Skip to main content
. 2022 Mar 23;81(18):25613–25655. doi: 10.1007/s11042-022-12642-4

Table 4.

Literature Review on ML and DL models for early detection of DR

Paper Name Images/Dataset Features Methodology Classifier Results
Lam et al. [77] 243 MAs, HEs, EXs, NV CNN CNN

AlexNet accuracy 74% and 79%

VGG16 accuracy 86% and 90%

GoogLeNet accuracy 95% and 98%

ResNet accuracy 92% and 95%

Inception-v3 accuracy 96% and 98%

Buades et al. [22] 7137 EXs, HEs, drusen, CWSs SURF, OR, MV and meta-SVM SVM

AUC 91.6% for single lesion detection (hard EXs)

AUC of 88.3%multi-lesion detection

Mansour et al. [89] Kaggle dataset AlexNet, SIFT, LDA and PCA SVM

Accuracy of 90.15% (PCA) and 97.23% on FC6 features (LDA)

Accuracy of 95.26% (PCA) and 97.28% on FC7 features (LDA)

Orlando et al. [101]

DIARETDB1,

MESSIDOR,

e-ophtha

MAs, HEs LeNet CNN

AUC of 0.7912 with CNN features

AUC of 0.7325 with hand crafted features

AUC of 0.8932 on combination of both features

Pratt et al. [108] 80,000 MAs, EXs and HEs CNN architecture Sensitivity 30%, Specificity 95%, Accuracy 75%
Xu et al. [142] Kaggle

EXs, red lesions, MAs

RBVs

CNN GBM and CNN

91.5% accuracy without data augmentation

94.5% accuracy with data augmentation

Khojasteh et al. [71] DIARETDB1 and e-Ophtha

EXs,

MAs,

HEs

CNN CNN

Accuracy of 0.96 (EXs), 0.98(HEs) and 0.97 (MAs) on DIARETDB1

Accuracy of 0.88(EXs), and 3.0(MAs), on e-Ophtha dataset

Soniya et al. [127] DIARETDB0

MA, HE, hard EX, soft EX,

NVE

Single CNN and heterogenous CNN Multilayer perceptron network

Single CNN accuracy: 40%–90%

Heterogenous CNN accuracy: 100%

Alghamdi et al. [8] PAMDI and HAPIEE OD Cascaded CNNs AdaBoost ensemble algorithm

Sensitivity 96.42%, Specificity 86%, Accuracy 86.52% on HAPIEE

Sensitivity 94.54%, Specificity 98.59%, Accuracy 97.76% on PAMDI

Gardner et al. [44] EyePACS-1 MESSIDOR-2 HE and MA Inception-V3-architecture Neural Network Ensemble of 10 networks

EyePACS-1: AUC of 0.991

MESSIDOR-2: AUC of 0.990

Abràmoff et al. [86] 1748 OD, Fovea, HEs, EXs NV AlexNet, VGGNet RFC

Sensitivity of 96.8% (rDR), Specificity of 87%, AUC 0.98 (rDR)

Sensitivity of 100% (vtDR), Specificity of 90.8%, AUC 0.989 (vtDR)

Lam et al. [78] Kaggle MESSIDOR-1 Pretrained AlexNet and GoogLeNet GoogLeNet 2-ary, 3-ary and 4-ary

2-ary accuracy 74.5%

3-ary accuracy 68.75%

4-ary accuracy 51.25%

Takahashi et al. [132]

9939

images

HE and hard EX GoogLeNet DCNN and ResNet

Accuracy 96% (real prognosis)

Accuracy 92% (Davis grading)

Quellec et al. [112]

MESSIDOR

Kaggle

e-ophtha

DiaretDB1

hard EXs, soft EXs, small red dots, HEs, lesions ConvNet netB Ensemble classifier

Az of 0.954 in Kaggle’s dataset

Az of 0.949 in e-Ophtha dataset

Az of 0.9490 using ensemble classifier

Alban et al. [6] 35,126 Pre-trained AlexNet GoogLeNet

AUC 0.79 (GoogLeNet)

AUC 0.69 (AlexNet)

Kermany et al. [70] 207,130 OCT

CNV, DME

Drusen

Pretrained Inception V3

Binary classification accuracy: >98%

Multi-class classification accuracy of 96.6%

Dutta et al. [34] Kaggle dataset RBVs, fluid drip, EXs, HEs, MAs NN, DNN, VGG-16 VGG-16

Accuracy: 72.5% for 300 test images

Accuracy: 78.3% for 600 test images

Grinsven et al. [136] Kaggle MESSIDOR VGGNet

area under ROC of 0.894 on Kaggle dataset

area under ROC of 0.972 MESSIDOR dataset

Liskowski et al. [84]

DRIVE

STARE CHASE

DNN

area under ROC >99%

Accuracy >97%

Islam et al. [57] EyePACS MAs

DCNN-18,

PLAIN BALANCE, NO-POOL

area under ROC 0.844

F1-Score 0.743

Prentasic et al. [109] DRiDB OD, RBVs, EXs DCNN Sensitivity 78%, Positive Predictive Value (PPV) 78%, F-score 78%
Mookiah et al. [96] 156 RBVs, EX, OD, NVE PNN SVM

Sensitivity 96.27%, Specificity 96.08%,

PPV 98.2%, Accuracy 96.15%

Rakhlin [117]

Kaggle

MESSIDOR-2

drusen,

EXs, MAs, CWSs, HEs

DCNN VGGNet

area under ROC 0.923 in Kaggle dataset

area under ROC 0.967 in MESSIDOR-2 dataset

Gargeya et al. [45]

EyePACS

MESSIDOR-2 E-Ophtha

HEs, hard EXs and NVE DRL CNN

AUC 0.94 on MESSIDOR-2

AUC 0.95 on E-Ophtha

AUC 0.97 on EyePACS

Eftekhari et al. [36]

ROC

E-Ophtha-MA

MAs DLNN

FROC (FAUC) of 0.660 for ROC

FROC (FAUC) of 0.637 for E-Optha-MA dataset

Wang et al. [138] 35,126

CNN

Net-5 and Net-4

Kappa score 0.70 for 256-pixel images,

Kappa score 0.80 for 512-pixel images

Kappa score 0.81 for 768-pixel images

Dai et al. [27] 735 MAs MS-CNN Recall 87.8%, precision 99.7%, accuracy 96.1%, and F1 score of 93.4%
Al-Bander et al. [7] MESSIDOR Kaggle Fovea and OD multi sequential DL technique

1R criterion:

Accuracy 97% (OD) and 96.6% (foveal) in MESSIDOR test set

Accuracy 96.7%(OD) and 95.6% (foveal) in Kaggle test set

Gadekallu et al. [43] DR Debrecen PCA, Firefly model DNN

Accuracy of 97%, Precision of 96%, Recall of 96%,

Sensitivity of 92%, Specificity of 95%.

Chudzik et al. [26] E-Ophtha, ROC DIARETDB1 MAs FCNN

FROC score 0.193 ± 0.116 on ROC

FROC score 0.392 ± 0.157 on DIARETDB1

FROC score 0.562 ± 0.233 on E-Ophtha