
Vol.:(0123456789)1 3

Archives of Computational Methods in Engineering (2022) 29:3981–4003 
https://doi.org/10.1007/s11831-022-09733-8

SURVEY ARTICLE

Appositeness of Optimized and Reliable Machine Learning 
for Healthcare: A Survey

Subhasmita Swain1 · Bharat Bhushan1 · Gaurav Dhiman2,3,4  · Wattana Viriyasitavat5

Received: 5 August 2021 / Accepted: 9 February 2022 / Published online: 22 March 2022 
© The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2022

Abstract
Machine Learning (ML) has been categorized as a branch of Artificial Intelligence (AI) under the Computer Science 
domain wherein programmable machines imitate human learning behavior with the help of statistical methods and data. The 
Healthcare industry is one of the largest and busiest sectors in the world, functioning with an extensive amount of manual 
moderation at every stage. Most of the clinical documents concerning patient care are hand-written by experts, selective 
reports are machine-generated. This process elevates the chances of misdiagnosis thereby, imposing a risk to a patient's life. 
Recent technological adoptions for automating manual operations have witnessed extensive use of ML in its applications. 
The paper surveys the applicability of ML approaches in automating medical systems. The paper discusses most of the 
optimized statistical ML frameworks that encourage better service delivery in clinical aspects. The universal adoption of 
various Deep Learning (DL) and ML techniques as the underlying systems for a variety of wellness applications, is deline-
ated by challenges and elevated by myriads of security. This work tries to recognize a variety of vulnerabilities occurring in 
medical procurement, admitting the concerns over its predictive performance from a privacy point of view. Finally providing 
possible risk delimiting facts and directions for active challenges in the future.

1 Introduction

In this era of technology and advancements, we have come 
across multiple transformations made by ML/DL systems in 
industries such as governance, manufacturing, and transpor-
tation. Over the past couple of years, the utilization of intel-
ligent systems has increased manifold in various domains, 
including our routine life. One such realm is healthcare [1, 
2], which earlier had been impervious to large-scale techno-
logical disruptions. The Healthcare industry across the globe 
has evolved extensively with the advent of machine intel-
ligence. Nasr et al. [3] explore current state-of-the-art smart 
healthcare systems, highlighting significant topics such as 
wearable and smartphone devices for fitness monitoring, 
ML for illness prediction, and assistive frameworks, includ-
ing social robots designed for assisted living environments. 
Bharadwaj et al. [4] confer applications of ML algorithms 
integrated with the Healthcare Internet of Things (H-IoT) in 
terms of their compensations, choice, and potential future 
aspects. The acceptance of ML/DL techniques has sustained 
exceptional results in versatile tasks such as brain tumor 
segmentation [5], Saliva sample classification of COPD 
patients [6], Chronic Neurological Disorder assistance [7], 
anomaly recognition in the Artificial Pancreas [8], clinical 
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image reconstruction [9], cancerous cell classification, to 
name a few. It is expected that in the coming years' intel-
ligent software systems will take over much of the human 
labor, put by radiologists and physicists in examining medi-
cal documents. ML will transform conventional medical 
practice and research. Healthcare has emerged as an active 
application area for ML/DL models in achieving human-
level performance in various pathological tasks [10]. Some 
of the investigations reported that the intelligent models out-
performed clinical experts in certain respects. Esteva et al. 
[11] illustrate the categorization of skin lesions with a single 
CNN evaluated against 21 board-certified dermatologists on 
biopsy-proven clinical diagnosis of the scariest skin cancer 
The findings show that AI can classify skin cancer with a 
degree of accuracy equivalent to dermatologists. Rajpurkar 
et al. [12] build the CheXNet algorithm, which can diagnose 
pneumonia from chest X-rays at a higher level than expe-
rienced radiologists CheXNet outperforming them on the 
F1 measure. The drive to enhance the performance of ML 
models in comparison to humans has resulted in a marvelous 
increase in the conception of computer-aided investigative 
systems. The potential of AI systems for healthcare applica-
tions increased by the development of advanced technologies 
such as the Internet of Things (IoT), Big Data, cloud com-
puting, etc. Unitedly with the technologies, AI can produce 
profoundly accurate monitoring and prediction systems that 
can facilitate human-centric emergency medical assistance.

Shishvan et al. [13] exposed a variety of emerging ML 
algorithms in the context of comprehensive healthcare ser-
vices. The work introduces the applicability of intelligent 
algorithms in multiple steps such as data extraction, feature 
selection, model fitting, training, and execution, and a set of 
performance measurement metrics to evaluate [14]. Kumar 
et al. [15] develop a classification structure to categorize the 
recurrence of specific health conditions based on the clini-
cal history of patients using pre-trained word2vec, GloVe, 
domain-trained, universal sentence encoder embeddings, and 
fastText to challenge the sorting of sixteen indisposition con-
ditions within medical histories. In this digital era healthcare 
services have now extended to wearable devices, IoT, and 
cloud applications, as we attain a deeper understanding of 
embedded and automated systems in the clinical context [4]. 
Developing targeted therapies for personalized treatments, 
accurate localization of disease hubs, and identifying mor-
bidities will be apparent if intelligent systems are critically 
developed ascertaining the liabilities united with it [16].

Dhief et al. [17] presented an extensive review of IoT 
frameworks and state-of-art techniques used in healthcare 
and voice pathology surveillance systems whereas Alhussein 
et al. [18] investigated the voice abnormality detection system 

using DL on mobile healthcare frameworks. Researchers and 
physicians are reviewing numerous approaches to utilize 
the skill of DL methods for Intensive Care Unit (ICUs) and 
critically acclaimed concerns [19–21], similarly, Ganainy 
et al. [22] proposed a real-time consultation system in the 
clinical context which forecasts the Mean Arterial Pressure 
(MAP) values’ current status at the ease of bed accessibility 
using new ML structures. The majority of intelligent applica-
tions utilizing customer records have received disappointing 
results at some point in their performance due to their obses-
sion with metrics [23–25]. Envisioning the privacy concerns 
that arise while dealing with data transmission or analysis 
to model a predictive system settles at a compromising state 
[26–28]. This paper attempts to acknowledge the diverse tech-
niques of ML and their diligence in the Healthcare ecosystem. 
A brief of subsequent sections is provided next [29–32].

• This paper shares a concise statistical background of 
ML Algorithms while discussing multiple ML models, 
their application in clinical aspects, along with certain 
hindrances, and any possible solutions to tackle those 
shortcomings.

• This paper outlines various challenges related to medical 
analysis using ML and DL techniques.

• This paper analyses and lists different heterogeneous 
sources contributing to healthcare data and the flaws 
associated.

• This paper describes the applications of ML in healthcare 
for medical prognosis, computer-aided detection, diag-
nosis, and treatment. Further, the associated drawbacks 
are outlined as well.

• This paper lists different types of vulnerabilities in the 
ML pipeline and their sources. Further, the work high-
lights various techniques to avoid information breaches 
and preserve the privacy of data for clinical users.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the various ML algorithms, their applications, 
and their mathematical background. Section 3 presents the 
different applications of ML in the healthcare systems and 
tries to bring the present scenario where utilization of the 
intelligent systems to automate regular tasks is demon-
strated. Section 4 witnesses the probable vulnerabilities that 
are encountered during the preparation of ML models in the 
healthcare pipeline. Section 5 presents a study to recognize 
the privacy challenges concerning the involvement of AI sys-
tems and various approaches to preserving privacy concerns. 
Conclusively, Sect. 6 presents imminent prospects and areas 
that require further research followed by the chapter conclu-
sion in Sect. 7.
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2  Background of ML Algorithms

The majority of developing countries have invested their 
time and money in advanced technical prospects that in 
some way or other prove to be cost-effective in the long 
run. Development is often associated with the advent of 
automated machinery and mechanical systems as we grow 
towards becoming a data-centric world. Management and 
effective use of data at the industrial level is an irksome task 
if humans run the errands, this is where the applicability of 
various ML/DL-based intelligent systems gain its impor-
tance. ML algorithms are developed specifically for sup-
porting models to solve a problem in different domains (e.g., 
Healthcare, Fintech, Industrial, etc.) [33]. Okay et al. [34] 
demonstrate that applying (Interpretable Machine Learn-
ing) IML models to sophisticated and difficult-to-interpret 
ML approaches provides thorough interpretability while 
preserving accuracy, which is challenging when crucial 
medical choices are at stake. Ileberi et al. [35] implement 
an ML-based framework, Synthetic Minority over-sampling 
Technique (SMOTE), for credit card scam exposure since it 
outstrips other prevailing methodologies. Ahsan et al. [36] 
propose a unique prognostics framework based on statistics-
driven ML modeling for forecasting qualification test results 
of electronic components, allowing a decrease in qualifica-
tion test cost and time. Hari et al. [37] offer a supervised ML 
method built by modeling the behavior of Gallium Nitride 
(GaN) power electronic devices for reliably forecasting the 
current waveforms and switching voltage of these innova-
tive devices. Seng et al. [38] concentrate on how computer 
vision (CV) and ML practices may be applied to existing 
vinification actions and vineyard organizations to obtain 

industry-relevant outcomes. Rehman et al. [39] provide an 
ML technique for the localization of brain tumor cells uti-
lizing the textonmap image on FLAIR scans of Magnetic 
Resonance Images (MRI). Singh et al. [40] offer a unique 
ensemble-based classification technique that combines AI, 
fog computing, and smart health to create a reliable platform 
for the early identification of COVID-19 infection. Com-
paratively, Vyas et al. [41] offer an ML model powered by 
a multimodal method for assessing a patient's readiness to 
suggest the hospital plays an important part in action design 
based on patient choice. Some ML algorithms and their pur-
poses are discussed in the forthcoming sections. A summary 
of the different ML algorithms discussed in this chapter is 
depicted in Fig. 1.

2.1  Regression Models

Regression analysis is a statistical modeling method that 
aims to define a relationship between a dependent and inde-
pendent variable (linear or polynomial) [42]. This predictive 
modeling technique can be utilized for forecasting, time-
series modeling, predictive analysis, etc. Various types of 
regression methodologies subsisting are Linear, Polynomial, 
Logistic, Multivariate Regression, Ridge, and Bayesian Lin-
ear Regression. Some of these are discussed next.

2.1.1  Linear Regression

Linear regression models have transformed the statistical view 
of supervised learning for quantitative response prediction of 
a relation linking the independent (input vector) and depend-
ent variable (output vector). The relationship is represented 

Fig. 1  Illustration of various ML algorithms and their categories
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by a linear function (regression technique) with a formida-
ble perfection. In the ML arena, Linear regression models 
outperform simplicity while preserving considerable inter-
est and ease of interpretability. Velez et al. [43], presented a 
straightforward definition of ML as “the capacity to explain or 
show human eccentricities in understandable terms”. Linear 
regression targets to access a direct relationship (function) f 
that justifies the relationship between an input vector x having 
dimension d and a real-value output y (i.e., f(x)) as

where �0 ∈ R is identified as the intercept of the func-
tion and �Rd is the coefficient vector corresponding to 
the individual input variables. To calculate the regression 
coefficients �0 and � , a training set ( A , A ) is required 
where A ∈ Rk×d denotes k training inputs, a1, a2,… .., ak 
and, A denotes k training outputs where each ai ∈ Rd is 
affirmed with the real-entity output Bi . The prime objec-
tive is to reduce the empirical risk, quantifying via �j 
the relation between predictor Aj and the response, for 
each j = 1, 2, 3… , d. Loss functions are a measure of the 
amount of deviation resulting from the actual outputs con-
cerning model performance. The least squared estimate is 
one of the widely used loss functions for regression mod-
els and also has minimal variance amongst all unbiased 
linear estimates. Working a regression model by reducing 
the Residual Sum of Squares (RSS) between the predicted 
outputs and the labels is expressed as [44]

Certain downsides include high variance, where a 
model may properly reflect the data set but may overfit to 
noisy or otherwise unrepresentative training data, reducing 
prediction accuracy and making it unsuitable for fitting. 
However, alternative approaches like Linear Dimension 
Reduction (LDR), this approach generates a low-dimen-
sional linear mapping of the original high-dimensional or 
noisy data that maintains some characteristic of interest, 
denoises or compresses the data, extracts important feature 
spaces, and other benefits, further, forward or backward 
elimination allows to avoid overfitting and reduce robust-
ness. The processing and manipulation of data are often 
associated with noise, creating a diminishing impact on 
the model's performance [45]. The link between regulari-
zation and robustness due to noise is represented as:

In this regard, the noise is expected to vary accordingly 
to an uncertainty set u ∈ Rk×d , and the learner inherits 

(1)y = 𝛼0 + 𝜒⊤𝛼

(2)RSS(�) =

k∑

i=1

(
Bi − �0 −

d∑

j=1

xij�j

)2

(3)min
�0,�

maxΔ∈ug
(
B − �0 − (A + Δ)�

)

the robust behavior, where g is a convex function that 
calculates the remainder [46]. Regression models can 
sometimes renounce the correct interpretability due to a 
significant no of features against fewer data, to overcome 
the shortcomings and multicollinearity, various feature 
selection strategies are applied.

2.1.2  Shrinkage Models

To produce a more predictable model the value of regression 
coefficients is depreciated with the help of some regulariza-
tion methods also known as Shrinkage methods at the cost of 
importing some bias in model ascertainment. The principal 
intention behind shrinkage methods is penalizing the regres-
sion coefficients on the loss function towards a fundamen-
tal point, like the mean. Some common shrinkage methods 
include Ridge Regression which penalizes the norm-2 of the 
regression coefficients

where � controls shrinkage magnitude, lasso regression 
penalizes norm-1 and tries to minimize the quantity by

Least Absolute Shrinkage and Selection Operator (Lasso) 
Regression is an extension of linear regression supplemented 
by shrinkage. The lasso approach favors models with fewer 
parameters, well-suited for models with high degrees of mul-
ticollinearity, or for developing automation of some rudiments 
of model selection. Lasso models are more interpretable as 
compared to ridge regression due to large � which compels 
some of the estimated coefficients to be equivalent to absolute 
zero. The estimation accuracy of subset selection is driven 
solely by the disturbance present in the input dataset, to reduce 
the effect of foreign particles and to shun numerical issues, the 
Tikhonov regularization term ( 1

2∧
∥ �∥2

2
 ) with weight ∧> 0 is 

introduced along with the cutting plane approach [47].

2.1.3  Regression Models Beyond Linearity

Linear correlation is naturally extended to complex non-linear 
terms, which may apprehend composite relationships between 
predictors and regressors. Non-linear regression models 
extend to include step functions, exponential, local regres-
sion, smoothing, regression splines, and polynomial regression 
into the Familia. Otherwise, the Generalized Additive Models 
(GAMs) [48] maintain the additivity of the original predic-
tors x1,… ., xn , and the relation between every feature and the 

(4)Lridge

(
�0, �

)
=

k∑

i=1

(
Bi − �0 −

d∑

j=1

xij�j

)2

+ �

d∑

j=1

�2

j

(5)Llasso

(
�0, �

)
=

k∑

i=1

(
Bi − �0 −

d∑

j=1

xij�j

)2

+ �

d∑

j=1

|�j|
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response y is expressed using nonlinear functions gj
(
xj
)
 such 

as

To preserve a certain level of predictors interpretability 
concerning linear models, GAMs escalate the flexibility and 
accuracy of prediction with the aid of non-parametric mod-
els such as boosting and random forest. The predictors are 
expressed in the form of xi × xj . The efficacy of GAMs is 
underrepresented in scenarios where observations exceed 
predictors. Piecewise affine forms appear as suitable models 
when the correlated function is found separable, discontinu-
ous, or fuzzy to complex nonlinear expressions [49, 50].

2.2  Classification

Classification refers to segregation or mapping of unlabelled 
data items (entity α) based on a trained dataset ( A,B ) where 
every �i has a predefined class relative Bi in a specific cate-
gory. Classification admits multiclass and binary approaches 
including logistic regression, Linear Discriminant Analysis 
(LDA), Support Vector Machines (SVMs), and decision tree 
mechanisms [51].

2.2.1  Logistic Regression

In critical domain functional relationship 
(
y = gx

)
 between 

y and x is absent. Considering this situation, the relation 
between y and x has to be described in a general way by a 
framing a probability function E

(
y

x

)
, considering that the 

train data preserves independent bits fromE . Here the label 
y is assumed to be binary, i.e., y ∈ {0, 1}, the finest class 
membership conclusion is to choose the label y that ampli-
fies the distribution E

(
y

x

)
 imperatively. Logistic regression 

examines the probability of belonging to a class for one in 
the two categories of the dataset by [52]

The prominent decision boundary between the binary 
classes is marked by a hyperplane (that maximizes the 
measure of deviation) is described as 𝛼0 + 𝛼⊤x = 0 . The 
parameters �0 and � are obtained by maximum-likelihood 
estimation method

To conclude at a globally optimal solution, 1st order 
method such as gradient descent for positioning a differential 

(6)y = �0 +

d∑

j=1

gj
(
xj
)

(7)E
(
y = 1|x, 𝛼0, 𝛼

)
= 1

−1
(
�, 𝛼0, 𝛼

)
= −

I

1 + e−(𝛼0+𝛼
⊤x)

(8)
−
∑k

i=1

(
yiloglogH

(
xi, �0, �

)
+
(
1 − yi

)
log

(
1 − H

(
xi, �0, �

)))

function's local bottom, taking recurrent steps in the conflict-
ing course of the function's incline at the current point, in 
the steepest descent direction and 2nd order such as New-
ton's method where each iteration entails fitting a parabola 
to the graph of a differential function at a trial value p and 
then determining the minimum or maximum of that parabola 
(called saddle point), come into play. Further tuning of the 
logistic regression models can be achieved by variable selec-
tion to avoid overfitting, forward selection to add variables, 
or backward elimination to withdraw variables based on the 
statistical relevance of the coefficients.

2.2.2  Decision Trees

Classification is often associated with a non-parametric 
model, Decision Trees (DT) for a conclusive decision on any 
hypothetical or real-world instance using distribution rules 
expressed as a tree data structure. Statistical indicators (such 
as mean, median, or mode) recline the intuitive prediction 
of the model on the segmented training data. DTs are good 
for large datasets with less dimension and can handle both 
numerical and categorical values. Entropy is calculated for 
each candidate i.e., the average weighted probability, and 
combined them to find the average of each node, represented 
as H(s) = −

∑j

i=1
pilogpi , where ‘H’ represents the entropy 

for the given weight ‘s’ and ‘ pi ’ if the frequency of the prob-
ability of an element per class ‘i’ in the data. Subtlety, the 
Gini Impurity is given as Gini = 1 −

∑j

i=0

�
pi
�2 evaluates the 

impurity of each candidate node and hence the root with 
the least impurity can be picked easily. Similarly, the Infor-
mation Gain (IG) which quantifies the quantity of split is 
represented as

simplifying it to IG(s, a) . This can be estimated as

where ‘H(s)’ is the entropy for the data given the variable ‘a’. 
To avoid overfitting of data, pruning along with other tech-
niques such as Smit and Konin are taken into consideration. 
Pruning of a tree is an essential measure to ensure unbiased 
decisions, represented as

where ‘R(T)’ is the total misclassification rate of terminal 
nodes, ‘T’ no of terminal nodes and ‘ R�(T) ’ is the cost com-
plexity measure. Various recursive procedures help in the 
splitting of training datasets to parse them through segmenta-
tion. Since recursive procedures have a distinguished greedy 
nature, it has failed at times to settle at global optimum, giv-
ing chances to implement certain other alternatives such as 

(9)IG
(
Dp, f

)
= I

(
Dp

)
−

Nleft

N
I
(
Dleft

)
−

Nright

N
I
(
Dright

)

(10)IG(s, a) = H(s) − H(s|a)

(11)R𝛼(T) = R(T) + 𝛼||T̃||
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the heuristic approach based on mathematical programming 
paradigms (i.e., linear optimization) and dynamic program-
ming. Consider an example of a simple classification tree, 
where the tree determines the health status and need of exer-
cising for elderly people based on their activities. Figure 2 
represents the decision process. Okaty et al. [53] propose 
a fresh stratum-based DT model for precise localization of 
anatomical landmarks in clinical image scrutiny. Liang et al. 
[54] provide an effective and privacy-preserving DT classifi-
cation strategy for health monitoring systems (PPDT). They 
turn a DT classifier into a boolean trajectory, then encode 
with symmetric key encryption. Zhu et al. [55] present a 
novel Multi-ringed (MR) Forest framework based on DTs for 
the reduction of false positives in pulmonary node detection. 
Various algorithms that utilize fed data to generate decision 
trees are Classification and Regression Tree (CART), Itera-
tive Dichotomiser 3 (ID3), ID 4.5, etc.

2.2.2.1 Algorithm Step 1: Start.
Step 2: Randomly shuffle and select n training samples 

from the dataset along with replacement.
Step 3: Calculate the entropy of the target.
Step 4: The dataset is then split into different attrib-

utes. The entropy for each branch is calculated. Then it 
is added proportionally, to get total entropy for the split. 
The resulting entropy is subtracted from the entropy 
before the split. The result is the Information Gain or 
decrease in entropy.

Step 5: Choose the attribute with the largest informa-
tion gain as the decision node, divide the dataset by its 
branches and repeat the same process on every branch.

Step 5.1: A branch with an entropy of 0 is a leaf node.
Step 5.2: A branch with an entropy of more than 0 

needs further splitting.
Step 6: End.

2.2.3  SVM

Under the hood of supervised machine learning algorithms 
in the statistical learning category, SVMs receive vital atten-
tion in the optimization approaches. SVMs intend to identify 
a hyperplane with a maximum margin separating two sig-
nificant classified classes. Given a training set (A,B) with 
m training inputs where A ∈ Rk×d and B ∈ {−1, 1}k being 
the binary response variable, SVM identifies the margin of 
separation as w⊤ + 𝛾 = 0 . Provided, w represents the vector 
of coefficients for input variables and � is the intercept of the 
distinguishing hyperplane [56].

2.2.3.1 Hard margin SVM Hard margin SVM is known as 
the simplest version of SVMs that proceeds with an assump-
tion that a hyperplane exists which physically separates data 
into two different classes avoiding misclassification. This 
optimization technique is categorized as a linearly con-
strained convex quadratic problem. Following this model's 
training, a hyperplane is identified which separates the data 
keeping the distance to the closest data point from the mar-
gin of separation maximum. The distance of a data point ai 
to the hyperplane is given by

Fig. 2  Decision tree to predict the need for exercising for elderly people based on their activities
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where ‖w‖2 expresses the norm-2. Therefore, the data points 
with labels B = −1 are on one side of the hyperplane such 
that w⊤ai + 𝛾 ≤ 1 while the data point with labels B = −1 are 
on the other side w⊤ai + 𝛾 ≥ 1 . Now to find the hyperplane 
an optimization function has to be dealt with,

s.t., Bi

(
w⊤ai + 𝛾

)
≥ 1∀i=1,…,k , w ∈ Rk , � ∈ R , which is rec-

ognized as a convex quadratic problem. Often the accuracy 
of optimization by forcing the separability of data on a linear 
hyperplane is traded off which rules out the practicability 
of this version of SVM, this is where soft-margin SVMs 
outperform hard-margin SVMs.

2.2.3.2 Soft margin SVM The convex quadratic problem 
becomes infeasible when data is not separable on linear 
terms. An alternative to this problem exists by minimizing 
the errors average. To minimize the data points tinkering 
on the unfavorable side of the hyperplane a slack variable 
�i ≥ 0 in the constraints of the objective function is intro-
duced which is then penalized as a proxy. The soft-margin 
escalation problem is discussed as

where w ∈ Rt , � ∈ R , �i ≥ 0 . Considering another alterna-
tive as to introduce an error term �i in the objective function 
using the squared hinge loss function 

∑k

i
�2
i
 instead of the 

hinge loss function 
∑k

i
�i to attain specificity of soft-margin 

SVM. The misclassification rate of this optimization strategy 
maximizes when norm-2 is replaced with norm-1 leading to 
linear optimization problems.

2.2.3.3 Sparse SVM Various approaches have been pro-
posed to deal with sparsity (feature selection in classifica-
tion model) in SVMs among which 1-norm, elastic net (both 
1-norm and 2-norm) are common. The approach is applied 
to the model which tunes bias to one of the norms using a 
hyperparameter [57]. The number of features selected can 
be modeled in the soft-margin optimization problem by 
using binary variables Z ∈ {0, 1}d where Zj = 1 indicates 
feature j is selected else Zj = 0 . A constraint restricting the 
feature number for an optimum desired reach can be result-
ing in a mixed-integer quadratic catch as

(12)
Bi

�
w⊤ai + 𝛾

�

‖w‖2

(13)
1

∥ w ∥2
∥ w ∥2

2

(14)∥ w ∥2
2
+ P

∑k

i=1
�i

(15)∥ w ∥2
2
+ P

∑k

i=1
�i

s.t. Bi

(
w⊤ai + 𝛾

)
≥ 1 − 𝜉i , where∀i=1,…,k , w ∈ Rt , � ∈ R , 

�i ≥ 0 , s.t.
∑d

j=1
Zj = r.

2.2.4  SVR

Support Vector Regression (SVR) is a supervised machine 
learning technique that is designed to handle regression dif-
ficulties. Regression analysis comes in handy while observing 
the relationship between one or more predictor variables and 
dependent variables since it can balance the complexity of the 
model and prediction error [58]. SVR is an extension to classic 
SVM that is introduced for binary classification buttressing 
the core idea of recognizing a linear function f (x) = w⊤a + 𝛾 
approximated with a tolerance variable �, training set ( A,B ) 
where B ∈ R [59]. SVR has shown optimal performance in 
handling high-dimensional data that deals with regression 
problems. SVR uses a similar approach to SVM to perform 
classification using hyper-planes defined by a few support vec-
tors and can easily handle non-linear regression competently 
[60]. However, a linear function might not always be deriv-
able thus slack variables �−

i
≥ 0&�+

i
≥ 0 expressing deviations 

from the expected tolerance are introduced and minimized 
similar to the way of soft-margin SVMs. Following, the opti-
mization problem is stated.

Hyperparameter (P) tuning further adjusts the weight on 
deviation from tolerance� . This deviation is the �-insensitive 
loss function |�|�, given by

2.3  Clustering

Clustering is a widely used class of supervised learning that 
focuses mainly on the grouping of a set of objects into smaller 
clusters of similar genera. This common statistical data analy-
sis technique finds its application in the domains of pattern 
recognition, bioinformatics, data compression, image analysis, 
and information retrieval. Healthcare sectors collect massive 
amounts of data from various healthcare service providers, and 
this data may include information such as patient information, 
medical tests, and treatment specifics. Because of the intricacy 
of the data obtained, analyzing the data for decision-making 
on a patient's health state is tough. Numerous strategies, such 
as clustering, are currently used by healthcare practitioners to 
determine a patient's health state. Clustering is an unsuper-
vised learning method that divides huge datasets into smaller 
groups based on related properties [61]. This method is usu-
ally used to find commonalities between data points. The most 
common use of unlabeled learning (Unsupervised learning) 

(16)∥ w ∥2
2
+ P

∑k

i=1

{
�−
i
+ �+

i

}
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has been to generate a cluster or group of items in a dataset. 
Given an input A ∈ Rk×d , which includes k unlabelled observa-
tions, a1, a2,… .., ak with ai ∈ Rd , clustering aims to procure 
K subsets of A , i.e., individual clusters, which are homoge-
neous as well as separated. The cluster estimation acts as a 
tuning parameter that needs to be corrected before examining 
the clusters. The degree of separation and homogeneity can 
be modeled based on the different criteria which give rise to 
several types of clustering algorithms such as K-means Clus-
tering, Capacitated Clustering, Hierarchical Clustering, etc.

2.3.1  K‑Means

K-means clustering or minimum sum of squares clustering is 
a vector quantization method that aims to partition the m no. 
of data observations into K disjoint clusters with an affili-
ated minimum central mean for each sample. The decision 
on the cluster proportions is considered by close examina-
tion of the elbow curve, or similarity indicators, such as 
Calinski-Harabasz index, silhouette values, or via statistical 
programming approaches [62]. Binary variables described 
as �ij = {1i ∈ clusterj0otherwise and the centroid �j ∈ Rd of 
each cluster j , the difficulty of reduction in cluster variance 
is provided as a nonlinear equation [63]

s.t.
∑K

j=1
�ij = 1,∀i = 1, 2,… ., k , ∀j = 1, 2,… , K,�j ∈ Rd . 

Introduction of the variable �ij which denotes the distance 
of observation i from centroid j , the following linear dimen-
sional formula is obtained as

(18)
�k

i=1

�K

j=1
�ij‖ai − �j‖22

(19)
∑k

i=1

∑K

j=1
�ij

s.t.
∑K

j=1
�ij = 1,∀i = 1, 2,… ., kand∀j = 1, 2,… , K. Apart 

from the above-mentioned methods several other alternatives 
such as the heuristic approach based on gradient method, 
bundle approach, and a column generation approach are in 
practice. Figure 3 represents the clusters with K-means as 
their centroid, all classified distinctly.

2.3.1.1 K‑Means Clustering Algorithm Input: coordi-
nates dataset �ij , Count of clusters K.

Step 1: Initialize k centroids randomly.
Step 2: Attach each coordinate in dataset D with the 

closest centroid. This will circulate all coordinates into 
K clusters based on their similarity.

Step 3: Re-compute the coordinates of centroids.
Step 4: Repeat Steps 2 and 3 until the positions 

become constant or fixed.
Output: Data points with cluster membership.

2.3.2  Capacitated Clustering

The Capacitated Centred Clustering Problem (CCCP) aims 
to catalogue a bunch of clusters with a limited capacity and 
correlation indicated by the similarity index of the clus-
ter’s mean. Considering a group of expected clusters from 
1, 2,… ., K, CCCP can be mathematically represented as

s.t.  
∑K

j=1
�ij = 1,

∑K

j=1
�j ≤ K, �ij ≤ �j,

∑k

i=1
qi�j ≤ Qj . Where 

K is the uppermost bound on the clusters, �ij represents the 
measure of dissimilarity between cluster j and observation 
i. Qj is the capacity of cluster j , and qi is the weight of obser-
vation i . Variable �ij denotes the assignment of i to j and 
variable �j is equivalent to 1 when cluster j is used. If the 

(20)
∑k

i=1

∑K

j=1
�ij�ij

Fig. 3  Clusters with K-means, 
classified
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variable �ij is a distance and the clusters are homogeneous 
then the formula also models the well-known facility loca-
tion problem [64].

2.4  Linear Dimension Reduction

Linear dimensionality reduction or shrinkage methods have 
been developed extensively for ages in the domain of statis-
tics and applied fields to become an indispensable tool for 
analysing high-dimensional and noisy data. These methods 
improve the model's interpretability by producing a low-
dimensional linear function from the original high-dimen-
sional data that preserve features of interest in the output 
sample [65].

2.4.1  Principal Components

Principal component analysis (PCA) targets prune the sum 
of squared residual errors between the original high-dimen-
sional data and projected data points. PCA trail in terms of 
explained variances, which refer to the quantum of informa-
tion regained from the original feature set a1, a2,… .., ad. 
PCA was formulated originally as

s.t.
∑d

j=1

�
�1

j

�2

= 1, where �1 ∈ Rd is a unit vector. The 
problem above was sensitive to the presence of outliers. To 
improve robustness, the original formulation later grew 
equivalent to "maximizing variance" derivation given as

s.t.
∑d

j=1

�
�h
j

�2

= 1, whe re�h�S�� = 0 and ∀� = 1, 2,… ,

h − 1, hthprinciplecomponent . PCA finds its application in 
various data analytics problems which benefit from dimen-
sionality reduction mechanisms. For linear regression mod-
els, there exists Principal Component Regression (PCR) a 
two-staged procedure that inherits the properties of PCA 
accompanied by the advantage of including fewer predictors 
and reduced predictability time in the same variable dataset. 
Amid all the resolute outcomes of PCA, the only known 
drawback is interpretability.

3  Problems in Healthcare Sector

A change toward a data-driven socioeconomic health slant is 
taking place. This is due to the increased volume, velocity, 
and diversity of data attained from the public and private 

(21)1
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sectors in healthcare and natural sciences in a wide range. 
Over the last five years, there has been remarkable advance-
ment in informatics technologies and computational intel-
ligence for use in health and biomedical sciences. However, 
the full potential of data to address the breadth and extent of 
human health problems has yet to be realized. The properties 
of health data present intrinsic limitations to the effective 
implementation of typical data mining and ML technolo-
gies. Aside from the volume of data ('Big Data’) they are 
difficult to manage because of their complexity, heteroge-
neity, dynamic nature, and unpredictability. Finally, practi-
cal obstacles in applying new and current standards across 
different health providers and research organizations have 
hindered data management and the interpretability of the 
results. Oliveira et al. [66] address the issue of interpret-
ability of the results acquired from the study of clinical data 
and goes on to explain the cluster labels by deciphering the 
appropriate events. Consecutively, Mengoudi et al. [67] 
use self-supervised representation to train DNNs to detect 
diverse cognitive processes in healthy people. As a result, 
the model learns to encode high-level semantic information, 
which is then utilized to distinguish between control people 
and dementia sufferers. Intelligent methods are now being 
used to solve possible challenges in the healthcare business.

4  Applications of ML in Healthcare

Healthcare sectors spawn a comprehensive quantity of heter-
ogeneous information and data daily, which makes it difficult 
for the data to be analysed and processed by conventional 
methods. DL and ML methods help simplify the ardu-
ous methods to automate the task for actionable insights. 
Besides, the sources of data can intensify healthcare ser-
vice information into distinct quarters such as medical 
data, social media data, environmental data, and genomics. 
Table 1 accumulates the contributions of various researchers 
in different domains of ML applicability over time. ML/DL 
techniques can serve to automate and improve performance 
in major healthcare applicative sectors such as prognosis, 
diagnosis, treatment, and clinical workflow. A depiction of 
the extensive amount of heterogeneous data sourcing into 
healthcare systems is shown in Fig. 4.

4.1  Electronic Health Records (EHRs)

Electronic Health Records (EHRs) hold a large amount of 
data consisting of the medication history of patients and 
other details regarding their recovery daily by hospitals and 
other healthcare services. It is an extensively irksome task 
to extract clinical features from EHRs manually, ML-based 
methods come to the rescue. ML-based methods make it 
easy to extract required data for facilitating the diagnosis 
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Table 1  Summary of contributions made by researchers over time

Application of ML in healthcare References Year Contribution

Electronic health records (EHRs) Stojanovic et al. [68] 2017 Modeled healthcare quality via compact representations of EHRs
Brisimi et al. [69] 2018 Presented Chronic disease prediction hospitalization from EHRs
Shickel et al. [70] 2018 Analyzed advances in DL techniques for EHRs
Fuente et al. [71] 2019 Developed a solution for searching behavioral patterns in EHRs using 

the Random Forest algorithm
Harerimana et al. [72] 2019 Presented deep learning strategies for EHRs analytics
Bernardini et al. [73] 2020 Developed solutions for discovering type-2 diabetes in EHRs using 

sparse balanced SVMs
Tsang et al. [74] 2020 Modeled skimpy data for feature selection in the prediction of Demen-

tia patient’s admission using EHRs
Lee et al. [75] 2021 Proposed classification of opioid usage for total joint replacement 

patients
Kumar et al. [15] 2021 Developed Ensemble ML approaches for morbidity identification from 

clinical data
Medical image analysis Zebari et al. [76] 2020 Improved automated segmentation of pectoral muscle and breast cancer 

boundary in mammogram images
Zech et al. [77] 2018 Developed Automated annotation of clinical radiology reports using 

natural language-based models
Jing et al. [78] 2018 Developed Automatic generation of radiology imaging reports
Li et al. [79] 2021 Developed solution Using histopathological images to classify and 

diagnose lung cancer subtypes
Mandal et al. [64] 2018 Surveyed on medical imaging transformation across the healthcare 

spectrum
Umamaheswari et al. [80] 2018 Developed digital imaging to Classify and segment acute lymphoblas-

tic leukemia cells
Wang et al. [81] 2019 Used sparse multi-regularization learning and multi-level dual network 

features to classify breast cancer images
Abhinaav et al. [82] 2019 Developed ML mechanism using extracted Papanicolaou Smear images 

to detect abnormality and severity of cells
Bora et al. [83] 2020 Proposed a radiograph generating reconstruction mechanism for facili-

tating AI in medical imaging
Treatment Weng et al. [84] 2017 Provided analysis on ML prediction of cardiovascular risk using routine 

medical data
Fatima et al. [85] 2017 Surveyed ML algorithms for disease diagnosis
Zhao et al. [86] 2019 Applied ML approach for drug repositioning of Schizophrenia and 

anxiety disorders
Jamshidi et al. [87] 2020 Proposed DL approaches for diagnosis and treatment of the novel 

coronavirus
Li et al. [88] 2019 Assessed ML for predicting severity in liver fibrosis for chronic HBV
Noaro et al. [89] 2021 Developed ML-based model for improving the calculation of Insulin 

Bolus of type-1 diabetes therapy
Yang et al. [90] 2017 Proposed a combined ML algorithm for effective medical diagnosis and 

treatment using an inference engine
Chaitra et al. [91] 2020 Proposed an ML model for diagnostic prediction of autism spectrum 

disorder
Computer aided-detection (CAD) Saygılı et al. [92] 2021 Developed ML methods and soft computing strategies for computer-

aided Covid-19 detection from CT-Scan and X-ray images
Abdelsalam et al. [93] 2018 Presented the computer-aided detection of leukemia using microscopic 

blood-based ML
Wu et al. [94] 2018 Developed DL techniques to detect hookworm in wireless endoscopy 

images
Yu et al. [95] 2021 Implemented ML-aided imaging analytics for histopathological image 

diagnosis
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Table 1  (continued)

Application of ML in healthcare References Year Contribution

Disease prediction and diagnosis Suresh et al. [96] 2017 Presented clinical event prediction and analysis using DL mechanisms

Rau et al. [97] 2018 Presented a study using ML for predicting the mortality rate of the 
isolate to severe traumatic brain injury patients

Kim et al. [98] 2017 Proposed ML-based diagnosis of major depressive disorder by combin-
ing heart rate data

Pellegrini et al. [99] 2018 Developed ML assisted diagnosis of dementia and cognitive impair-
ment

Akbulut et al. [100] 2018 Presented an ML system for foetal health condition prediction based on 
maternal clinical history

Karhade et al. [101] 2018 Developed ML algorithms for predicting survival of a 5-year spinal 
chordoma patient

Abdar et al. [102] 2019 Proposed a new ML technique for the diagnosis of coronary artery 
disease

Burdick et al. [103] 2020 Used ML to develop a prediction system for respiratory decompensa-
tion in coronavirus patients

Hashem et al. [104] 2020 Developed ML models for diagnosis of HCV-related chronic liver 
disease and hepatocellular carcinoma

Magesh et al. [105] 2020 Developed explainable ML using LIME on imagery computers model 
for pre-detection of Parkinson’s disease

Shen et al. [106] 2021 Presented risk predicting ML models in the diagnosis of Escherichia 
coli sepsis in patients

Montolío et al. [107] 2020 ML in disability prediction and diagnosis of multiple sclerosis utilizing 
optical coherence tomography computers

Clinical time-series data Yu-Wei et al. [108] 2019 Used recurrent neural networks for prediction of unplanned ICU 
readmission

Xie et al. [110] 2020 Compared benchmarks of classical time-series ML models with new 
algorithms on glucose prediction in the blood of type-1 diabetes

Pezoulas et al. [111] 2021 Used time-series gene expression data for the detection of a diagnostic 
biomarker in Kawasaki disease

Nancy et al. [112] 2017 Observed a bio-statistical quarry approach for the classification of mul-
tivariate clinical time-series data observed at varying intervals

Froc et al. [113] 2021 Characterized urinary tract endometriosis over a collected one-year 
national series data of 232 patients

Wallace et al. [114] 2018 Simplified the function of speech recognition admissibility in medical 
documentation aspects

Clinical speech and audio processing Zamani et al. [115] 2020 Presented an automated Pterygium detection using ML/DL approaches
Prognosis Ke et al. [117] 2019 Presented an automated Image annotation based on multi-label data 

augmentation and deep CNNs
Davi et al. [118] 2019 Utilized ML and human genome data for severe dengue prognosis
Liu et al. [119] 2019 Proposed a weakly supervised DL technique for brain disease prognosis 

using MRI data and incomplete clinical scores
Fang et al. [120] 2020 Discussed the ML approach for feature selection in stroke prognosis
Wang et al. [121] 2019 Presented transfer learning least squares SVM mechanism in bladder 

cancer prognosis
Cai et al. [122] 2020 Presented ML models and CT quantification approaches for assessment 

of disease prognosis and severity of coronavirus patients
Zack et al. [123] 2019 Developed ML techniques for forecasting patient prognosis after percu-

taneous coronary intervention
He et al. [124] 2021 Developed ML prediction model for acute kidney injury following after 

donation
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process. Diverse precedents have been presented to diagnose 
diseases such as diabetes, lung infections due to Covid-19, 
advancement of tumorous cells from the unstructured EHRs. 
The unstructured records from EHRs are mainly examined 
for two stints, i.e., length-of-stay and mortality prediction. 
It has been observed in studies that the prediction for the 
diagnosis process gets degenerated when historical records 
are trained upon by ML models and tested on new (unseen 
data). Stojanovic et al. [68] presented a study where they 
coupled EHRs with advanced ML tools for predicting major 
parameters of healthcare quality. The study is dedicated to 
reduced dimensional vector representations of patients' clini-
cal procedures and conditions. Brisimi et al. [69] developed 
ML methods to predict hospitalization probabilities because 
of the two most important chronic diseases, i.e., diabetes and 
heart ailments. The predictions rely on the clinical history 
of patients recorded in EHRs. The previous era has seen 
an enormous increase in the volume of digital informa-
tion of medical data collected in EHRs. Shickel et al. [70] 
surveyed the present research on the application of DL to 
clinical tasks on EHR data and identified several loopholes 
in the current EHR-based research. Likewise, Fuente et al. 
[71] presented a survey where they studied the behavioral 
patterns in EHRs of patients using the Random Forest Algo-
rithm. Their study mainly focuses on finding a correlation 
between different diseases or factors associated with them. 
Analytics plays an important role when considering data-
driven systems for medical facilitation. Harerimana et al. 
[72] offered an intuitive review of optimized DL approaches 
in managing and utilizing data from EHRs. The exponen-
tial rise in the availability of data might reduce the need 
for data demand in ML processes. However, performance 
is traded-off for computation time that can become critical 
at times considering medical emergencies. Diabetes is one 

of the most common conditions found amongst the Indian 
population. The early discovery of type 2 diabetes (T2D) 
helps in treating patients more pragmatically and prevents 
severity. Bernardini et al. [73] introduced an ML algorithm 
known as Sparse Balanced Support Vector Machine (SB-
SVM), trained extensively on the abundant data recorded 
in EHRs to detect the novel T2D early and efficiently. The 
SB-SVM produces promising results to overcome present 
competitors in providing the best trade-off between com-
putation time and predictive performance. Similarly, with 
the help of EHRs, the protagonists of clinical welfare have 
developed several mechanisms such as admission prediction 
of Dementia patients [74], classification of Opioid usage 
for Joint Replacement patients [75], morbidity identification 
[15], to consider a few.

4.2  ML in Medical Image Analysis

ML systems have rooted their applicability in the analyzing 
procedures of medical images. These computational tech-
niques allow the efficient extraction of important informa-
tion from image samples produced using various imaging 
modalities (e.g., MRI, Computed Tomography Scan (CT), 
Positron Emission Tomography (PET), and ultrasound imag-
ing, etc.). Recent advances in computational hardware are 
allowing physicists to revise old AI algorithms and experi-
ment with new mathematical ideas [76]. The mechanically 
produced images enable diagnosis of the kernel of illness 
and localization of abnormalities in various parts of the 
body. The significant tasks in clinical image analysis com-
prise detection, segmentation, localization [77], classifica-
tion, enhancements, reconstruction, etc. [78]. As a result, a 
completely automated intelligent system for medical image 
analysis is predicted to successfully provide services such as 
segmentation, localization, detection, and classification. M. 
Li et al. [79] presented an experimental study in computer-
aided lung-cancer diagnosis based on histopathological 
imaging. Their proposed best classifier, i.e., the Relief-SVM 
(relevant features- Support Vector Machine) model achieved 
the highest accuracy, thereby verifying the potential of aux-
iliary diagnostic models using medical images. ML and AI 
have influenced treatment procedures in numerous ways. A 
detailed review of how AI is remodeling the medical imag-
ing spectrum is presented by Mandal et al. [64]. Likewise, 
Umamaheswari et al. [80] propose an algorithm for the 
classification and segmentation of Acute Lymphoblastic 
Leukaemia Cells. The system is fully fed by clinical photos 
that have been analyzed. For the sake of graphical analysis, 
segmentation is performed first, followed by morphological 
operators and Otsu's thresholding. The use of nucleus char-
acteristics in conjunction with a supervised KNN classifier 
improves classification rates, yielding an estimated accuracy 
of 95.92 percent on average. Based on histological images, 

Fig. 4  Illustration of heterogeneous sources contributing to healthcare 
data
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Wang et al. [81] presented a profound study where they 
improved the existing detection accuracy of malign cells in 
breast cancer. They adopted a dual-network multi-relation 
regularized learning method for boosting performance. 
Cervical Cancerous cells are classified using a tack called 
Papanicolaou Smear (PAP) test. Abhinaav et al. [82] devised 
an algorithm catering to the image’s dataset produced from 
the PAP test to classify and group the normal cells from 
affected cells. Histopathological images are prone to uncer-
tainty which acts as a catalyst in corrupting an ML model's 
performance trained on it. However, the inception of the 
fuzzy modeling technique has significantly reduced bias and 
uncertainty in the image data [83].

4.3  Applications of ML in Treatment

Recent innovations and research in extensive ML applica-
tions for healthcare domains have paved the way for better 
treatment scopes. The medication process follows a three-
step procedure of prognosis, diagnosis, and treatment. In 
the diagnosis phase, medical images are studied by expert 
clinicians and radiologists to interpret the possible risks and 
cures. An extensive amount of medical data is produced 
daily from various small and big healthcare facilities, the 
information collected is put through rigorous supervision, 
and findings are recorded in reports. However, preparing 
such reports requires expertise and if handled with less 
experience in areas of nascent healthcare services may 
result in misdiagnosis or may conclude at a critical synop-
sis. On the other hand, preparing textual medical documents 
at an organizational level can be a tedious and weary task 
for clinical experts and radiologists, therefore researchers 
have attempted to address some clarifications on specific 
problems using ML techniques. Zech et al. [77] proposed a 
Natural Language Processing (NLP) based method for the 
annotation of radiology reports. A similar study conducted 
by Jing et al. [78] resurrected a multi-tasking ML frame-
work for the automatic description and tagging of clinical 
radiology images. Similarly, researchers and physicians have 
found ways to blend methods such as Convolutional Neural 
Networks (CNN), RNN, and LSTM to explain automated 
state of art architecture for predictive design systems in 
localizing affected areas of body parts [84, 85]. Zhao et al. 
[86] presented a study where they developed ML algorithms 
for possible drug repositioning in case of Depression and 
Schizophrenia disorders. SVMs outperform others amongst 
the list of experimented algorithms. The Covid-19 outbreak 
has claimed thousands of lives and has put forward a profu-
sion of difficulties. Researchers and medicinal experts since 
then have worked enormously to find ways of saving lives, 
technology has been an integral part. Jamshidi et al. [87] 
have curated a collection of diverse DL approaches for the 
diagnosis and treatment of Covid-19 patients. On the other 

hand, we can witness how gracefully Li et al. [88] have uti-
lized ML approaches for assessing the degree of severity 
of Liver Fibrosis for chronic HBV. In our prior discussion 
diabetes remained one of the most researched conditions. 
Noaro et al. [89] presented a study where they conferred 
the abilities of ML models in improving the Insulin Bolus 
Calculation in type 1 diabetes. Moving on with more recit-
als of ML for treatment, we witness a few more studies that 
exemplify the statement [90, 91].

4.4  ML in Computer‑Aided Detection

ML has been used extensively as a major strategy of CAD 
scheme, i.e., Computer-Aided Detection/Diagnosis of lesion 
candidates into certain classes of interdisciplinary technol-
ogy blending elements of AI and ML with radiology and 
pathology image processing, an ideal example can be IBM's 
Watson. The automatic interpretation of medical images has 
proved to be highly valuable in assisting radiologists and 
doctors in their clinical treatment when time constraint is 
paramount. The workflow takes into account various DL/
ML techniques like Fisher score discriminator, t-test and 
chi-square test, and several traditional processes including 
predictive algorithms, Computer Vision, Image process-
ing methods. Saygılı et al. [92] examined several classifi-
cation models to support early computer-aided diagnosis 
and treatment of Covid-19 using image processing and ML. 
Their proposed approach achieved an astounding accuracy 
of 99.02% on the X-ray images dataset. Correspondingly, 
Abdelsalam et al. [93] explored the inclinations of CNNs 
in computer-aided Leukaemia detection using microscopic 
blood images. The majority interest of discussion revolves 
around human ailment detection and seeming cures using 
the technical big name, ML. Considering one of the most 
common infectious diseases responsible for fatal endings 
in children especially, i.e., hookworm, He et al. [94] have 
proposed a broad study in hookworm detection. Their study 
bears an ML detection framework for Wireless Capsule 
Endoscopy (WCE) images which simultaneously tracks the 
tubular patterns of hookworms and models visual represen-
tations. Extending to the method of imaging analytics for 
pathological image diagnosis, Yu et al. [95] presented an 
extensive review concerning it.

4.5  Disease Prediction and Diagnosis

Disease Prediction and diagnosis early can be prolific in 
saving a person's life. Predictive ML methods instigate the 
means of early prognosis and diagnosis from medical data 
which subdues the time required for acting upon the disease 
for treatment. Surveys stating that certain ML algorithms 
have been successful in the prediction of cardiovascular 
risk with clinical data [96] and studies culminated that ML 
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adeptness raised effectuality in prognosis and diagnosis 
predictability. The inherent use of ML-based methods for 
prognosis and prediction of cancer, apprehension of vari-
ous diseases like virulent infections, dengue, hepatitis, heart 
problems, malaria, diabetes, etc. have proved to be capa-
ble [97]. Major Depressive Disorder (MDD) is a variety of 
abnormal mood disorders observed under biological psy-
chiatry. It has been very prevalent amongst youngsters these 
days. Diagnosis for it demands the root cause be unravelled. 
Kim et al. [98] studied MDD and applied ML to classify 
peripheral biomarkers using Heart Rate Variability (HRV) 
serum proteomic analysis data. ML has been observed to 
assist in a lot of cognitive diagnosis procedures, Pellergrini 
et al. [99] presented a systematic review which is evidence 
of it. Following this, Akbulut et al. [100] proposed sev-
eral ML techniques for monitoring and predicting foetal 
health status based on maternal clinical history. ML has 
been developed extensively through the years. The decision 
support provided by ML models has reduced the workload 
on clinical professionals to a considerable extent. Karhade 
et al. [101] developed a Bayes Point machine for the predic-
tion of 5-year survival in spinopelvic chordoma. The ML 
model was developed specifically for this rare pathology 
yet accuracy was not compromised. Likewise, Abdar et al. 
[102] proposed ML techniques for the diagnosis of coronary 
artery diseases. Burdick et al. [103] employed ML for the 
prediction and diagnosis of respiratory decompensation in 
Covid-19 patients. Hashem et al. [104] developed predictive 
models for the diagnosis of chronic liver diseases along with 
Hepatocellular Carcinoma. Magesh et al. [105] presented 
their study on early detection of Parkinson's disease, like-
wise, diagnostic models for Escherichia coli infection [106], 
multiple sclerosis [107], and others have been developed.

4.6  ML for Clinical Time‑Series Data

Time-series data is a collection of numerical/statistical fea-
tures monitored for a certain period. Clinical Time-series 
data holds an amalgamation of medical imaging observa-
tions periodically tracking the transition of prime data 
points of concern. Applicability of clinical time-series 
ML modeling cover prophecy of health standing in Inten-
sive Care Units (ICUs) using CNNs and Long-short Term 
Memory networks (LSTMs) [108], mortality rate predic-
tion of patients with Traumatic Brain Injury (TBI) [109], 
assessment of blood pressure, Intracranial Pressure (ICP), 
is prime signs of Cerebrovascular Autoregulation (CA) in 
TBI patients [109]. Recently studies state that by integrating 
time-series data with multivariate model inclinations, their 
predictivity for forecasting tasks of prognosis, diagnosis, 
recommendation, etc. is increased tremendously. Xie et al. 
[110] benchmarked ML time-series models on the prediction 
of glucose content in the blood for Type 1 diabetic patients. 

Pezoulas et al. [111] gathered time-series microarray gene 
expression data for the modeling of a predictive system. The 
model developed, detects candidate biomarkers of Kawa-
saki disease. Every ML application needs to be fed a hefty 
amount of data for better performance. However, data man-
agement is considered one of the tedious yet crucial jobs. 
Nancy et al. [112] applied a bio-statistical mining approach 
for the efficient classification and management of time-series 
data considering irregular time intervals. Similarly, Froc 
et al. [113] listed clinical attributes of urinary tract endome-
triosis on a series of 232 patient data collected for one year.

4.7  Clinical Speech and Audio Processing

In clinical environments, concerned authorities require to 
generate huge amounts of documentation including clinical 
reports, imaging reports, discharge applications, etc. which 
takes a lot of time and is highly strenuous for clinicians. Wal-
lace et al. [114] discussed that while considering the workload 
already on experts, documentation is an added despondency 
that takes 50% of their time as a result the interaction time 
with patients is curbed down. This typical situation is strainful 
for clinicians and emotionally unconnected for patients who 
require attention, hence clinical speech and audio processing 
provide a sigh of relief. The applications of it include interac-
tion-less services with speech communication, automation of 
transcript generation, clinical notes synthesis, correspondence 
for an emergency in staff unavailability, etc. These methods 
are time and cost-effective and increase productivity, to man-
age the healthcare infrastructure internally well, applications 
of clinical audio and speech processing have been success-
ful where automation is a new modality for patients as well 
as clinicians [115]. Clinical speech processing confronts two 
major challenges as disfluency and utterance segmentation 
which stalls processing activity.

4.8  ML in Prognosis

Prognosis refers to the process of forecasting a likely out-
come of a disease based on medical trials. The process 
includes the identification of potential risks and ascertain-
ment of pre-stages of development for the disease and the 
likelihood of survival. Collins et al. [116] stated that ML 
models facilitating the process of prognosis are fed with 
multimodal patients’ data for improved performance. Recent 
research in the potential applications of ML in the medi-
cal prognosis [117] process puts stress on the sanction of 
personalized medicine, a premature field that still requires 
extensive development. To achieve the translational impact 
of personalized medicine robust validation strategies and 
ML utilization is expected. Davi et al. [118] proposed an 
ML classification method developed using human genome 
markers for severe dengue prognosis. Another study on 
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ML models by Liu et al. [119] is evidence of brain disease 
prognosis using incomplete clinical scores and MRI data. 
Various other predictive systems are developed using ML/
DL approaches. However, ML can also be utilized for select-
ing features in stroke prognosis [120]. Wang et al. [121] 
presented a transfer-learning approach for bladder cancer 
prognosis. Cai et al. [122] investigated ML models for the 
assessment and quantification of severity and prognosis of 
Covid-19 patients. Conclusively, Zack et al. [123] lever-
aged ML techniques for Percutaneous Coronary Interven-
tion prognosis forecasting, He et al. [124] studied acute 
kidney injury prediction followed after cardiac death liver 
transplant.

5  Sources of Vulnerabilities in ML Pipeline

The applications of ML in healthcare are still at their nascent 
stage of development, the challenges arising due to security 
breaches and privacy disruption are discussed in this sec-
tion. The cyber defense strategies however have not fully 
grown under the healthcare domains which challenges the 
secrecy and confidence of ML models developed. In addi-
tion, major challenges faced during the ML pipeline devel-
opment besides potential vulnerability sources causing such 
challenges have been pointed out next.

5.1  Vulnerabilities in Data Collection

Vulnerabilities can seldom sneak through carefully amassed 
medical data considering the generous amount of informa-
tion collected in various formats such as medical images, 
radiology reports, health surveys, patient/ disease registries, 
clinical trials data, etc., every day. Handling this huge mass 
of information requires obscure human efforts and bulk time 
wherein chances of data being descended are highly pos-
sible, to reduce such failures automation involving ML/DL 
pertinence is brought into practice. Whilst medical data is 
consolidated with vigilance there can be various sources of 
weakness that influence the proper functioning of the pri-
mary ML/DL systems, some of which are discussed below.

5.1.1  Unqualified Personnel

The highly interpersonal data-driven healthcare system 
requires a lot of technical and non-technical assistance. 
Technical personnel with strong computation and statistical 
accomplishments to develop the underlying effective ML/
DL-based systems to improve the efficacy of medical pro-
cesses and time-management strategies are limited. Con-
ceding the feeble situation, hospitals turn over to depend 

entirely on physicians or researchers who do not have quali-
fying computational expertise for developing such systems 
[125].

5.1.2  Environmental and Instrumental Noise

The process of digital data collection and regulation seldom 
accompanies environmental and instrumental disturbances. 
Little agitation in certain diagnostic procedures such as in 
multishot MRI where extensive supervision is required, can 
lead to undesirable noise in the solicited data thereupon 
increasing the risk of misdiagnosis.

5.2  Vulnerabilities Due to Data Annotation

ML/DL applications require extensive model training for 
perfect predictive performance. For medical usage appli-
cations, most models are extensively trained on clinically 
produced images that require every sample to be annotated. 
This tedious task of assigning labels should mostly be per-
formed by clinical experts who can prepare domain-enriched 
datasets or by some automated algorithms [126]. Labeling 
data like secondary tasks are not encouraged by profession-
als as it employs a lot of their crucial time therefore trainee 
staff (who have little domain expertise) are employed for the 
task. As a result, it leads to problems such as bawdy labels, 
misclassification, sanction imbalance, etc. Several vulner-
abilities due to data annotation are noted further.

5.2.1  Ambiguous Ground Truth

In medical datasets, Finlayson et al. [127] proactively pre-
sented a study that expresses the ambiguity in the ground 
truth of the results. Even well-defined diagnostic tasks are 
criticized by therapeutic experts, further mishandling and 
malicious attacks by some perplexed users make the diagno-
sis, and hence the treatment process difficult yet being under 
expert supervision.

5.2.2  Improper Annotation

The proper annotation for data samples is critical for certain 
life-saving healthcare applications. ML/DL mechanisms are 
deployed for the automated image labeling tasks which often 
might lead to coarse-grained problems, mislabelling [128]. 
These problems may challenge the predictive capabilities of 
healthcare systems that are mentioned next.

5.2.3  Efficiency Challenges

Efficacy becomes the prime factor to monitor an ML/DL-
based system's performance. Particular challenges that 
influence the quality of data and performance thereafter are 
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Limited and Imbalanced datasets, Class imbalance and bias, 
and sparsity. Newly identified diseases do not have much 
available history, due to this limitation the performance 
of a model on predicting the outcomes of this problem is 
demoted. Class Imbalance is seen as a common problem in 
supervised ML/DL models which arise due to a mismatch 
or non uniform data distribution amongst respective classes. 
Data Sparsity refers to the missing values in the input data 
that arise due to skipped or unreported samples. All these 
problems put a significant effect on the functioning of ML/
DL techniques.

5.3  Vulnerabilities in Model Training

Vulnerabilities concerning ML/DL model training comprise 
partial training, model poisoning, privacy infringement, 
incomplete data rendering. Unbecoming training means 
inappropriate parameters (such as epochs, test/training ratio, 
etc.) feeding to the model as a result it becomes exposed to 
infer at a corrupt proposition. ML/DL models are exposed 
to cyber-attacks such as adversarial attacks, Trojan attacks, 
backdoor attacks, etc., breaching the secure integrity of 
the underlying system [129]. The impediments associated 
with ML/DL models validate their efficient usage, thereby 
imposing a check on security and life-critical applications 
development.

5.4  Vulnerabilities in Deployment Phase

Deployment of ML/DL systems in a healthcare ecosystem 
requires extensive human efforts, consequently to avert the 
robustness of the system customary accountability has to be 
considered in the deployment phase. Concerning vulnerabil-
ities that occur in the stationing phase of ML/DL systems 
include Distribution shifts and Incomplete data. Distribu-
tion shifts as they are expected to be deployed on different 
domain data, they are also vulnerable to adversarial attacks 
[130]. Since ML models are trained on former medical data 
their performance on future data degrades the efficacy of 
the prediction. Certain predicaments result in incomplete 
data collection which might influence the outcomes of the 
procurement. Incomplete data can either be dropped or is 
replaced with the mean of the column, however often these 
practices may lead to a foresight of false positives and false 
negatives which can have severe consequences in medical 
care systems. To ensure the accurate prediction of problems 
and diagnoses, compact and complete data is vital.

5.5  Vulnerabilities in Testing Phase

Vulnerabilities in the testing phase are typical that may arise 
due to training anomalies because of incomplete data, altered 
data fed for inference, unlabelled medical image inputs, to 

name a few. These problems could result in severe outcomes 
that predict false positives or false negatives delimiting the 
accurate prediction of the condition or disease. Loopholes in 
the prediction pipeline are critical for a patient's treatment. 
Decisively, ML-based healthcare is not just about humbling 
exertion or predictive analysis/ treatment but demands cir-
cumspect deployment of statistical/analytical methods in the 
underlying systems [131].

6  ML for Healthcare: Challenges

Scientists and Researchers are using ML/DL techniques to 
churn out smart solutions that help streamline the adminis-
trative as well as diagnostic procedures in a medical man-
agement ecosystem. Challenges are requisite in the prudish 
advancement of ML/DL-based systems for viable health-
care applications. Some of the challenges that impede the 
performance and applicability of automated systems are 
discussed in this section. Table 2 summarizes the probable 
challenges faced while tackling ML prosecution in a health-
care ecosystem.

6.1  Safety Challenges

Safety is not a measure of how perfectly an ML/DL model 
performs under a provisioned environment. Safety accounts 
for how perfectly an ML/DL model can determine a patient's 
condition without any expert intervention. The majority of 
patients under the doctor's supervision have common health 
conditions, it is their responsibility to examine any under-
lying rare, subtle or hidden health problems. Arachchige 
et al., [26] introduced the applicability of the PriModChain 
framework that enforces safety in the functioning of various 
mechanical applications in the healthcare domain. Enabling 
ML/DL applications to recognize those low underlying tenu-
ous events is beneficial in ensuring the safety of the present 
automated systems.

6.2  Privacy Challenges

Privacy is the right of every user (i.e., patient). Preserving 
privacy in this data-driven healthcare ecosystem is a chal-
lenging task, trust is intertwined with issues like integrity, 
confidentiality, authenticity, accountability, data manage-
ment, and identity, to name a few [132]. Patients expect 
that their medical service providers are safeguarding their 
confidential information from being mishandled or breached 
by unauthorized accesses, therefore alleviation of privacy 
breaches is critical for preventing a patient from potential 
harm. One way of preserving the confidentiality of data to 
prevent privacy harm is by anonymization, such as reiden-
tification of the individuals [133]. Further austere notice 
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towards every stage of data collection and transmission 
should be administered.

6.3  Ethical Challenges

Ethical usage of data in the ML-driven healthcare system is 
of utmost importance. Acrimonious caution should be taken 
while accumulating data for building ML models keeping 
the sociological aspects of the targeted population at prime. 
Understanding a patient's concern in preserving their dig-
nity should be considered during data collection. If ethical 
terms are not taken care of then the use of intelligent systems 
would have an unfavorable impact. To extend fair and ethi-
cal considerations for uncertain and complex scenarios, a 
clear understanding of ML systems in this regard is expected 
[134].

6.4  Availability of Quality Data

One of the other shortcomings in a healthcare ecosystem 
is the availability of diverse and good-quality data. Daily, 
an extensive amount of heterogeneous information related 
to patients is being generated across medical institutions, 

and an inadequate amount of useful data is being retrieved 
for researchers and the scientific community to work on. 
To produce high-quality practical data requires resources 
and service with good maintenance and management. The 
ample presence of quality data would enable professionals 
to develop systems for the grounds of illness prediction and 
treatment. Data collected during practice can have issues 
such as bias, a redundancy that will reflect as adverse out-
comes in the algorithms. Intelligent systems cannot differen-
tiate racial bias and fair subjectivity as humans persuade the 
act they learn, for example, a person with no health provi-
sion is repudiated for facilitating medical services wherefore 
research has brought forward that an AI system could predict 
bias in racial terms [135]. The trained data also contributes 
to its modeling challenges [136–138].

6.5  Casualty is Challenging

Casualty can be challenging from a medical perspective. 
Understanding the importance of reasoning, i.e., "What if?" 
while taking decisions in crucial healthcare problems is 
imminent [139]. Consider a circumstance where we need to 
analyse that if the doctor prescribed treatment 1 rather than 

Table 2  Challenges involved 
with Machine Learning in 
Healthcare

ML in healthcare challenges Description

Safety challenges Model’s prediction precision without expert intervention is
questioned
Identifying rare, underlying health problems is challenging
Enabling ML techniques to identify subtly hidden cases is the
key to ensuring safety

Privacy challenges Preserving privacy can be challenging
Patients expect their confidential information to be
safeguarded
Anonymization can prevent unauthorized access and privacy
breach

Ethical challenges Data accumulation requires authorization
Preserving patients’ dignity while collecting data is to be taken
care of
If ethical concerns are not addressed, the unfavourable impact is
seen in ML applications

Availability of quality data The information available is heterogenous
Data collected during practice have issues (bias,
redundancy), produce an adverse effect in the algorithms
High-quality practical data requires resources and
service with good maintenance

Casualty is Challenging Reasoning while taking decisions in crucial health problems
is imminent
Queries where expert reasoning is required cannot be answered
from a medical data perspective
Forming casual rationalization from data is challenging

Updating hospital
Infrastructure is inflexible

Independent sections of healthcare avoid frequent information
exchange
For frictionless communication, antiquated systems need
upgradation
The difficulties in upgrading hospital infrastructure raise
concern with modern-day healthcare practices using ML/DL
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treatment 2, how will the outcome be influenced? Queries 
of this kind cannot be answered from a medical data ana-
lysed perspective but through causal reasoning. In healthcare 
applications learning from observational data and inferenc-
ing is the socio norm but forming casual rationalizing from 
it is challenging which requires building casual models. ML/
DL models lack fundamental reasoning under their hood and 
produce output based on correlation and patterns without 
considering the casual loop in between. In practical appli-
cation, the limitation of casual analysis may raise concerns 
about the prophecy of AI systems. The acknowledgment of 
the casual effect of certain variables on target yields is para-
mount for fair predictive behaviour.

6.6  Updating Hospital Infrastructure is Inflexible

Healthcare organizations favor independent operations and 
mostly avoid sharing information. For a frictionless erudi-
tion exchange, it requires the fixing and updating of anti-
quated software which can be time-consuming and most are 
not cost-effective. Finlayson et al. [127] reported that even 
in the late 20 s most of the infirmaries were operating on the 
ninth version of the International Classification of Disease 
(ICD) system even though an updated version of ICD-10 had 
been released in the early '90 s. The difficulties in upgrad-
ing hospital infrastructure and internal management systems 
can raise concerns with the applicability of recent DL/ML 
practices.

7  Future Research Directions

In this section, various issues that require active research 
attention related to the security, privacy, and robustness of 
ML in the Healthcare ecosystem are discussed.

7.1  Machine Learning on the Edge

The revolutionary change in the purposes of ML in Health-
care applications has seen exponential growth in recent 
years. Research in ML has revolutionized traditional meth-
ods and opted for smart and energy-efficient utilization of 
wearable devices, IoT sensors, etc. With the development of 
smart cities and transportable medical devices such as port-
able ventilators, oxygen concentrators, MRI machines, etc., 
there is a constant demand for refined ML models trained 
on Edge devices. This imposes a few limitations including a 
lack of available hardware support and high computational 
processing capabilities. ML in the Edge devices is nurturing 
at its nascent stage and requires attention from the research-
ing fraternity. The growth in this domain will lead to faster 
care in chancy situations and continuous monitoring of 
patient's health from a remote location, thereby improving 

healthcare facilities for a better lifestyle and timely medical 
assistance.

7.2  Handling Dataset Annotation

The output of AI systems is highly subservient on the labeled 
datasets for training and inference. This requires the medical 
experts and physiologists to annotate the medical data (such 
as images, clinical reports, signals, etc.) manually, spend-
ing a lot of their valuable time doing this tedious work. The 
variety of practical medical data glossed with accurate labels 
will appraise the execution of ML/DL models and exhibit 
hindrance that might have not been noticed. Thus, manual 
labeling of data into respective classes is inquisitive, tedi-
ous, and energy draining. Automatic approaches like active 
learning should be adopted and developed to inscribe this 
impediment.

7.3  Distributed Data Management and ML

In Healthcare systems, the generation of data is discrete, i.e., 
data is processed from various departments within a hospi-
tal extending to various other hospitals geographically. This 
imposes pressure on efficient data sharing and management 
for clinical analysis particularly using ML models. ML/DL 
models are developed based on a general consideration that 
all the analytical information is easily accessible and cen-
trally available. These shortcomings offered by improper 
management of information exchange need the attention of 
developers and researchers who collaboratively could tackle 
the administration of distributed data and ML.

7.4  Fair and Accountable ML

Qayyum et al. [140] in analyzing robustness and security 
of ML/DL techniques reasoned that the results of the mod-
els are biased and lack accountability. Ensuring fairness 
and precision of predictions is of cardinal importance for 
life-critical application in healthcare systems. Trading the 
accuracy and accountability of these models could result in 
cynical outcomes and impose risk to patients' health. Fair 
predictions by the ML/DL models are influenced by a variety 
of cases with little available data. Taking into account the 
importance of fair judgment and interpretability, tuning of 
models accordingly will make it robust and desist from mis-
judgements made in the past clinical records. Further study 
to develop dynamic methods to ensure safety and lessen 
imperfections is needed in this area.

7.5  Model‑Driven ML

The practice of ML, AI for predictive analysis in healthcare 
applications comes with privileges as well as liabilities. Latif 
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et al. [141] discussed the associated caveats in utilizing these 
tools, failing to denote its lapses might turn out critical as 
in clinical terms. Usually, the perks of these models con-
vince one that data once available in abundance can handle 
hypothesis generation without any medical expert validation 
and interpretation, which attracts unavoidable problems. To 
avoid these quandaries, it is important to achieve a combined 
data-driven method including hypothesis and model-based 
approaches to bring controlled precision in these studies. 
Areas for building robust, secure, and accountable ML deliv-
erables that are technically precise require further research.

8  Conclusion

ML is activated by statistically afformed algorithms, distrib-
uted over different categories such as Regression, Classifica-
tion, Clustering, etc. All of these algorithms assist in build-
ing intelligent solutions for automating clinical tasks and 
suspecting disease apprehensions. The traditional practice 
of services provided by healthcare systems has seen a vast 
change with the advent of ML and DL-based approaches. 
However, to ensure secure, bias-free, and hale utilization of 
these models, provocations should be addressed. This report 
provides a brief introduction to several ML algorithms, dis-
cusses their extent of reinforcement and controls, further 
marking reliable standards to bypass shortcomings in model 
building. This paper also provides a synopsis of the chal-
lenges arising in the ML deployment pipeline for healthcare 
infrastructure by classifying different origins of jeopardies 
in it. Conclusively this work discusses possible solutions 
to provide users as well as clinical experts in a healthcare 
ecosystem with secure, robust, and privacy-protected ML 
explication for privacy endeavouring applications. The paper 
is summarized by including the potential pursuit of ML tech-
niques in the healthcare sector and the privacy consideration 
linked with it.
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