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ABSTRACT: Spontaneous processes triggered in a sample by
free electrons, such as cathodoluminescence, are commonly
regarded and detected as stochastic events. Here, we supplement
this picture by showing through first-principles theory that light
and free-electron pulses can interfere when interacting with a
nanostructure, giving rise to a modulation in the spectral
distribution of the cathodoluminescence light emission that is
strongly dependent on the electron wave function. Specifically,
for a temporally focused electron, cathodoluminescence can be
canceled upon illumination with a spectrally modulated dimmed
laser that is phase-locked relative to the electron density profile. We illustrate this idea with realistic simulations under
attainable conditions in currently available ultrafast electron microscopes. We further argue that the interference between
excitations produced by light and free electrons enables the manipulation of the ultrafast materials response by combining the
spectral and temporal selectivity of the light with the atomic resolution of electron beams.
KEYWORDS: ultrafast electron microscopy, electron-beam photonics, electron spectroscopies, cathodoluminescence, PINEM,
light−matter interactions

Coherent laser light provides a standard tool to
selectively create optical excitations in atoms,
molecules, and nanostructures with exquisite spectral

resolution.1 Additional selectivity in the excitation process can
be gained by exploiting the light polarization and the spatial
distribution of the optical field to target, for example, modes
with specific angular momentum in a specimen.2 However, the
diffraction limit constrains our ability to selectively act on
degenerate excitation modes sustained by structures that are
separated by either less than half the light wavelength when
using far-field optics (unless ingenious, sample-dependent
schemes are adopted3−5) or a few tens of nanometers when
resorting to near-field enhancers such as metallic tips.6−8 In
contrast to light, electron beams, which are also capable of
producing optical excitations,9 can actuate with a spatial
precision roughly determined by their lateral size, currently
reaching the sub-angstrom domain in state-of-the-art electron
microscopes.10−12 Indeed, the evanescent electromagnetic field
accompanying a fast electron spans a broadband spectrum that
mediates the transfer of energy and momentum to sample
excitation modes with such degree of spatial accuracy.9

However, spectral selectivity is unfortunately lost because of
the broadband nature of this excitation source, unless
postselection is performed by energy filtering of the electrons,
as done for instance in electron energy-loss spectroscopy.9,13,14

Photons and electrons team up to extract the best of both
worlds in the rapidly evolving field of ultrafast transmission
electron microscopy (UTEM), whereby the high spatial
precision of electron microscopes is combined with the time
resolution and spectral selectivity of optical spectroscopy. In
this technique, ultrashort electron pulses created by photo-
electron emission are used to track structural or electronic
excitations with picosecond and femtosecond temporal
resolution.15−25 Regarding electron−photon interaction,
UTEM allows us to exploit the evanescent optical field
components created by light scattering at nanostructures, so
that the interaction is facilitated by passing the free electron
beam through these fields, thus enabling spectrally and
temporally resolved imaging with combined resolution in the
nanometer−femtosecond−millielectronvolt domain via the so-
called photon-induced near-field electron microscopy
(PINEM) technique.17,20,22,26−54 This approach has been
exploited to investigate the temporal evolution of plas-
mons30,31 and optical cavity modes,50,51 as well as a way to
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manipulate the electron by exchanging transverse linear36,39,55

and angular40,44 momentum with the photon field.
Following concepts from accelerator physics,56 temporal

compression of the electron beam into a train of attosecond
pulses can be achieved by periodic momentum modulation and
free-space propagation, using either ponderomotive forces57−59

or PINEM-like inelastic electron-light scattering interac-
tions.20,37,41,42,60,61 Accompanying these advances in our ability
to manipulate free electrons, recent theoretical studies have
explored the use of modulated free electrons to gain control
over the density matrix of excitations created in a sample.62−66

Intriguingly, the cathodoluminescence (CL) emission pro-
duced by a PINEM-modulated electron has been predicted to
bear coherence with the laser used to achieve such modulation,
which could be revealed through correlations in an
interferometer.63 This scenario holds the potential to combine
light and electrons as coherent probes acting on a sample,
possibly enabling practical applications in pushing the space−
time−energy levels of resolution beyond their current values.
Although we refer to coherence in a precise way in what follows
(i.e., the interference of two phase-locked signals), this term
can have various meanings when applied to different types of
processes, so we provide a discussion of possible interpreta-
tions in the context of electron microscopy in the Supporting
Information.
The CL intensity is extremely low in most samples (≲10−5

photons per electron), unless we restrict ourselves to special
classes of targets (e.g., those enabling phase matching between
the emitted radiation and the electron45,49,67). When
measuring far-field radiation, the visibility of the interference
between CL emission and external light could be enlarged by
dimming the latter to match the former. Shot noise that could
potentially mask the resulting interference is avoided if photon
measurements are performed at a single detector (i.e., after the
amplitudes of CL and external light have been coherently
superimposed). Based on this idea, we anticipate that the use
of dimmed illumination in combination with CL light emission
represents a practical route toward the sought-after push in
space−time−energy resolution with which we can image and
manipulate optical excitations at the nanoscale.
Here, we show that the optical excitations produced in a

structure by the combined effect of light and free electrons can
add coherently, therefore providing a tool for actively
manipulating sample excitations. The combination of light
and electrons adds the spatial resolution of the latter to the
spectral selectivity of the former in our ability to manipulate
and probe nanoscale materials and their optical response.
Specifically, we illustrate this possibility by showing that the
CL emission produced by a free electron can be coherently
controlled by simultaneously exciting the sample with suitably
modulated external light. We demonstrate that it is possible to
strongly modulate the CL emission using currently existing
technology, while complete cancellation of CL is physically
feasible using tightly compressed electron wavepackets, which
act as classical external point charges. The present work thus
capitalizes on the correlation between CL from modulated
electrons and synchronized external light as discussed in ref 63,
so we propose a disruptive form of ultrafast electron
microscopy based on the direct observation of interference
between CL emission and dimmed light scattering at a single
photon spectrometer. We anticipate the application of
interference in the excitations produced by the simultaneous
action of light and electrons as a route toward spectrally

resolved imaging and selective excitation of sample optical
modes with an improved level of space−time−energy
resolution. The sensitivity provided by the measurement of
the relative phases between electron and laser waves could be
further enhanced through lock-in amplification schemes that
isolate the interference effects to gain information on both the
electron density profile and the temporal evolution of the
targeted optical excitations.

RESULTS AND DISCUSSION
First-Principles Description of CL Interference with

External Light. We consider the combined action of external
light and free electrons on a sampled structure, such as
schematically illustrated in Figure 1. Under common

conditions met in electron microscopes, the electrons can be
prepared with well-defined velocity, momentum, and energy,
such that their wave functions consist of components that have
a narrow spread relative to those values. Additionally, we adopt
the nonrecoil approximation by assuming that any interaction
with the specimen produces negligible departures of the
electron velocity with respect to its average value (i.e., small
momentum transfers relative to the central electron
momentum). Under these conditions, we calculate the far-
field radiation intensity produced by the combined contribu-
tions of interaction with the electron and scattering from a
laser, based on the far-field Poynting vector. In a fully quantum
treatment of radiation, the angle- and frequency-resolved far-
field (ff) photon probability reduces to

d
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where k = ω/c (see detailed derivation in Methods). This
expression is the quantum counterpart of a classical result for
CL,9 now involving the position- and frequency-dependent
positive-energy part of the electric and magnetic field operators

̂ (r,ω) and ̂ (r,ω), respectively. We follow a quantum
electrodynamics formalism in the presence of dispersive and

Figure 1. Sketch of the system under consideration. A laser pulse
and a modulated electron are made to interact with a sample and
produce light scattering and cathodoluminescence (CL) emission,
respectively. The electron is synchronized with the laser pulse to
maintain mutual phase coherence. The resulting emitted and
scattered photons are collected by a spectrometer. A laser pulse
shaper is inserted in this scheme to bring the scattered light
amplitude to a level that is commensurate with the CL emission
field.
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absorptive media68,69 to calculate this quantity for a free
electron of incident wave function ψ0(r) and external light
characterized by a spectrally resolved electric field amplitude
Eext(r,ω). After some analysis (see Methods), taking the
electron velocity vector v along z, we find
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is the Fourier transform of the electron probability density,
which acts as a coherence factor. Here, we use the notation
r = (R, z) with R = (x, y), and we define the electric far-field
amplitudes fr ̂

CL(R, ω) and fr ̂
scat(ω) through the asymptotic

expressions
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corresponding to the classical CL and laser-scattering
contributions, respectively. It should be noted that we only
retain the 1/r radiative components of the far field in dΓrad/
dΩrd̂ω (see eqs 2 and 4), which is a legitimate procedure when
considering directions in which they do not interfere with the
external illumination. Nevertheless, interference between the
incident and forward 1/r radiative components produces an
additional contribution dΓforward/dΩrd̂ω (i.e., dΓff/dΩrd̂ω =
(dΓrad/dΩrd̂ω) + (dΓforward/dΩrd̂ω)), as we discuss below in
relation to the energy pathways associated with the interaction.
The specimen is assumed to be characterized by a linear and
local electromagnetic response, which enters this formalism
through the Green tensor, implicitly defined by
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where ϵ(r,ω) is the position- and frequency-dependent
permittivity. The first and second terms in eq 2 describe the
separate contributions from CL and light scattering,
respectively, whereas the third term accounts for interference
between them. We remark that this result relies on the
nonrecoil approximation for the electron, which allows us to
replace its associated current operator by the average
expectation value under the assumption that v remains
unaffected by the interaction.
Interestingly, the CL emission in the absence of external

illumination (i.e., the first term in eq 2) is constructed as an
incoherent sum of contributions from different lateral positions
R′ across the electron beam70,71 (i.e., no interference remains
in this signal between the CL emission from different lateral
positions of the beam). In contrast, the signal associated with
the interference between CL and light scattering (third term in
eq 2) contains additive contributions from different lateral
electron-beam positions R′. Interestingly, this effect is
genuinely associated with interference between different lateral

positions of the beam because the light scattering amplitude
fr ̂
scat(ω) in that equation does not depend on R′.
For completeness, we note that eq 2 can be written in the

more compact form
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which directly reflects the interference between CL and laser
scattering. In addition, our results can easily be generalized to
deal with several distinguishable electrons (labeled by
superscripts j), for which we have (see derivation in Methods)
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where Mω/v
j is given by eq 3 with ψ0 replaced by ψ j (the wave

function of electron j). In the absence of external light (i.e.,
with fr ̂

CL = 0), this expression converges to the multielectron
excitation probability described elsewhere.71

While the above results are derived for electrons prepared in
pure states (i.e., with well-defined wave functions), the
extension to mixed electron states is readily obtained by
evaluating the averages in eqs 32 as Tr{jêl(r′,ω)jêl†(r″,ω)ρ̂j}
and Tr{jêl(r′,ω)ρ̂j}, respectively, where ρ̂j is the electron
density matrix of electron j. This leads exactly to the same
expressions as above but replacing |ψj(r)|2 by the probability
densities ⟨r|ρ̂j|r⟩, which allow us to describe electrons that have
undergone decoherence processes before interacting with the
sample.
We present results below for nanoparticles whose optical

response can be described through an isotropic, frequency-
dependent polarizability α(ω). Considering a well-focused
electron with impact parameter R0 relative to the particle
position r = 0 (i.e., an electron probability density |ψ0(r)|2 ≈
δ(R − R0)|ψ∥(z)|

2), we find that eq 2 then reduces to
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Here, v c1/ 1 /2 2γ = − is the Lorentz factor, and we now
have

M dz ze ( )v
z v
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for the electron coherence factor. These expressions clearly
reveal that, although the phase of the electron wave function is
erased because only the probability density appears in eq 9, the
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mutual electron-light coherence is controlled by the temporal
profile of that density, as well as its timing with respect to the
light field, which produces a global phase in Mω/v relative to
the light field that in turn enters through the first term inside
the square brackets in eq 7 (e.g., to partially cancel the CL
emission). Obviously, without electron-laser timing, averaging
over this phase difference cancels such interference.
Reassuringly, eq 7 reduces to well-known expressions for the

CL emission when setting Eext = 0 (i.e., in the absence of
external light). This result is independent of the electron wave
function.63,64,71,72 Conversely, we recover the photon scatter-
ing probability ∝ ω3|α|2 when Eel = 0 (i.e., without the
electron). An additional element of intuition is gained by the
fact that the expression for Eel(R0,ω) corresponds to the
spectrally resolved evanescent field produced by a classical
point electron,9 which decays exponentially away from the
trajectory, as described by the modified Bessel functions K0
and K1.
The electron coherence factor Mω/v in eq 9 (and similarly

Mω/v(R) in eq 3) determines the degree of coherence (DOC)
of the electron excitation (i.e., the CL emission) relative to the
signal originating in the laser (i.e., light scattering). This factor
enters eq 7 through terms proportional to DOC(ω) = |Mω/v|

2,

where we use the definition of DOC introduced in ref 63.
Indeed, forMω/v = 0, the scattered light field does not mix at all
with the CL emission field, so they are mutually incoherent. In
contrast, if Mω/v = 1, we have a maximum of coherence, so that
the external illumination can fully suppress the CL emission.
Specifically, we stress that the point-particle limit of the
electron (i.e., |ψ0(r)|2 → δ(r)) produces Mω/v = 1, thus
recovering an intuitive result for a classical point charge: the
radiation from the passage of the electron is then a
deterministic solution of the Maxwell equations, and thus, it
can be suppressed by an external light field with the same
frequency-dependent amplitude and opposite phase. This is
not the case in general, so for arbitrarily distributed electron
wave functions, the degree of coherence is partially reduced.
We also stress that the phase of the electron wave function is
entirely removed from the coherence factor (see eq 3).
We have shown that the CL emission can be modulated by

interference with external laser light. As a way to illustrate this
effect, we discuss in what follows the maximum achievable
minimization of the overall far-field (scattered + emitted)
photon intensity by appropriately selecting the external
incident-field amplitude. If we have complete freedom to

Figure 2. Interference between cathodoluminescence and external light scattering. (a) We consider a sample consisting of a small isotropic
scatterer described through a frequency-dependent polarizability α(ω) that is dominated by a single resonance of frequency ω0 and width γ.
For concreteness, we take a nanosphere (see inset) comprising a silicon core (60 nm diameter, ϵ = 12 permittivity) coated with a silver layer
(5 nm thickness, permittivity taken from optical data73), for which ℏω0 = 1.3 eV and γ = 0.013ω0. In the plot, the polarizability is normalized
using the outer particle radius a = 35 nm. (b) Electron density profile of a 100 keV electron Gaussian wavepacket (50 fs standard deviation
duration in probability density) after modulation through PINEM interaction (coupling coefficient |β| = 5, central laser frequency tuned to
ωP = ω0) followed by free propagation over a distance d = 2.5 mm, which produces a train of temporally compressed density pulses. (c)
Time dependence of the CL, laser scattering, and total field amplitudes for the electron in (b) and a laser Gaussian pulse of 50 fs duration in
amplitude. The light amplitude is optimized to deplete the CL signal at frequency ω0. (d) Spectral dependence of the resulting angle-
integrated far-field CL (maroon curve), laser scattering (red curve), and total (blue curve) light intensity for the optimized amplitude of the
Gaussian laser pulse. The incoherent sum of CL emission and laser scattering signals is shown for comparison (green curve). The shaded
region corresponds to spectra obtained with partially optimized laser pulses. The inset in (d) shows details of the geometry under
consideration, also indicating the position P at which the field in (c) is calculated.
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choose the external field, we readily find from eq 7 that
dΓrad/dω is minimized by taking

ME E R(0, ) ( , )v
ext

/
el

0ω ω= − *ω (10)

Alternatively, when one adopts light pulses Eext(0,ω) = f(ω)E0
with a predetermined spectral profile f(ω) (e.g., a Gaussian

f(ω) = e−(ω−ω0)
2σt

2/2), the minimization condition at a given
sample resonance frequency ω = ω0 is readily achieved by
setting the field amplitude to E0 = −Mω0/v* Eel(R0,ω0)/f(ω0). As
an estimate of the laser intensity needed to optimally modulate
the CL emission, we take |Mω/v| = 1 and consider the electric
field amplitude from eq 8 for a 100 keV electron passing at a
distance R0 = 50 nm (10 nm) away from the dipolar particle,
so that, setting ℏω = 1 eV, we have |Eel(R0,ω)|Δω ∼ 50 kV/m
(280 kV/m), assuming a depletion bandwidth ℏΔω = 0.1 eV;
also, the corresponding laser fluence is (c/4π2)|Eel(R0,ω)|

2Δω
∼ 10 nJ/m2 (400 nJ/m2).
Motivated by the potential application of electron beams in

controlling the excitations of small elements in a sample (e.g.,
molecules), we consider a dipolar scatterer as that depicted in
Figure 2a, consisting of a 60 nm silicon sphere coated with a
silver layer of 5 nm thickness (i.e., an outer radius a = 35 nm),
which exhibits a spectrally isolated plasmon resonance at a
photon energy ℏω0 = 1.3 eV. In practice, we calculate the
dipolar polarizability of small spheres from the corresponding
electric Mie scattering coefficient as α = (3/2k3)t1

E.9 The
relatively low level of ohmic losses in silver produces a narrow
resonance, with 14% of its fwhm (ℏγ = 0.013ℏω0 ≈ 17 meV)
attributed to radiative losses, as estimated from the ratio
(≈0.86) of peak absorption to extinction cross sections. Similar
dipolar resonances can be found in other types of samples,
such as metallic nanoparticles of different morphology74,75 and
dielectric cavities,76 for which we anticipate a variability in their
coupling strength to light and electrons that should not,
however, affect the qualitative conclusions of the present work.
In what follows, we consider modulated electrons, focusing

on their interaction with a particle under simultaneous laser
irradiation. The production of sub-femtosecond-modulated
electrons has become practical thanks to PINEM-related
advances in ultrafast electron microscopy, whereby an
ultrashort laser pulse is used to mold each electron into a
train of pulses,37,41,42,59,60,77 from which an individual wave-
packet can be extracted by applying a streaking technique.61

Specifically, we consider either Gaussian electron wavepackets
defined by the wave function
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and q0 is the central wave vector, or electrons modulated by
PINEM interaction with scattered laser light followed by free-
space propagation over a macroscopic distance d before
reaching the sampled particle. The wave function of the so
modulated electron consists of a Gaussian wavepacket
envelope (i.e., eq 11) multiplied by an overall modulation
factor64,71

z J( , , ) (2 )ed
l

l
l z z v l d zi ( )/ 2 i /P TP

2∑β ω β= | | ω π

=−∞

∞
− −

(12)

where l labels a periodic array of energy sidebands separated by
multiples of the laser photon energy ℏωP from the zero-loss
peak; the modulation strength is quantified by a single complex
coupling parameter β that is proportional to the laser
amplitude and whose phase determines the reference position
zP, and we have introduced a sideband-dependent recoil
correction phase ∝ l2 to account for propagation over d,
involving a Talbot distance zT = 4πmev

3γ3/ℏωP
2. These

expressions are valid under the assumption that the laser is
quasi-monochromatic (i.e., its frequency spread is small
compared with ωP). Then, for an optimum value of d, the
factor z( , , )d β ω renders a temporal comb of periodically
spaced pulses (time period 2π/ωP) that are increasingly
compressed as |β| is made larger, eventually reaching
attosecond duration.37,41,42,59,60,77 We remark that mutual
electron-laser phase coherence can be achieved using the same
laser to both modulate the electron and subsequently interact
with the sample. For concreteness, we set the electron energy
to 100 keV and tune the PINEM laser frequency to the
resonance of the aforementioned sample (i.e., ℏωP = ℏω0 = 1.3
eV). The corresponding Talbot distance is then zT ≈ 211 mm.

Optical Modulation of CL from a Dipolar Scatterer.
An example of the PINEM-modulated electron density profile
is shown in Figure 2b for σt = 50 fs, |β| = 5, and d = 2.5 mm.
Direct application of eq 7 to this electron allows us to calculate
the CL emission spectrum, along with its modulation due to
interference with light scattering from a phase-locked Gaussian
pulse (50 fs duration in field amplitude), as shown in Figure
2d, where the inset depicts further details of the geometrical
arrangement and configuration parameters. Starting from the
CL spectrum in the absence of external illumination (maroon
curve, which we insist is independent of electron wave function
profile63,64,71,72), we then superimpose the phase-locked laser
pulse in which we optimize the light field amplitude E0 as
prescribed above in eq 5 to produce a maximum of depletion
in the resulting photon intensity at the peak maximum (blue
curve). The achievable depletion is not complete because we
have DOC(ω0) = |Mω0/v|

2 ≈ 0.31 for the considered electron,

which differs from the limit of perfect coherence (see below),
so a fraction of the original CL signal given by 1 − DOC(ω0)
≈ 69% remains after complete cancellation of the coherent
part. If the electron and light pulses are not phase-locked,
relative phase averaging renders Mω/v = 0, so the resulting
probability of detecting CL or scattered photons (green curve)
is just the incoherent sum of the probabilities associated with
these two processes (i.e., the sum of the blue and red curves).
It is instructive to compare the electric near-field associated

with CL versus light scattering by computing the quantum
average of the total electric field operator ÊH(r,t). Although
this quantity is an observable, we note that its measurement is
not straightforward. Following the approach explained in the
Methods section and retaining only terms that are linear in the
electron current operator j(̂r,ω), we find the average field to be
given by

t d d GE r r r r j r( , ) 2i e ( , , ) ( , )tH i 3∫ ∫ω ω ω ω⟨ ̂ ⟩ = − ′ ′ ·⟨ ̂ ′ ⟩ω

−∞

∞
−

which under laser and electron exposure becomes
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− where ECL is defined in Methods (eq 34). The scattered part of

the resulting time-dependent field is plotted in Figure 2c as
calculated from this equation at the position P indicated in the
inset of Figure 2d. We corroborate that the optimized laser
scattering field (red) can be made to cancel the CL field

Figure 3. Modulation of the CL emission by Gaussian electron and laser pulses. (a) Gaussian electron wavepackets of 0.3 and 0.9 fs duration.
(b) Frequency dependence of the electron coherence factor Mω/v (i.e., the Fourier transform of the profiles in (a)). (c) Angle-integrated CL,
laser scattering, and total far-field photon intensity using the electron pulses in (a), the same particle and geometrical configuration as in
Figure 2, and an optimized spectral profile of laser field amplitude. We also show the incoherent sum of CL emission and laser scattering
signals for comparison (green curves).

Figure 4. Coherence factor of PINEM-modulated electrons. (a) We show the coherence factor |Mω/v| for modulated electrons in the limit of
long pulse duration (ωσt ≫ 1) as a function of the PINEM coupling parameter β and free-propagation distance d. This function is periodic
along d with a period given by half the Talbot distance zT. Additionally, |Mω/v| presents an absolute maximum of ≈0.582 along the blue
contour superimposed on the density plot. (b) Unperturbed (maroon curve) and optically depleted (blue curves) CL spectra from a 160 nm
Pt spherical particle for electrons prepared in Gaussian wavepacket (dashed blue curve, σt = 0.3 fs) or PINEM-modulated (solid and dotted
blue curves obtained with |β| = 5 and either σt = 50 fs or σt = 10 fs; see labels) states. The inset shows the geometrical arrangement and
parameters. The laser amplitude is taken to be optimized for all emission frequencies.
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(maroon), therefore producing a nearly vanishing total field
(blue) that is consistent with the depletion of CL observed in
Figure 2d. It is important to stress that the average of the
electric field amplitude cancels, while nonvanishing fluctua-
tions give rise to the incoherent part of the emission, which is
not suppressed.
CL Modulation for Gaussian Electrons. In Figure 3, we

consider an electron prepared in a Gaussian wavepacket with
standard deviation duration σt of either 0.3 or 0.9 fs (Figure
3a). These values are consistent with those achieved in recent
experiments.61 The corresponding coherence factor Mω/v =

e−ω
2σt

2/2 (Figure 3b, as calculated from eqs 9 and 11) quickly
dies off as the electron pulse duration exceeds the optical
period 2π/ω of the targeted excitation. In the point-electron
limit (σt → 0), full coherence is obtained in accordance with
the intuitive picture that the electron then generates a classical
field that is well described by the solution of Maxwell’s
equations for a classical external source. The corresponding CL
emission probability (Figure 3c, maroon curve) is again
independent of electron wave function, while maximal
depletion can be obtained upon sample irradiation with an
optimum spectral profile of the external field amplitude (eq
10), so that only a fraction 1 − |Mω/v|

2 of the CL emission
remains (see eq 7). Consequently, the level of depletion
depends dramatically on pulse duration, as illustrated by
comparing solid and dashed curves in Figure 3c.
CL Modulation for PINEM-Compressed Electrons. The

wave function of a PINEM-modulated electron at the sample
interaction region is given by the product of eqs 11 and 12
when using a quasi-monochromatic laser. The corresponding
coherence factor, calculated from eq 9 as explained in the
Methods section, is a function of the PINEM coupling
coefficient β, the free-propagation distance d, the excitation
frequency ω, the electron velocity v, and a slowly varying
envelope profile that we take here to be a Gaussian of temporal

width σt. In the ωσt ≫ 1 limit, which is reached in practice
with σt ∼ 2 fs for sample excitations of ℏω = 1.3 eV energy
(see supplementary Figure S1), we obtain the universal plot for
|Mω/v| shown in Figure 4a, where the dependence on ω, d, and
v is fully encapsulated in the d/zT ratio, using the Talbot
distance zT defined above. Importantly, we find a region of
maximum coherence (blue contour) in which |Mω/v| ≈ 0.582,
and therefore, the fraction of excitations produced by the
electron that are coherent with respect to the external phase-
locked laser is limited to DOC(ω) = |Mω/v|

2 ≤ 34%. This
maximum value can be reached for coupling parameters |β| ≥
0.46, while the corresponding free-propagation distance d can
be controlled by changing the modulating laser intensity. We
note that the d position at which maximum coherence is found
does not coincide with that of maximal temporal compression
of the electron pulse train due to a substantial electron
probability density remaining in the region between consec-
utive peaks.64

In Figure 4b, we consider a dipolar scatter with a broad
spectral response to better illustrate the optically driven
depletion of CL for PINEM-compressed electrons. In
particular, we take a 160 nm Pt spherical particle, which
produces a wide CL emission peak (maroon curve). For
comparison, we show the depletion obtained under optimized
laser irradiation (i.e., with the external light field amplitude
given in eq 10) for a Gaussian electron wavepacket of 0.3 fs
duration (Figure 4b, dashed curve), showing a stronger effect
at lower photon energies in accordance with Figure 3b. In
contrast, for a nearly optimum PINEM-modulated electron
(the same as in Figure 2b), we find instead discrete depletion
features, corresponding to the PINEM energy (i.e., ℏωP = 1.3
eV in this case) and its harmonics ω = mωP (only m = 1 and 2
peaks are visible in the solid and dotted curves of Figure 4b).
We note that the leftmost depletion does not reach as deep as
that produced by the Gaussian wavepacket electron, whereas
the second one has nearly the same magnitude. In the ωσt ≫ 1

Figure 5. Control of the far-field photon intensity and energy pathways through the electron-laser temporal delay. (a) We consider the same
configuration as in Figure 2, using electron and laser Gaussian pulses that act on the sample with a relative time delay τ. (b) Angle- and
frequency-integrated photon intensity (orange, in units of photons per electron, multiplied by 104), showing oscillations of period 2π/ω0 as

a function of τ, as calculated for 100 keV electrons, 10 fs Gaussian pulse durations (i.e., f(ω) = e−(ω−ω0)
2σt

2/2; see black profile for comparison,
corresponding to the profiles of electron density and laser field amplitude), and the same particle as in Figure 2a. The interference
attenuation for γτ≫ 1 is indicated by the blue curve, where γ is the decay rate of the sampled resonance. The laser field amplitude is fixed to
(1.4 eω0/v

2γ)f(ω). (c−e) Frequency-integrated probability associated with additional energy pathways: laser-stimulated forward scattering
(c), total decay following excitation of the particle plasmon (d), and change in the electron energy (e). Calculations in (b−e) correspond to
the orientations of the light (incident wave vector kinc) and the electron (velocity v) shown in the central inset.
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limit, the depletion observed at the excitation frequencies ω =
mωP is equally ruled by universal plots of Mω/v analogous to
that in Figure 4a (see supplementary Figure S2), showing a
similar dependence on β and d but with an increasingly
reduced magnitude as the harmonic order m is increased.
When the envelope of the PINEM-modulated electron is
reduced from 50 fs (solid blue curved) to 10 fs (dotted curve),
the depletion features are broadened, but their depth is
maintained, directly mimicking the behavior of DOC(ω). In
other words, shorter electron pulses allow us to suppress a
larger fraction of the CL power, and of course, this suppression
requires illuminating the sample with a synchronized,
amplitude-optimized laser that covers the range of sampled
excitation frequencies ω.
Temporal Control of the Emission. The studied CL

modulation strongly depends on the timing between the laser
and electron interactions with the sampled structure, as
illustrated in Figure 5. To elaborate on this point, we reduce
the number of parameters by considering electron wavepackets
with a Gaussian profile (i.e., without an additional PINEM
modulation) and vary their temporal delay relative to the laser
pulses (see sketch in Figure 5a), using the same standard
deviation duration σt = 10 fs both for the electron probability
density and for the light field amplitude. We consider the same
particle as in Figure 1 and integrate the CL signal over
frequency to cover the resonance region. The result is plotted
in Figure 5b. For optimal CL suppression, the polarization
induced in the particle by the electron and the laser must have
overlapping envelopes with a temporal delay precision well
below an optical cycle. For finite delay, we show that the
interference signal oscillates as a function of τ with a period
that coincides with the resonance optical period 2π/ω0.
Additionally, the amplitude of these oscillations is effectively
attenuated by a factor e−γ|τ|/2 away from zero delay; this
attenuation takes place at a pace that is half of the resonance
decay rate γ because interference is governed by the resonance
amplitude rather than the intensity.
Energy Pathways. We present an alternative density-

matrix formalism in the Supporting Information to describe the
combined electron and light interaction with an isotropic
dipolar sample that hosts a triply degenerate optical mode of
frequency ω0. This allows us to obtain partial probabilities for
processes associated with energy changes in the electron (Γel),
accumulated excitations and subsequent decays of the particle
mode (Γdecay), emission of radiation along forward (Γforward)
and non-forward (Γrad) directions, and inelastic absorption
events (Γabs). This analysis leads to the following expressions
for the corresponding frequency-resolved probabilities:
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In addition, it reproduces eq 7 for dΓrad/dω, whereas the
probability of any remaining process leading to absorption
(e.g., ohmic losses in the particle material) is given by dΓabs/dω
= (dΓdecay/dω) − (dΓrad/dω). Importantly, the probabilities in
eqs 13 satisfy the energy-conservation condition

d
d

d
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d

d
0el decay forward

ω ω ω
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Γ

+
Γ

=
(14)

To corroborate the correctness of these results, we have
obtained an independent derivation of eqs 13 based on an
extension of the quantum-electrodynamics formalism followed
in the Methods section, as succinctly described in the
Supporting Information.
We interpret Γforward as the change in photon forward

emission (i.e., toward the direction of propagation of the
incident light beam) associated with interference between
emitted and externally incident photons (i.e., the type of
stimulated process that is neglected in the non-forward far-field
radiation probability Γrad). In particular, the first term inside
the squared brackets of eq 13c coincides with the depletion of
the incident light that is described by the optical theorem80

(i.e., (1/πℏ)Im{α(ω)}|Eext(0,ω)|2 = σext(ω)I(ω)/ℏω, where
σext(ω) = (4πω/c)Im{α(ω)} is the extinction cross section and
I(ω) = (c/4π2)|Eext(0,ω)|2 is the light intensity per unit
frequency), whereas the remaining term originates in electron-
light interference. The probabilities given above are derived for
isotropic dipolar particles, but a similar analysis leads to
expressions corresponding to a particle characterized by a
polarizability tensor α(ω)û ⊗ û (i.e., linear induced polar-
ization along a certain direction û), for which the partial
probabilities are still given by eqs 7 and 13 after substituting û·
Eext and û·Eel for Eext and Eel, respectively.
We explore the aforementioned energy pathways in Figure

5b−e, where we plot the frequency-integrated probabilities
Γrad, Γforward, Γdecay, and Γel, respectively, as a function of
electron-light pulse delay τ. We find that the decay probability
follows a similar symmetric profile as the radiative emission (cf.
panels b and d, both of them independent of the sign of τ). In
contrast, the electron energy-change probability (Figure 5e) is
markedly asymmetric (and so is the forward-emission
probability (Figure 5c) as a result of energy conservation via
eq 14): we obtain the intuitive result that the electron energy
remains nearly unmodulated if the electron arrives before the
optical pulse, while the opposite is true for the forward light
emission component.

CONCLUSIONS
Electron-beam-based spectroscopy techniques provide un-
rivaled spatial resolution for imaging sample excitations by
measuring electron energy losses (EELS) or light emission
(CL) associated with them. In this study, we propose the
opposite approach: suppression of sample excitations produced
by free electrons through combining them with mutually
coherent laser irradiation. Indeed, our first-principles theory
confirms that electrons and light can both be treated as
mutually coherent tools for producing optical excitations. They
form a synergetic team that combines optical spectral
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selectivity with the high spatial precision of electron beams. In
contrast to EELS, where free electrons act as a broadband
electromagnetic source, so that only a posteriori selection of
specific mode frequencies can be performed by spectrally
resolving the inelastically scattered probes, the methods here
explored allow us to target designated mode frequencies with
sub-angstrom control over the excitation process. In addition,
the excitation of on-demand nanoscale optical modes through
the combined use of modulated electrons and tailored light
pulses is amenable to the implementation of coherent control
schemes78,79 for the optimization of the desired effects on the
specimen.
From a practical viewpoint, the PINEM interaction provides

a way of molding the electron wave function to produce the
temporally compressed pulses that are required to address
specific sample frequencies. However, this method has a
limited degree of achievable coherence in the electron-driven
excitation process when using quasi-monochromatic light,
quantified through the degree of coherence63 0 < DOC(ω) =
|Mω/v|

2 ≤ 1; more precisely, it can produce values DOC(ω) ≲
34%, as we show above. We remark that the frequency-
dependent function DOC(ω) is a property of the electron: this
function is univocally determined by the probability density
profile. Full coherence at a frequency ω, corresponding to the
DOC(ω) → 1 limit, can be delivered by δ-function-like combs
of electron pulses (i.e., for an electron probability density
|ψ(z)|2 ≈ ∑mbmδ(z − 2πmv/ω) along the beam,71 with
arbitrary coefficients bm, including single pulses for bm = δm,0),
the synthesis of which emerges as a challenge for future
research.
By putting free electrons and light on a common basis as

tools for creating excitations in a specimen, one could
additionally envision the combined effect of multiple electron
and laser pulses, which would increase the overall probability
of exciting an optical mode, provided that their interactions
take place within a small time interval compared with the mode
lifetime. This idea capitalizes on the concept of super-radiance
produced by PINEM-modulated electrons,62 which our first-
principles theory supports for probing and manipulating
nanoscale excitations including the extra degrees of freedom
brought by synchronized light and electron probes.
We remark that CL is just one instance of sample excitation,

but the present study can be straightforwardly extended to
optically bright modes in general (see independent analysis in
ref 71), including two-level resonances of different multipolar
character. A key ingredient of our work is the use of dimmed
illumination, so that the weak probability amplitude that the
electron typically imprints on the sample has a magnitude that
is commensurate with the effect of the external light. Because
the measurement is performed once interference between
electron- and light-driven excitation amplitudes takes place
(i.e., at the far-field photospectrometer in CL or by the effect of
any subsequent inelastic process following the decay of the
excited sample mode in general), the studied electron−light
mutual coherence is unaffected by additional sources of shot
noise other than the intrinsic ones associated with the
detection process (e.g., like in conventional CL).
Our prediction of unity-order effects in the modulation of

electron−sample interactions through the use of external light
enables applications in the manipulation of optical excitations
at the atomic scale. Additionally, it suggests an alternative
approach to damage-free sensing, whereby the spectral
response of a specimen could be monitored through the

modulation produced by the combined action of light and
electrons, involving a reduced level of sample exposure to
electrons because the targeted interference is proportional to
the polarization amplitudes that they induce, so the outcome of
a weak electron interaction could be amplified by applying a
lock-in technique to the laser. This approach could be useful
for imaging biomolecules, as well as strongly correlated
materials in which probing without invasively perturbing the
system is essential and remains a challenge in the exploration
of spin and electronic ultrafast dynamics. In addition to the
experimental configuration proposed in Figure 1, one could
alternatively flip the semitransparent mirror horizontally to mix
the external laser light with the CL emission at the detector
instead of undergoing scattering at the specimen.
We find it interesting the possibility of adjusting the

amplitude of the external light field (for example, through a
temporal light shaper) to determine the frequency-dependent
magnitude and phase of the CL amplitude field (fr ̂

CL(R,ω) in
our formalism), thus providing temporal resolution when
probing the specimen by direct Fourier transformation of this
quantity. This method could yield a time resolution limited by
the width of the frequency window in the CL measurement at
the spectrometer, without affecting the intrinsic temporal
resolution associated with the short duration of the electron
and light pulses, and likewise, retaining the sub-angstrom
spatial resolution associated with tightly focused electron
beams. In a related direction, spatial light modulation and
raster scanning of the electron beam could also be employed to
gain further insight into the symmetry and nanoscale spatial
dependence of the sample response. Additionally, for a sample
in which fr ̂

CL(R,ω) is well characterized (e.g., a dielectric
sphere76 or a thin film), the modulation of CL by varying the
external field could be used to resolve the coherence factor
Mω/v, thus allowing us to retrieve the electron density profile
from the Fourier transform of this quantity. In addition to far-
field optical measurements, the present analysis can also be
extended to alternative ways of probing optical excitations that
are coherently created by light and electrons, such as electrical
or acoustic detection of the modifications produced in the
specimen.

METHODS
Quantization of the Electromagnetic Field in the Presence

of Material Structures. We follow ref 68 for the quantization of the
electromagnetic field in the presence of linearly responding materials
characterized by a position- and frequency-dependent local
permittivity ϵ(r,ω). Without loss of generality to deal with free
electrons that do not traverse any material, we adapt this formalism to
a gauge in which the scalar potential is zero, as detailed elsewhere.69

The response of the media is represented through a noise current
distribution operator jn̂oise(r,ω), in terms of which the vector potential
operator reduces to

c d GA r r r r j r( , ) 4 ( , , ) ( , )3 noise∫ω π ω ω̂ = − ′ ′ · ̂ ′ (15)

where G(r, r′, ω) is the classical electromagnetic Green tensor at
frequency ω, implicitly defined by eq 5. The noise operator is chosen
to be bosonic and satisfy the fluctuation−dissipation theorem for the
current. These two conditions are fulfilled by writing

j r r f r( , ) Im ( , ) ( , )noise ω ω ω ω̂ = ℏ {ϵ } ̂ (16)

in terms of bosonic ladder operators f(̂r,ω) satisfying the
commutation relations
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where fî=x,y,z denotes the Cartesian components of f.̂ The Hamiltonian
governing the free evolution of the radiation degrees of freedom is
then expressed in terms of these operators as
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Using eqs 15 and 16, the time-dependent quantum vector potential
takes the form
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Of particular interest for the rest of the calculation are the different-
times commutators between the quantum electromagnetic vector
potential and the fields. These quantities can easily be obtained using
eqs 15−18, together with the relations Ê(r,t) = (−1/c)∂t Â(r,t) and
B̂(r, t) = ∇ × Â(r,t), which lead to
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Here, we use the Levi-Civita symbol ϵii″i‴, as well as the identity68
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It is important to remark that the commutators between fields and
potentials are c-numbers, only dependent on the time difference t −
t′. In the calculation of the CL emission probability, we also need the
retarded Green tensors constructed from the commutators in eqs 19
as
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in the time domain, or equivalently
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G

r r r r

r r

( , , ) e ( , , )

( , , )
ii

t
ii

i i ii i r i i

BA,
R i

BA,
R

i

∫ω

ω

′ = ′

=∑ ϵ ∂ ′

ω
′ −∞

∞
′

″ ‴ ″ ‴ ‴ ′″ (22a)

G dt G t Gr r r r r r( , , ) e ( , , ) ( , , )ii
t

ii iiEA,
R i

EA,
R∫ω ω ω′ = ′ = ′ω

′
−∞

∞

′ ′

(22b)

in the frequency domain. In the derivation of eqs 22, we have used the
fact that the electromagnetic Green tensor G(r,r′,ω) satisfies the
Kramers−Kronig relations and the causality property G(r,r′,−ω) =
G*(r,r′,ω).
Far-Field Radiation Emission: Derivation of Equation 1. We

now calculate the far-field emission produced by quantum currents
taking into consideration the quantum nature of the electromagnetic
excitations. To this aim, we define the average electromagnetic energy
flow through a solid angular region ΔΩ as

E r dt d tS r rlim ( ) ( , ) ( )
kr

r
2 2 H∫ ∫ ψ ψΔ = Ω −∞ ̂ · ̂ −∞

→∞ −∞

∞

ΔΩ
̂

(23)

where k = ω/c, ŜH(r,t) = (c/8π)[ÊH(r,t) × B̂H(r,t) − B̂H(r,t) ×
ÊH(r,t)] is the quantum mechanical counterpart of the classical
Poynting vector,80 and |ψ(−∞)⟩ is the initial quantum state at time t
= −∞. The superscript H indicates that operators have to be
calculated in the Heisenberg picture, and thus evolved with the total
Hamiltonian

tot rad el int
̂ = ̂ + ̂ + ̂

where el
̂ describes the free evolution of the electron degrees of

freedom (or charge currents, in general) and int
̂ represents the

light−current interaction. Equation 23 can be expressed in terms of
the scattering operator ̂ (t,−∞) by incorporating an adiabatic
switching of the interaction, which leads to the relation

te e ( , )t ti / i( ) /tot rad el= ̂ −∞− ̂ ℏ − ̂ + ̂ ℏ ,81 and from here, eq 23
becomes

E r dt d t t
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†

(24)

We now describe the interaction between the electromagnetic field
and a total quantum current j(̂r,t) through the minimal coupling
Hamiltonian in the zero scalar potential gauge as

t
c

d t tr A r j r( )
1

( , ) ( , )int
3∫̂ = − ̂ · ̂

(25)

where the time dependence in t( )int
̂ indicates that it is expressed in

the interaction picture (i.e., the free part of the Hamiltonian,

rad el
̂ + ̂ , is taken care of through the scattering matrix). Because

the commutator [Â(r,t), Â(r′,t′)] is a c-number (this is a direct
consequence of eqs 15−18), if we assume that the current operators
commute at different times and positions (see below), the scattering
operator can be written as69,81,82 (see detailed derivation below)
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−∞ (26)

where the operator t( , )χ ̂ −∞ only acts on the current degrees of
freedom, and consequently, we can ignore it within this Methods
section, but it must be taken into account when calculating quantities
related to the electron probe (see Supporting Information). From
here, we plug eq 26 into eq 24 and then use twice the identity [Â,eB̂]
= CeB̂ (valid if [Â, B̂] = C is a c-number) to bring the rightmost
scattering operator to cancel its Hermitian conjugate on the left. This
leads us to

E
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(27)

where we have defined the quantum average as

( ) ( )ψ ψ· = − ∞ · − ∞

The term Ê(r,t) × B̂(r,t) in eq 27, which is independent of the
sources, represents the contribution from the zero-point energy, so it
bears no relevance to this analysis. In addition, since the commutators
between the vector potential and the field operators are c-numbers,

the terms linear in the currents (i.e., through int
̂ ) in eq 27 vanish

when they are averaged over an initial state |ψ(−∞)⟩ in which the

ACS Nano www.acsnano.org Article

https://dx.doi.org/10.1021/acsnano.1c00549
ACS Nano 2021, 15, 7290−7304

7299

http://pubs.acs.org/doi/suppl/10.1021/acsnano.1c00549/suppl_file/nn1c00549_si_001.pdf
www.acsnano.org?ref=pdf
https://dx.doi.org/10.1021/acsnano.1c00549?ref=pdf


radiation part is prepared in the photonic vacuum. Now, we use the
retarded Green functions (eqs 21) and their Fourier transforms (eqs
22) to obtain

E d d
d

d dr
r0

2 ff∫ ∫ω ω
ω

Δ = ℏ Ω
Γ

Ω

∞

ΔΩ
̂

̂

where
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d d

r
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r r rlim
4

Re ( , ) ( , )
krr

ff
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2 { }ω π
ω ω

Γ
Ω

=
ℏ

̂ × ̂ · ̂
̂ →∞

†

(28)

is the angle- and frequency-resolved, time-integrated, far-field (ff)
photon emission probability. Here, we have defined the new field
operators

d Gr r r r j r( , ) 4i ( , , ) ( , )3∫ω πω ω ω̂ =− ′ ′ · ̂ ′

c d Gr r r r j r( , ) 4 ( , , ) ( , )3∫ω π ω ω̂ =− ∇ × ′ ′ · ̂ ′

and we have introduced j(̂r,ω) = ∫ −∞
∞ dteiωt j(̂r,t). We note that eq 28

resembles its classical counterpart,9 but now the currents are
commuting quantum mechanical operators.
Photon Intensity Produced by a Single Free Electron

Combined with a Dimmed Laser: Derivation of Equation 2.
We consider that the quantum current operator j ̂ is the sum of a
classical term jext (i.e., the source of the external laser light) and the
quantum part associated with the free electrons jêl. For a highly

energetic electron with central relativistic energy E0 = c m c qe
2 2 2

0
2+ ℏ

and initial wave function consisting of momentum components that
are tightly focused around a central value ℏq0, the free-electron
Hamiltonian el

̂ can be approximated as48 el
̂ = ∑q[E0 + ℏv·(q −

q0)]cq̂
†cq̂, where v = ℏc2q0/E0 is the central electron velocity, and we

have introduced anticommuting creation and annihilation operators cq̂
†

and cq̂ of an electron with momentum ℏq. We remind that the
momentum operator, written in the space basis set as −iℏ∇ in ref 48,
now becomes c cqq q q∑ ℏ ̂ ̂† in the second quantization formalism that

we use here. Then, the electron current reduces to

t
e
L

c cj r
v

( , ) e t

q k

k r v
q q k

el
3

,

i ( )∑̂ = − ̂ ̂· − †
+

(29)

where L is the side length of the quantization box, so wave vector
sums can be transformed into integrals using the prescription ∑q →
(L/2π)3∫ d3q (i.e., we have ⟨r|cq̂

†|0⟩ = eiq·r/L3/2). By repeatedly using
the anticommutation relations to pull all electron creation operators
to the left, we find the commutation relation

t tj r j r( , ), ( , ) 0el el[ ̂ ̂ ′ ′ ] = (30)

which is a property used above in the derivation of eq 28. Without
loss of generality, we take v along the z and calculate the Fourier
transform

e
L
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k R
q q k z
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i /

,
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⊥

⊥
⊥

(31)

where k⊥⊥ z ̂ is the transverse component of the exchanged wave
vector k. This allows us to evaluate the average in eq 28 for an initial
state consisting of an electron prepared in a wave function ψ0 =
∑qαq⟨r|cq̂

†|0⟩ and zero photons (i.e., c( ) 0q q qψ α| −∞ ⟩ = ∑ ̂ | ⟩† ) by first

computing the intermediate results

e Mj r j r z z R R R( , ) ( , ) ( )e ( )z z vel el 2 i ( )/
0ω ω δ⟨ ̂ ′ ̂ ″ ⟩ = ̂ ⊗ ̂ ′ − ″ ′ω† ′− ″

(32a)

e Mj r z R( , ) e ( )z v
v

el i /
/ω⟨ ̂ ′ ⟩ = − ̂ * ′ω

ω
′

(32b)

where we use the notation r = (R, z). Also, Mω/v(R), defined in eq 3,
is a coherence factor that captures the dependence on the electron

wave function through the probability density |ψ0(r)|2. We note that
there is no dependence on the phase of ψ0(r). By using eqs 32 to work
out the evaluation of eq 28, we obtain
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(33)

where we have defined the CL-related vector

e dz G zE r R r R z( , , ) 4 i e ( , , , )z vCL i /∫ω π ω ω′ = ′ ′ ′ · ̂ω

−∞

∞
′

(34)

and the total (external + scattered) light fields

d GE r r r r j r( , ) 4 i ( , , ) ( , )light 3 ext∫ω π ω ω ω= − ′ ′ · ′

and Blight(r,ω) = (−i/k)∇ × Elight(r,ω). At this point, it is convenient
to separate the light field into external and scattered components as
Elight(r,ω) = Eext(r,ω) + Escat(r,ω), where the first term arises from the
free-space part of the Green tensor, whereas the second term decays
as 1/r far from the sample. First, we consider emission directions in
which the external light does not interfere with the scattered and CL
fields. Then, in the far-field limit (kr ≫ 1), we can approximate ∇ ≈
ikr ̂ in the above expressions, and the electric and magnetic fields only
retain components perpendicular to r. This allows us to rewrite eq 33
in the form given by eq 2 in terms of far-field electric field amplitudes
fr ̂
CL(R′,ω) and fr ̂

scat(ω) associated with CL emission and laser
scattering contributions (see definitions in eqs 4). Under typical
electron microscope conditions, for a well-focused electron beam, we
can factorize the electron wave function as ψ0(r) = ψ⊥(R)ψ∥(z) and
approximate |ψ⊥(R)|2 ≈ δ(R − R0), where R0 defines the beam
position. Inserting this wave function into eq 2, we find
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̂ (35)

where now Mω/v is defined in eq 9. There is an additional component
in dΓff/dΩrd̂ω (eq 33) arising from the interference between the
external light field Eext(r,ω) and the scattered + CL far-field
amplitudes. For plane wave light incidence with wave vector kinc,
the former can be written as Eext(0,ω)eikinc·r, which contributes to
dΓff/dΩrd̂ω through the three last terms of eq 33. After integration
over emission directions, and considering a dipolar scatterer (see
below), this contribution becomes dΓforward/dω (eq 13c) (see
Supporting Information for more details).

Generalization to Multiple Electrons: Derivation of Equa-
tion 6. The above formalism can be readily extended to deal with
more than one electron by taking the initial state as

c( ) 0j
j

q q q
j j j

i
k
jjj

y
{
zzzψ α−∞ = ∏ ∑ ̂† , where j runs over different electrons

and the photonic field is prepared in the vacuum state. Then, using
the definition of the electron current operator jêl(r, ω) in eq 31, the
averages in eqs 32 can be readily computed for the multielectron state
to yield
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ω
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(36b)

where Mω/v
j is given by eq 9 with ψ0(r) substituted by ψ j(r) = Σqαq

j⟨r|
cq̂
†|0⟩ (the wave function of electron j). Finally, plugging eqs 36 into eq
28 and following similar steps as done above for a single electron, we
obtain eq 6 in the main text.
Cathodoluminescence from a Dipolar Sample Object:

Derivation of Equation 7. We present results in the main text
for sample objects whose responses are dominated by an electric
dipolar mode represented through an isotropic polarizability α(ω)
placed at r = 0. We now carry out the limit in eq 4a by realizing that
the free-space component of the Green tensor to the z′ integral
vanishes exponentially away from the electron beam (i.e., just like the
electromagnetic field accompanying a freely moving classical charge),
so we only need to account for the contribution from the scattering
part:

G
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Plugging this expression into eq 4a, we can carry out the z′ integral
using the identities ∫ −∞

∞ dzeiω(z/υ+r/c)/r = 2K0(ωR/υγ) and ∫ −∞
∞ dz(1 +

i/kr)eiω(z/υ+r/c)/r2 = (2ic/Rυγ)K1(ωR/υγ), where r R z2 2= + and

v c1/ 1 /2 2γ = − (see eqs 3.914−4 and 3.914−5 in ref 83). This
leads to

kf R r r E R( , ) ( )(1 ) ( , )r
CL 2 elω α ω ω′ = − ̂ ⊗ ̂ · ′̂ (37)

where Eel(R′,ω), defined in eq 8, coincides with the electric field
produced at the particle position r = 0 by a classical point electron
whose trajectory crosses (R′,0) at time t = 0.9 Similarly, from eq 4b,
the scattered external field amplitude is readily found to be

kf r r E( ) ( )(1 ) (0, )r
scat 2 extω α ω ω= − ̂ ⊗ ̂ ·̂ (38)

where Eext(0,ω) is the external laser field acting on the particle.
Finally, by inserting eqs 37 and 38 into eq 35, we obtain
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The total far-field photon probability per unit frequency is then
obtained by integrating eq 39 over solid angles, leading to
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This expression can readily be recast in the form of eq 7 in the main
text.
Scattering Operator: Derivation of Equation 26. We describe

our system through the interaction Hamiltonian in eq 25 and use the
commutation relation in eq 30 to write
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Additionally, eqs 15 and 17 directly imply that [Â(r,t), Â(r′,t′)] is a c-
number, which in turn leads to the nested commutation relation

t t t( ), ( ), ( ) 0int int int[ ̂ ″ [ ̂ ̂ ′ ]] = (41)

This expression is important to derive eq 26 for the scattering
operator starting from its definition81
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where T denotes time ordering. Following a well-established
procedure,82 we discretize the time integral (with a set of equally
spaced times ti with i = 1, ..., N) and explicitly implement time
ordering to write
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with Δt = (t − t0)/N, where we have used the relation eX̂eŶ =
eX̂+Ŷ+[X̂,Ŷ]/2, which is valid if [X̂[X̂,Ŷ]] = [Ŷ,[X̂,Ŷ]] = 0 (i.e., like in eq
41). Using this identity again, we readily find eq 26 by setting t0 =
−∞ and defining the phase operator
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Interestingly, since the commutator between the electromagnetic
potentials is a c-number, the operator t( , )χ ̂ −∞ acts only on the
degrees of freedom associated with the currents and represents the
effect of the image potential acting on the free charges.69

One is often interested in calculating asymptotic quantities such as
electron spectra at t = ∞. We then need to know the scattering
operator ( , )̂ ∞ −∞ , which can be obtained using eqs 15 and 29,
leading to
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(see definition of Â in eq 15) describes the total time evolution of
electron-light states in the nonrecoil approximation if we disregard the
effect of the image potential (i.e., the phase operator χ ̂). When the
electron is focused around a point R = R0 and its wave function can be
separated in longitudinal and transverse components, as we do in the
main text, we can approximate cq̂ ≈ cq̂⊥cq̂z and replace the operator in

the exponent of ̂ by its average over a transverse electron state
qq qψ α| ⟩ = ∑ | ⟩⊥ ⊥⊥ ⊥

satisfying the relation ek k k q
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·
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from which we find
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Here, we have introduced the operators
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as well as the coupling coefficient g R( , )EELS 0 ω= Γω , which
reduces to the square root of the classical EELS probability9

e dz dz z z v
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We define these operators in such a way that they satisfy the
commutation relations [aω̂,aω̂′

† ] = δ(ω − ω′) and [b̂ω, b̂ω′
† ] = 0, where

the former can be proven using eq 20. Importantly, eq 42 allows us to
quickly compute observables after electron−sample interaction. As an
example of this, we find that the average of the positive-energy electric

field operator kE r A r( , ) i ( , )( ) ω ω̂ = ̂+
over the state

( ) ( , ) ( )ψ ψ| ∞ ⟩ = ̂ ∞ −∞ | −∞ ⟩

with

c( ) 0
q

q q

z

z z
∑ψ α| −∞ ⟩ = ̂ | ⟩†

(proportional to the photonic vacuum) reduces to

e ME r G r( , ) 8 ( , ) v
( )

/ω π ω ω⟨ ̂ ⟩ = *ω
+

where dz G zG r r R z( , ) e Im ( , , , )z vi /
0∫ω ω= ′ { ′ }· ̂ω

−∞

∞ ′ . To derive

this result, we made use of the relation [Â,eB̂] = CeB̂ (valid if [Â,B̂]
= C is a c-number), as well as the commutation relation
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together with the fact that the operators b̂ω and b̂ω
† commute.

Calculation of the Coherence Factor for PINEM-Modulated
Electrons. For an electron whose wave function is the product of eqs
11 and 12, the coherence factor defined in eq 9 readily reduces to the
expression

M J Je (2 ) (2 )

e

v
ll

l l
l l

l l z v l l d z

/
( ) /2

i( ) / 2 i( ) /

t

T

2
P

2

P P
2 2

∑ β β= | | | |

× ′

ω
σ ω ω

ω π

′

− [ − ′ + ]
′

′− + −

which we evaluate numerically for finite σt. In the ωPσt ≫ 1 limit,
Mω/v takes negligible values unless the excitation frequency is a
multiple of the PINEM laser frequency (i.e., ω = mωP). Then, only l′
= l + m terms contribute to the above sum, which reduces to

M J Je (2 ) (2 )ev
m z v m d z

l
l l m

mld z
/

i / 2 i / 4 i /T TP P
2 ∑ β β= | | | |ω

ω π π+
+

and using Graf’s addition theorem, we have |Mω/v| = |Jm[4|β|
sin(2πmd/zT)]|, in agreement with ref 66. We use this equation
with m = 1 to obtain the map shown in Figure 4a, and with m = 1−3
to produce the supplementary Figure S2.
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