lDDT)19, all ranging in [0, 100]. For all these three metrics, higher values indicate better 

quality and the value 100 means the predicted model is the same as the experimental 

structure. GDT-HA and GDT-TS measure the percentage of residues in the predicted model 

that deviate from the experimental structure by at most a small distance cutoff. GDT-HA 

is more sensitive than GDT-TS because its distance cutoffs are half of those used by 

GDT-TS. lDDT can also be interpreted similarly. To intuitively compare the performance of 

different methods, we mainly use the quality changes before and after refinement. A positive 

value (with positive sign) means the average quality of a refined model is better than its 

starting models, and a higher value indicates a larger improvement, while a negative value 

(with negative sign) has the opposite meaning. “Degradation” counts the number of refined 

models with worse quality than their initial models by a given threshold (0, −1 and −2). 

Meanwhile, 0 denotes that a refined model has worse GDT-HA than its starting model; −1 

and −2 denote that a refined model is worse than its starting model by at least 1 and 2 

GDT-HA units, respectively.
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Performance on CASP13 refinement targets

We compare our method with two leading human groups FEIGLAB and BAKER in 

the CASP13 refinement category5 and 5 server groups Seok-server, Bhattacharya-Server, 

YASARA, MUFold_server and 3DCNN, all of which are described in the CASP13 Abstract 

book20. Their refined models are available at the CASP official website. A human group 

has up to 3 weeks to refine one model while a server group has at most 3 days. A human 

group may use any extra information including all server models. For example, FEIGLAB 

selected refined models manually and BAKER chose their sampling strategy based upon 

the model quality provided by the CASP organizers. Note that our method was not blindly 

tested in CASP13. We show the average quality of the first submitted models in Table 1 and 

visualize the distribution of quality improvement in Extended Data Fig. 1. Even generating 

only 5 refined models for each initial model, GNNRefine obtains comparable performance 

as the two human groups and outperforms all the 5 servers. Seok-server is the only server 

that yielded improvement on the three metrics. Bhattacharya-Server and YASARA improved 

lDDT slightly, but degraded GDT-HA and GDT-TS. MUFold_server and 3DCNN degraded 

all the three metrics. Further, GNNRefine slightly worsens the quality of only 4 protein 

models, but all the others including the two human groups degraded many models. That is, 

it is very safe to use our method to refine models. Extended Data Fig. 1 shows that in terms 

of quality improvement the two human groups have a larger variance than ours because they 

used extensive conformational sampling, but we do not.

Performance on CASP14 refinement targets

We test our GNNRefine on the 37 CASP14 refinement targets (not including the extended 

time refinement targets) and compare it with two human groups FEIG and BAKER and 4 

server groups FEIG-S, Seok-server, Bhattacharya-Server and MUFold_server, all of which 

are described in the CASP14 Abstract book21. Note that we did not finish developing our 

method before CASP14, so it was not blindly tested in CASP14. FEIG-S is a server group, 

but not fully automated for some targets as mentioned in CASP14 Abstracts21. In CASP14 

both the FEIG and BAKER groups used extra information in addition to the starting models 

to be refined. In contrast, our method only uses the starting models assigned by CASP14. 

For example, FEIG-S used some in-house template-based models as extra starting models 

for 6 targets. For 14 targets FEIG used the other models of the same server generating 

the starting model assigned by CASP14. BAKER used inter-residue distance predicted by 

trRosetta4 from MSAs (multiple sequence alignment) as an input feature of DeepAccNet13 

but GNNRefine does not use MSAs. The CASP14 models are much harder to refine than 

CASP13 models. As shown in Table 2 and Extended Data Fig. 2, all the server groups 

except FEIG-S degraded the model quality in terms of GDT-HA, GDT-TS and lDDT, and 

all including the two human groups degraded the quality of more than 10 models. This is 

possibly because some starting models are already well refined, especially the 7 AlphaFold2 

models. Excluding the AlphaFold2 models, the model quality improvement is comparable to 

CASP13, as shown in Supplementary Table 1.

Overall, on the CASP14 targets our method performs worse than Feig’s methods (possibly 

because they used extra initial models), comparably to Baker’s method (which used MSAs) 

and better than the others. Our method degrades the least number of models. Note that even 
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generating only 5 refined models for an initial model, our method has similar accuracy as 

generating 50 refined models for an initial model. When generating 250 refined models for 

an initial model, our method may further improve model quality, as shown in Supplementary 

Table 17.

As shown in Supplementary Table 2 and Fig. 1, on average all methods degrade the 

AlphaFold2 models, but our GNNRefine-plus degrades less than the others. On average 

GNNRefine-plus degrades the AlphaFold2 models by 2.69, 1.49 and 2.24 in terms of 

GDT-HA, GDT-TS and IDDT, respectively. FEIG degrades by 9.04, 7.06 and 8.39 in terms 

of GDT-HA, GDT-TS and IDDT, respectively. Baker degrades by 5.61, 4.69 and 5.26 in 

terms of GDT-HA, GDT-TS and IDDT, respectively. FEIG significantly degraded 4, 4, 6 

AlphaFold2 models in terms of GDT-HA, GDT-TS and IDDT (<−5), respectively. Baker 

significantly degraded 5, 3, 4 AlphaFold2 models in terms of GDT-HA, GDT-TS and IDDT 

(<−5), respectively. GNNRefine-plus only significantly degrades 1, 0, 0 AlphaFold2 model 

in terms of GDT-HA, GDT-TS and IDDT (<−5), respectively. We further test our method 

on the first models submitted by AlphaFold2 for 88 CASP14 domains, as described in 

Supplementary Section 2. Supplementary Fig. 2 shows our method can only refine a small 

number of AlphaFold2 models with lDDT<88. One possible reason is that there are only 

a small percentage of protein models of high quality (i.e. lDDT>80) in our training set as 

shown in Supplementary Fig. 5.

Specific examples.—GNNRefine has successfully refined five CASP targets (3 CASP13 

targets and 2 CASP14 targets) with ΔGDT-HA ≥10. Fig. 2 shows 4 of them with publicly 

available experimental structures and indicates that our method can refine models at 

different secondary structure regions.

Performance on the CAMEO and CASP13 FM data

We further evaluate our method on two large datasets. One has 208 starting models for 

the CAMEO targets and the other has 4193 models built by RaptorX-3DModeling (https://

github.com/j3xugit/RaptorX-3DModeling) for the CASP13 FM (free modeling) targets. As 

shown in Supplementary Table 4, on the CAMEO targets, our methods on average improve 

model quality by ~2 GDT-HA units, much better than the others. Meanwhile, in terms of 

GDT-HA, GDT-TS and IDDT, ~78%, ~73% and ~92% of the refined models are better than 

their initial models, respectively. As shown in Supplementary Fig. 3 and Table 5, on the 

CAMEO targets there is a weak correlation (0.20) between the GNNQA-predicted quality 

of the starting model and the improvement by GNNRefine. Most of the CAMEO starting 

models have predicted quality (lDDT) from 47 to 80 and GNNRefine may refine most of 

them. GNNRefine has a slightly better chance to improve the quality of CAMEO targets 

when the predicted lDDT score is between 60 and 80. The performance of our method is 

not very sensitive to protein size. The correlation between protein sequence length and the 

improvement by GNNRefine is weak (0.0154, 0.0712 and 0.1020 in terms of GDT-HA, 

GDT-TS and IDDT, respectively). As shown in Supplementary Table 6, on the CASP13 FM 

models our method on average improves model quality by ~2 GDT-HA units.
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Running time on CASP14 refinement targets

The Baker group has released the source code of their ResNet-based refinement protocol 

used in CASP14, i.e. DeepAccNet (https://github.com/hiranumn/DeepAccNet-TF), which 

allows us to accurately measure its running time. To ensure a fair comparison between 

our method and standard DeepAccNet, we ran them on the same Linux workstation (with 

256 CPU cores and 2T memory) by their default configurations. As shown in Fig. 3, on 

average GNNRefine needs 0.18 hours (10.8 minutes) on 1 CPU to refine a single model 

while DeepAccNet needs 30.19 hours on 60 CPUs to do so, which implies that our method 

is about 10,000 times faster than DeepAccNet. The running time of both our method and 

DeepAccNet increases proportionally along with the protein sequence length. We are not 

able to install Feig’s program locally since it needs too many external packages. As reported 

in Feig’s CASP14 talk, it took 16 GPU hours for Feig’s method (running on RTX2080Ti) to 

refine a single protein model R1056 (of 169 residues)22. Our method is much more efficient 

because that it may predict inter-residue distance more accurately (see Supplementary Table 

8) and thus, improve protein model quality without extensive conformational sampling while 

both Baker’s and Feig’s methods heavily rely on conformation sampling instead of better 

inter-residue distance constraints to generate protein models of higher quality. Further, we 

only consider those residue pairs with distance no more than 10Å in the starting model and 

thus, do not use too many distance restraints, which also helps to speed up.

Comparison against standalone software and servers

Here we compare our method with some publicly available software and servers such as 

GalaxyRefine9, ModRefiner8, 3DRefine10, and ReFold23. We run GalaxyRefine locally by 

its default configuration. ModRefiner has a configurable parameter to control the strength 

of restraints extracted from the starting model, with 0 meaning no restraints at all while 

100 indicating very tight restraints. We run ModRefiner locally with three different strength 

values: 0, 50 and 100. The refined models of 3DRefine were collected from the 3DRefine 

server and the refined models of ReFold were its CASP13 submissions. As a control, we 

also run PyRosetta FastRelax without using the distance restraints predicted by GNNRefine. 

As shown in Supplementary Table 7, on the CASP13 targets GNNRefine outperforms all the 

other methods by all metrics including running time.

Evaluation of distance prediction

To understand why GNNRefine works without extensive conformational sampling, we 

evaluate the distance predicted by GNNRefine in terms of top L contact precision and 

lDDT. For each residue pair, the predicted probabilities of distance bellow 8Å are summed 

up as predicted contact probability. We select top L contacts in the starting model by their 

respective Cβ-Cβ Euclidean distance ascendingly. To calculate the lDDT of the distance 

predicted by GNNRefine, for each residue pair we use the middle point of the bin with 

the highest predicted probability as its real-valued distance prediction. We only consider the 

Cβ-Cβ pairs with predicted distances less than 20Å. Supplementary Table 8 shows that the 

distance predicted by GNNRefine is better than the starting model in terms of both contact 

precision and lDDT.
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Comparison against ResNet for model refinement

The convolutional residual neural network (ResNet) is widely used for protein contact and 

distance prediction. The Baker group developed a ResNet-based method DeepAccNet for 

model refinement. To test the performance of DeepAccNet when large-scale conformational 

sampling is not used, we feed the distance potential generated by standard DeepAccNet into 

PyRosetta FastRelax to build refined models, using exactly the same method as GNNRefine. 

We have also developed an in-house ResNet model (in Supplementary Section 6) to predict 

distance from initial models and test if the predicted distance can be used to refine models 

or not. To be fair, in this experiment we use only 1 instead of 5 deep GNNRefine models 

to do refinement. For each method, we generate 10 refined models from each starting model 

and select the lowest-energy model as the final refined model. Supplementary Table 9 shows 

that our GNN method greatly outperforms our in-house ResNet method, which in turn is 

better than DeepAccNet. That is, DeepAccNet is not able to refine models when extensive 

conformational sampling is not used, but our GNN method works. Our in-house ResNet 

differs from DeepAccNet in that our ResNet directly predicts distance distribution while 

DeepAccNet predicts the distribution of distance error. Supplementary Table 10 shows that 

our GNN method indeed can predict distance with better accuracy than ResNet.

One underlying reason that GNN outperforms ResNet for model refinement is that GNN is 

able to model the correlation of multiple residues more easily than ResNet. Most proteins 

have their radius of gyration proportional to the cube root of their length, so any two 

residues that are well separated along the primary sequence can be connected by a path in 

the protein graph shorter than the cube root of the protein length. As such, the correlation of 

multiple residues (spreading out in the distance matrix) can be modeled more effectively by 

(not so deep a) GNN, but not by a ResNet. That is, ResNet is good for inferring the initial 

inter-residue relationship and GNN is more suitable for refining it.

Ablation study

To assess the contribution of individual factors to GNNRefine, we evaluate the GNNRefine 

models trained by different data and features in Table 3. Supplementary Table 11 shows the 

quality of the distance predicted by these GNN models. In summary, the large training data, 

the inter-residue orientation and the DSSP-derived features are the three most important 

factors. The atom embedding does not help much, possibly because we did not make use 

of the chemical contexts of the atoms and the positions of these atoms in our training 

models are not very accurate. Supplementary Table 12 shows the performance of iterative 

refinements by 5 GNNRefine models on the CASP13 targets, which demonstrates that the 

GNNRefine models trained on different datasets are complementary to each other. We have 

also predicted the CαCα and NO distance and used them as restraints to build refined 

models, but did not observe significant improvement, as shown in Supplementary Table 13. 

Supplementary Table 14 shows the performance of GNNRefine with respect to the distance 

cutoff for graph edge definition, and that 10Å is the best distance cutoff. To verify if there 

are many incorrect or missing edges in the graph representation of an initial protein model, 

we evaluate the accuracy of the graph edges derived from the initial 3D models to be refined, 

as shown in Supplementary Table 15, ~80% of the graph edges derived from the initial 

models are correct when distance cutoff is set to 10Å. Supplementary Table 16 shows the 
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impact of the number of message-passing layers and our method has the best performance 

with 10 message-passing layers. Supplementary Table 17 shows that when 250 refined 

models are generated for one initial model, more quality improvement may be achieved than 

when only 50 refined models are generated for one initial model.

To select the best refined model, we have developed a model ranking tool by adapting it 

from our GNN model for refinement. Since our current refinement method does not use 

multiple sequence alignments (MSAs) as input, our GNN-based model ranking method 

(GNNQA) does not use MSAs either. As shown in Supplementary Table 18, GNNQA 

performs similarly as two recently developed quality assessment methods DeepAccNet13 

and VoroCNN24 but outperforms a statistical potential RWplus25. Supplementary Table 19 

shows the performance of GNNQA for GNNRefine-plus. Because we use GNNQA to rank 

the refined models, the final refined models are robust to the order of refinement, as shown 

in Supplementary Table 20.

Since GNNRefine uses only limited conformational sampling, a natural question to ask 

is how much GNNRefine may change the starting models and whether GNNRefine may 

improve significantly deviating regions in the starting models. As shown in Supplementary 

Table 21, on average our methods change structure as much as Feig’s but smaller than 

Baker’s. It should be noted that large structure change may lead to large quality degradation, 

especially when the initial models are of high quality. Supplementary Table 21 also lists 

the change of unreliable local regions (ULRs)26 proportion (i.e. the proportion of residues 

in ULRs) between the starting models and refined models. On the CASP13 targets, 

GNNRefine, GNNRefine-plus, FEIGLAB decrease the proportion by 0.71%, 1.14% and 

2.19%, respectively, while BAKER increases the proportion by 1.28%. On the CASP14 

targets, GNNRefine, GNNRefine-plus, FEIG decrease the average proportion by 0.19%, 

0.72%, and 0.28%, respectively, while BAKER increases that by 5.87%. These results show 

that our methods can improve largely deviated regions although not too much.

Discussion

Our GNN-based method may estimate the distance probability distribution of existing edges 

more accurately, but cannot detect missing edges. So its performance may be impacted 

if there are many incorrect or missing edges in the graph representation of an initial 

protein model. Nevertheless, a refinement method usually focuses on protein models with 

reasonable quality, which are supposed to have a good percentage of correct graph edges.

Currently our method does not work well on the AlphaFold2 refinement models. To further 

deal with protein models of high quality, in addition to generating better training models, 

we are planning to improve our method by developing an end-to-end framework. We will 

revise our GNN method to take the MSA of a protein as input. The co-evolution information 

encoded in MSAs may help GNN to predict inter-residue interaction more accurately and 

thus, lead to better refinement. We will also study how useful the self-supervised learning of 

individual protein sequences and MSAs27,28 is. Currently the atom embedding did not help 

much. We will improve it by making use of the chemical contexts of atoms and generating 

training protein models with more accurate side chain atoms. Finally, we will use deep 
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learning to directly predict 3D coordinates of (backbone and side-chain) atoms instead of 

inter-residue distance probability distribution. This will avoid using energy minimization 

methods to build 3D models and potentially improve model quality. We will also add more 

3D protein models of higher quality into our training set so that deep learning may learn to 

refine a protein model of high quality.

Methods

Datasets

In-house training dataset.—It includes the CASP7-12 models and the models built 

by RaptorX for the ~29000 CATH domains. The CASP7-12 models are downloaded 

from http://predictioncenter.org/download_area/. There is only a small number (<600) of 

protein targets in CASP7-12. To increase the coverage, we select 28863 CATH domains 

(sequence identity <35%) released in March 201829, and build on average 13 template-based 

and template-free models for each domain using our in-house protein structure prediction 

software RaptorX. In total, there are 29455 proteins with 500255 models in this training set. 

About 5% of the proteins and their decoys are randomly selected to form the validation set 

and the remaining decoys are used to form the training set. We generate 3 different training 

and validation splits and accordingly train three different GNNRefine models.

DeepAccNet training dataset13.—It contains 7992 proteins (retrieved from the PISCES 

server30 and deposited to PDB by May 1, 2018) with 1104080 decoy models in total. 

Compared with our in-house training dataset, this dataset covers fewer protein targets (7992 

v.s. 29455) but has many more decoy models for each target (~138 v.s. ~18). This set has 

a larger percentage of high-quality models. See Supplementary Fig. 5 for the model quality 

distribution of these two datasets. We generate two different training and validation splits on 

this dataset and then train two different GNN models.

Test data.—We use four test datasets to evaluate our method: the CASP13 refinement 

dataset, the CASP14 refinement dataset, the CAMEO dataset, and CASP13 FM dataset. The 

CASP13 refinement dataset includes 28 starting models in the CASP13 model refinement 

category5, excluding R0979 since it is an oligomeric target with three domains while our 

method is trained on individual domains. The CASP14 refinement dataset includes 37 

starting models. The description of the CAMEO dataset and the CASP13 FM targets are 

available at the data availability statement. Note that all the training targets were released 

before May 1, 2018 and all the test targets were released after this date and thus, there is no 

overlap between our training and test datasets. The detailed information of our data is shown 

in the Supplementary Table 22.

Feature extraction and graph definition

From a protein model, we derive two types of features: residue feature and residue pair 

feature. The residue feature includes sequential and structural properties of a residue: 1) one-

hot encoding of the residue (i.e., a binary vector of 21 entries indicating its amino acid type, 

including 20 standard amino acids plus 1 unknown or other amino acids); 2) the relative 

position of the residue in its sequence calculated as i/L (where i is the residue index and L is 
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the sequence length); 3) dihedral angle (in radian), secondary structure (3-state), and relative 

solvent accessibility calculated by DSSP31; 4) one-hot encoding and relative coordinates of 

heavy atoms in the residue. The one-hot encoding is a four-dimensional vector representing 

four atom types (C, N, O and S) and the relative coordinate is a three-dimensional vector 

defined as: (x-xα, y-yα, z-zα), where S represents a sulphur atom, (x, y, z) is a heavy atom’s 

coordinate and (xα, yα, zα) is the Cα atom’s coordinate.

The residue pair feature is derived for a pair of residues with Euclidean distance less than 

10Å, including: 1) spatial distances of three atom pairs (CαCα, CβCβ and NO) scaled by 0.1; 

2) three types of inter-residue orientation (ω, θ dihedrals and φ angle) defined in trRosetta4; 

3) the sequential separation of the two residues (i.e. the absolute difference between the two 

residue indices), which is discretized into 9 bins ([1, 2, 3, 4, 5, 6–10, 11–15, 16–20, >20]) 

and represented by one-hot encoding. All these features are summarized in Supplementary 

Table 23.

We represent an initial protein model as a graph, in which one node represents a residue and 

one edge represents a chemical bond or a contact between two residues. We say there is a 

contact between two residues if their Cβ Euclidean distance is no more than 10Å. It should 

be noted that this protein graph is equivariant (or symmetric) with respect to rotation and 

translation of atomic coordinates in the 3D space32.

GNNRefine architecture and training

Our GNN model contains an atom embedding layer, 10 message passing layers, and an 

output layer. The dimensions of the atom embedding, edge feature and node feature are 

all 256. As shown in Supplementary Fig. 6a, the atom embedding layer is used to extract 

the local structure information for each residue. Its input is the one-hot encoding of an 

amino acid and the relative coordinates of heavy atoms in the residue, and its output is the 

atom embedding with a fixed dimension. The atom embedding is concatenated with other 

residue features to form the input feature of one residue (i.e. node feature in the graph). 

Each message passing layer consists of a message block for edges and a reduce block 

for nodes. The message block for edges updates edge features and obtains edge attention 

values (Supplementary Fig. 6b) and the reduce block for nodes updates node features 

(Supplementary Fig. 6c).

For each edge, the inputs of its message block are the features of the two nodes connected 

by the edge and the edge feature itself. All these features go through an instance norm layer, 

a linear layer, and a LeakyReLU layer to generate an intermediate edge feature, which then 

goes through an LSTM cell to obtain the new edge feature. For each LSTM cell, its input 

is the intermediate edge feature, its hidden state is the output of its preceding LSTM cell, 

and its cell state is updated from its preceding LSTM cell (the cell state of the first LSTM 

cell is initialized to 0). The LSTM cell may help to capture the long-term dependency across 

layers, which enables us to build a deeper GNN33. The new edge feature also goes through 

a linear attention layer to obtain the attention value of the edge. For each node, the inputs of 

its reduce block are the reduced edge feature and the node feature. The reduced edge feature 

is a linear combination of all edge features weighted by their respective attention values. 

Similar to an edge block, the features go through an instance norm layer, a linear layer, 
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and a ReLU layer to generate an intermediate node feature, and then the intermediate node 

feature together with the initial node feature and its preceding LSTM cell state pass through 

an LSTM cell to obtain the new node feature and new cell state.

The output layer uses a linear layer and a softmax function to estimate the distance 

probability distribution based on the edge feature. The distance probability distribution is 

a 37-dimensional vector with 36 bins representing the distances from 2 to 20 Å (0.5Å each) 

and one bin indicating the distance >20Å, as presented in trRosetta4. To evaluate the refined 

model quality, we train a GNN-based quality assessment model which uses the node feature 

to predict the global lDDT and residue-wise lDDT simultaneously.

To fit the deep model to a GPU with limited memory, when a protein has more than 400 

residues, a sub-structure of 400 consecutive residues is randomly sampled. We implement 

GNNRefine with DGL34 for PyTorch35 and train it using the Adam optimizer with 

parameters: β1=0.9 and β2=0.999. We set the initial learning rate to 0.0001 and divide 

it by 2 every 5 epochs. One minibatch has 16 protein models. We use the cross-entropy 

loss to train GNNRefine at most 15 epochs and select the model with the minimum loss on 

the validation data as our final model. It takes ~3.5 days to train a model on our in-house 

training data and ~6.5 days on the DeepAccNet training dataset using one Tesla V100 or 

TITAN RTX GPU.

Building refined models

Building a refined full-atom model by FastRelax18 consists of the following steps: 1) use the 

initial model to initialize the pose in PyRosetta; 2) convert the predicted distance probability 

distribution into distance potential using the DFIRE36 reference state (similar to trRosetta4) 

and then add it onto the pose as spline restraints with relative weight 2; 3) conduct full-atom 

relaxation, side-chain packaging and gradient-based energy minimization with the built-in 

ref201537 scoring function. We have tried to add a backbone structure refinement step before 

running FastRelax, but it did not result in any backbone improvement. The GNN model 

training likely converges to a local minima. To deal with this, we train 5 different GNN 

models using five different training and validation data splits. Then we use the 5 GNN 

models to refine an initial model sequentially. That is, one GNN model is used to refine the 

protein model generated by the previous GNN model until all 5 GNN models are applied. 

In total we generate only 5 refined models from each initial model, which are then ranked 

by our GNN-based global model quality assessment (QA) method. See Supplementary 

Section 8 for evaluation of this QA method. We have tested another strategy (denoted as 

GNNRefine-plus) to see if we may improve refinement accuracy by generating 50 refined 

protein models in total. That is, for each GNN model we run FastRelax to generate 10 

refined models and keep the lowest-energy protein model as the final refined model of this 

GNN model. Overall GNNRefine-plus generates 50 refined models but keeps only the 5 

lowest-energy ones, which are then ranked by our GNN-based QA method. It turns out that 

GNNRefine-plus obtains slightly better performance than GNNRefine. We also find out that 

when 250 refined models are generated for one initial protein model, we may achieve even 

better refinement, as shown in Supplementary Table 17.
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Extended Data

Extended Data Fig. 1. Quality improvement by different methods on the CASP13 refinement 
targets
Boxplot of the distribution of ΔGDT-HA, ΔGDT-TS, and ΔlDDT on the CASP13 refinement 

targets. The five lines in each boxplot from top to bottom in turn mean: Maximum 

(Q3+1.5IQR), Third quartile (Q3, 75th percentile), Median (50th percentile), First quartile 

(Q1, 25th percentile), and Minimum (Q1−1.5IQR), where IQR is Q3–Q1. The precision is 2.

Extended Data Fig. 2. Quality improvement by different methods on the CASP14 refinement 
targets.
Box plot of the distribution of ΔGDT-HA, ΔGDT-TS, and ΔlDDT on the CASP14 

refinement targets.The five lines in each boxplot from top to bottom in turn mean: Maximum 

(Q3+1.5IQR), Third quartile (Q3, 75th percentile), Median (50th percentile), First quartile 

(Q1, 25th percentile), and Minimum (Q1–1.5IQR), where IQR is Q3-Q1. The precision is 2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
GNNRefine for protein model refinement. a. The flowchart includes feature extraction from 

the starting model, refined distance prediction using GNNs, and refined model building 

based on the refined distance prediction; b. the network with 10 message passing layers and 

256 hidden neurons for both node and edge features. The atom embedding is concatenated 

with other residue features to form the node feature. The edge feature is derived for a pair 

of residues with Euclidean distance less than 10Å, including spatial distance, orientation and 

sequential separation of the two residues. The refined distance prediction is based on the 

final edge feature. PyMol 2.3.0 is used for structure visualization.

Jing and Xu Page 15

Nat Comput Sci. Author manuscript; available in PMC 2022 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2: 
Successful refinement examples by GNNRefine. These examples are for CASP13 targets 

R0974s1, R0976-D2 and R0993s2, and R1082 from CASP14. These starting models were 

provided by CASP13 and CASP14. Native structures, starting models, and refined models 

are shown in green, cyan, and magenta, respectively. The regions that are significantly 

refined are indicated with blue arrows. PyMol 2.3.0 is used for structure visualization.
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Fig. 3: 
The running time of GNNRefine and DeepAccNet on the CASP14 targets with respect 

to protein sequence length. a. comparison between GNNRefine and DeepAccNet. b. the 

running time of GNNRefine.
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Table 1.

Performance on the CASP13 refinement targets. Our GNNRefine and GNNRefine-plus generate 5 and 50 

refined models, respectively, from an initial model. Only the first-ranked refined models are evaluated. There 

are 28 targets in total. Seok-server and Bhattacharya-Server submitted refined models for all targets, YASARA 

submitted 27 models, MUFold_server submitted 26, and 3DCNN submitted 22.

Type Methods GDT-HA GDT-TS lDDT
Degradation

0 −1 −2

Starting 52.27 71.51 61.74

Human
FEIGLAB +4.04 +2.97 +2.48 8 6 4

BAKER +3.35 +1.86 +3.73 7 6 6

Server

GNNRefine +3.83 +2.31 +3.19 3 1 0

GNNRefine-plus +3.90 +2.31 +3.33 4 0 0

Seok-server +1.73 +0.89 +2.23 7 3 1

Bhattacharya-Server −0.44 −0.37 +0.64 17 12 8

YASARA −1.23 −1.57 +0.26 18 16 13

MUFold_server −1.61 −2.33 −0.70 13 11 7

3DCNN −11.47 −8.78 −6.92 22 22 22

The average performance of each group is calculated on its submitted models. GDT-HA: Global Distance Test High Accuracy, GDT-TS: Global 
Distance Test Total Score, lDDT: Local Distance Difference Test, Degradation: the number of refined models has quality worse than their initial 
models by a given threshold based on GDT-HA.
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Table 2.

Performance on all CASP14 refinement targets. GNNRefine and GNNRefine-plus generate 5 and 50 refined 

models, respectively, for each initial model. Only the first-ranked refined models are evaluated.

Type Methods GDT-HA GDT-TS lDDT
Degradation

0 −1 −2

Starting 54.12 72.65 65.98

Human
FEIG +2.01 +1.49 +1.13 14 12 9

BAKER +1.13 −0.03 +0.90 17 15 13

Server

GNNRefine +0.84 +0.82 +0.50 17 9 7

GNNRefine-plus +0.80 +0.77 +0.67 14 10 6

FEIG-S +1.59 +1.05 +1.16 15 14 11

Seok-server −1.14 −1.32 −0.52 21 15 11

Bhattacharya-Server −1.24 −0.68 −0.45 29 22 10

MUFOLD −15.37 −17.91 −13.28 36 35 32

GDT-HA: Global Distance Test High Accuracy, GDT-TS: Global Distance Test Total Score, lDDT: Local Distance Difference Test, Degradation: 
the number of refined models has quality worse than their initial models by a given threshold based on GDT-HA.
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Table 3.

GNNRefine’s performance with different features and training data on the CASP13 data. For the AtomEmb 

(with local frame), we use Cα, N, and C to define the reference frame of atom coordinates for each residue.

Features Training data GDT-HA GDT-TS lDDT
Degradation

0 −1 −2

All features In-house +3.15 +1.96 +2.88 1 0 0

All features DeepAccNet data +3.19 +1.75 +2.74 3 1 1

All features CASP models only +1.42 +0.92 +1.35 8 6 3

no Orientation In-house +2.21 +1.28 +2.26 4 2 0

no Dihedral&SS&RSA In-house +2.53 +1.67 +2.31 2 0 0

no AtomEmb In-house +3.25 +2.03 +2.57 2 0 0

AtomEmb (with local frame) In-house +3.05 +1.82 +2.50 3 1 1

GDT-HA: Global Distance Test High Accuracy, GDT-TS: Global Distance Test Total Score, lDDT: Local Distance Difference Test, Degradation: 
the number of refined models has quality worse than their initial models by a given threshold based on GDT-HA.
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