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Abstract
A fit-for-purpose structural and statistical model is the first major requirement in population pharmacometric model

development. In this manuscript we discuss how this complex and computationally intensive task could benefit from

supervised machine learning algorithms. We compared the classical pharmacometric approach with two machine learning

methods, genetic algorithm and neural networks, in different scenarios based on simulated pharmacokinetic data. Genetic

algorithm performance was assessed using a fitness function based on log-likelihood, whilst neural networks were trained

using mean square error or binary cross-entropy loss. Machine learning provided a selection based only on statistical rules

and achieved accurate selection. The minimization process of genetic algorithm was successful at allowing the algorithm to

select plausible models. Neural network classification tasks achieved the most accurate results. Neural network regression

tasks were less precise than neural network classification and genetic algorithm methods. The computational gain obtained

by using machine learning was substantial, especially in the case of neural networks. We demonstrated that machine

learning methods can greatly increase the efficiency of pharmacokinetic population model selection in case of large

datasets or complex models requiring long run-times. Our results suggest that machine learning approaches can achieve a

first fast selection of models which can be followed by more conventional pharmacometric approaches.

Keywords Deep learning � Genetic algorithm � Model-informed drug discovery and development � Neural network �
Pharmacometrics � Population PK/PD

Introduction

Model-informed drug discovery and development (MID3)

is a process which applies quantitative modeling to pre-

clinical and clinical data to accelerate and optimize drug

development [1]. MID3 plays a key role at each stage of

drug development by quantifying the risk–benefit ratio of

the treatment in the general population and in sub-

populations, therefore increasing confidence in decision-

making and reducing development costs [2].

MID3 has a large range of applications, including

characterizing the drug concentration-pharmacodynamic

(PD) response relationships [3], explaining drug variability

by identifying clinically relevant factors which impact on

desired outcomes [4], and predicting the consequences of

formulation changes on drug performance [5].

Among the techniques available in MID3, population

modeling is a tool which describes the relationships

between patientś physiological characteristics and model

parameters governing drug concentrations, or drug

response and their distribution across a population [6].

Population pharmacokinetic (PK) and PD models are used

to describe relationships between a dependent variable

(e.g., concentration or response) and an independent vari-

able (e.g., time). These models are also used to investigate

sources of variability [7]. Population models favor statis-

tical (nonlinear) mixed effect modeling techniques. This
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methodology allows the development of models containing

both fixed and random effects.

Nonlinear mixed effects modeling (NONMEM) was

historically developed to build population PK models

around a first order approximation of the random effect.

NONMEM allows computing a model’s likelihood for a

given dataset, the main difficulty of this model type. Given

the estimation bias produced by this method, this approach

was further enriched with a variety of other algorithms

borrowed from the statistical literature, including first order

conditional estimate, Gaussian Quadrature and Laplacian,

Gibbs sampling and Metropolis Hasting for full Bayesian

modeling, stochastic approximation of expectation–maxi-

mization algorithm (SAEM [8]), and others [9]. Another

powerful program for developing population models is

Monolix, which was initially developed around the SAEM

algorithm [10].

At present, model selection is achieved using specific

metrics and expert decisions based on clinical and bio-

logical relevance. In the age of digital medicine, where

large amounts of data are available, models have become

increasingly complex, and model selection can be further

optimized using recent state-of-the-art developments in

artificial intelligence algorithms.

In addition to existing approaches to model selection,

machine learning (ML) and deep learning (DL) offer

numerous algorithms which can be applied to medicine

[11–13] and drug development [14–20] when built on

statistical rules. ML and DL allow researchers to make

accurate predictions and can handle large datasets, sug-

gesting a potential for them to be used in population

modeling. Indeed, their successful use in population mod-

eling has been recently demonstrated, with fast and effi-

cient screening of covariates performed in large datasets

and complex models [21].

One existing ML approach for model selection is genetic

algorithm (GA), an optimization process that tries to mimic

Darwinian natural selection [22]. GA has been applied to

solve many discrete optimization problems where per-

forming exhaustive research is not possible or when little

prior knowledge is available [23, 24].

Neural networks (NNs) are another existing ML

approach for model selection belonging to a group of

supervised learning algorithms. These learn by processing

training examples and adjusting their associations accord-

ing to a learning rule, then minimizing the selected cost

function until the produced output is increasingly similar to

the target output [25].

In this study we investigated the accuracy and compu-

tational costs for ML approaches (GA and NNs) and

classical pharmacometric (PMX) approaches in the context

of population PK model selection.

Methods

Library of models

To simulate then subsequently estimate a model with

Monolix, the structural model was first implemented into

MlxTran. Starting from the existing Monolix model library

composed of 36 models, additional models were created

which allowed alternative features for administration route

(e.g., intravenous, oral, or subcutaneous), absorption (e.g.,

first [1] and zero [0] order, with and without lag time [Tlag]

or transitory compartments), elimination (e.g., linear or

Michaelis–Menten), and numbers of compartments (up to

three). These derived models were further combined with

four different residual error models, defined as follows:

1. Constant: Cobs ¼ Cpred þ a � �
2. Proportional: Cobs ¼ Cpred þ Cpred � b � �
3. Combined 1: Cobs ¼ Cpred þ ðCpred � bþ aÞ � �
4. Combined 2: Cobs ¼ Cpred þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðCpred � bþ aÞ
p

� �
where Cobs was the measured concentration, Cpred was the

predicted concentration, a and b were constants to be

optimized, and e was a random variable normal.

Overall, our library comprised of 504 (126 struc-

tural 9 4 error models) different structural ? error models

(Table 1). On top of these, assessments of potential

covariance matrices of random effects describing between-

patient variability and investigations of their distributions

(among normal, lognormal, and probit) were performed.

Thus, by adding combinations of these to each of the 504

models, the total number of tested models was much larger

and included investigations of statistical models. Explo-

rations of levels of random effects above between-patient

was not in scope of this work.

Method performance

The software Simulx and the MLXTRAN library of models

were used to simulate PK profiles which were then fitted to

a panel of models in Monolix (MonolixSuite2018R2;

Lixoft, Antony, France). The performance of different

methods was assessed by their ability to recover true

structural (Table 2) and statistical models selected to have

a variety of models, which differed in terms of input model,

number of compartments, and output model. Statistical

assumptions and relationships (e.g., parameter distribu-

tions, covariance matrix structure for random effects, and

residual error model) also differed across models.

To characterize the analysis workflow for this study, two

paths were selected: one to reflect the automatic execution

of PMX and GA approaches, and one to reflect NN tasks.
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Table 1 Main features (structural ? residual error) of models in the considered library approaches

Input function # compartments Enterohepatic circulation Output function Residual error

Bolus

0 order

0 order ? Tlag

0 order

1 order ? Tlag

1 order ? transitory compartment

0 order ? 1 order

1

2

3

No

Yes

Linear

Michaelis–Menten

Linear ? Michaelis–Menten

Additive

Proportional

Combined 1

Combined 2

Tlag lag time

Table 2 Summary of simulated datasets investigated using PMX and GA approaches

Dataset Input model # compartments Output model Error model

Dataset 1 Transit compartment ? 1 order 1 Linear Proportional

Dataset 2 First order ? 0 order 1 Linear Combined 1

Dataset 3 Bolus 2 Michaelis–Menten ? linear Combined 1

Dataset 4 Tlag ? 1st order 2 Linear Additive

Dataset 5 Bolus 3 Linear Combined 1

GA genetic algorithm, PMX pharmacometric, Tlag lag time

Fig. 1 General workflow—the first step was the data and model library generation, followed by the investigation of the three approaches selected

(PMX, GA, and NN). GA genetic algorithm, NN neural network, PMX pharmacometric
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The NN task was conducted using Python 3.7 along with

Pytorch (1.3.1) installed on Anaconda 1.9.12.

As shown in Fig. 1, the first two approaches were

automatically executed by:

1. Simulating a dataset based on a model from the library

2. Running the model in Monolix

3. Evaluating the results according to PMX criteria or GA

fitness in R version 3.5.1 [26].

These three steps were repeated until the best model was

found.

PMX and GA were assessed on five generated datasets

(Online Resource 1). For NN tasks, a learning phase was

required and implemented by training the NN on a large

training set having simulated concentration profiles as

input and model parameters, included as values for

regression and binary labels for classification, as output.

Then, the NN model was fit and its performance assessed

on independent test sets (Online Resource 1).

PMX model building

PMX model building is a step-by-step process towards a

‘‘fit-for-purpose’’ model [6, 7]. For this work, the process

was implemented in R version 3.5.1 by automatically

executing different structural and statistical models through

Monolix, then comparing results to commonly pre-defined

model selection criteria also considered in the GA fitness

function. After selecting the structural model, the covari-

ance matrix of random effects was built starting from a

diagonal matrix and progressively assessing the signifi-

cance of correlation terms. Finally, an automatic exhaus-

tive search on the commonly used error models was

performed to characterize the residual unexplained vari-

ability [27].

Genetic algorithm for model selection

GA is a search heuristic inspired by Charles Darwin’s

theory of natural selection. As shown in Fig. 2, by starting

from a random population of models, the GA repeatedly

modifies a population with a ‘‘natural selection’’ occurring

at each generation. Over successive generations, the pop-

ulation ‘‘evolves’’ towards an optimal solution. The addi-

tion of a hybrid component supports a local search

procedure for a faster convergence to the best model. The

application of GA to PK model selection problems follows

the same rationale [23], with populations made of PK

models selected in subsequent generations according to a

fitness function, based on pre-defined PMX criteria. In our

study, models were estimated in Monolix using a SAEM

algorithm.

Model representation

To increase parallels with natural selection, each PK model

was represented as chromosomes with eight genes as bin-

ary representations of the different model components. The

structural and error models were first represented by five

genes: absorption (seven levels), circulation (two levels),

compartments (three levels), elimination (three levels), and

error (four levels). Components with more than two levels

were encoded into multi-level binary representations. The

remaining three genes encoded the covariance matrix. This

gene-based model representation ensured that any struc-

tural model could be uniquely encrypted into a sequence of

bits. The initial population of PK models was obtained by

first randomly generating a population of structural and

error models, then assigning a statistical model for the

between-patient variability to each of them. An example

for a population of four chromosomes is shown in Online

Resource 2, and an example of a model population of size

3 is shown in Table 3.

For parameters with assigned between-patient variabil-

ity, the distribution of random effects was randomly chosen

among normal, lognormal, and probit. Similarly, correla-

tions between parameters with variability were randomly

set in the covariance matrix.

Model selection

The selection of models (called parents) that contributed to

the population at the next generation was performed

according to tournament selection [28]. This method con-

sists of running several ‘‘tournaments’’ among a few

models, assessing each of them against a random opponent

and selecting the winner (the one with the best fitness) for

crossover in the next generation.

The first advantage of tournament selection is robust-

ness. Moreover, it also ensures stability in the population

size, as there is one game for each model and the size of

the population does not change from one generation to

another. The second advantage is that the best model is

always selected to be one parent of the next generation.

Online Resource 3 is an example of a population of four

models, where the goodness of a model was proportional to

its fitness value. In this example, a random opponent was

randomly assigned to each of the four models, and the

winners selected to be parents in the next generation.

Population evolution

Following the selection of parents, random couples are

created to generate children through crossover and muta-

tions, as in biological reproduction [29]. With the cross-

over, two children are created by combining different parts
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of the parents. In our application, combined parts involved

the structural and statistical model (i.e., the covariance

matrix of random effects), which was strictly dependent on

the presence or absence of certain parameters in the

structural model. For this reason, random effects and cor-

relation between random effects were inherited from the

respective parameters’ parent, with deletion of terms

associated with parameters no longer present in the model.

In other words, in case of conflicts (i.e., when a parameter

was present in the two-parent models with two different

distributions), child 1 received the distribution from par-

ent 1 and child 2 from parent 2. Online Resource 4 pre-

sents an example of such crossover.

Random changes in genes could occur independently

with the same defined probability. A third function called

immigration could also be applied before the crossover by

Fig. 2 Hybrid GA—the hybrid component makes the GA convergence faster by performing an exhaustive search around the best models. GA
genetic algorithm. N is a parameter (integer) set by the user for the GA

Table 3 Example of generated

population of size 3 in GA for A

structural and residual error

genes, and B statistical models

for random effects

Model Absorption Circulation Compartments Elimination Error

A

1 001 (0 order) 0 (no) 10 (3 comp) 00 (linear) 01 (proportional)

2 011 (1 order) 0 (no) 01 (2 comp) 10 (mixed) 00 (constant)

3 000 (Bolus) 1 (yes) 00 (1 comp) 01 (Michaelis–Menten) 11 (combined 1)

Model Variability Correlation Distribution

B

1 TK0, V, Q2, V3, CL CL, V, V3 CL, V, V3, V2: lognormal, TK0: normal

2 Ka, V, Km and Vm Ka, V Ka, Km: lognormal, V, Vm: normal

3 Not present NA NA

CL clearance, GA genetic algorithm, Ka 1 order absorption, Km and VmMichaelis–Menten elimination, PK
pharmacokinetic Q2 inter-compartmental clearance, TK0 0 order absorption, Tlag lag time, V volume for

central compartment, V2 volume for second compartment, V3 volume for third compartment. Parameters

depend on the generated structural model
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deleting the worst parents from the population and

replacing them with randomly generated models. This

option is useful to avoid being stuck in a local minimum

and to increase the speed of convergence since these par-

ents may be non-optimal.

The GA process continued over successive generations

until a stopping criterion, here based on a pre-defined

number of generations, was reached and the best model (or

the k best models for some problems) of the last generation

was given as output.

Fitness function

A key element of population evolution towards a satis-

factory model is the choice of the fitness function. In this

study, the fitness function was close to the one presented by

Bies et al. [23]. It was based on the objective function value

given by Monolix and a penalty term added for (i) the

number of parameters, (ii) parameter correlation val-

ues[ 0.95, (iii) failed convergence, and (iv) missing

covariance step. The following two fitness functions were

tested, with the second including a penalty for shrinkage

values on random effects[ 0.7:

1. F1 = - 2 � Log-likelihood ? 10.83� #parame-

ters ? 400 � 1nonconvergence ? 100 � 1correla-

tion[ 0.95 ? 100 � 1CovarianceStep
2. F2 = - 2 � Log-likelihood ? 10.83 � #parame-

ters ? 400 � 1nonconvergence ? 100 � 1correla-

tion[ 0.95 ? 100 � 1CovarianceStep ? 100 �
1Shrinkage[0.7

The penalty value of 10.83 for a new parameter was

equivalent to performing a likelihood ratio test and

accepting the new parameter if the p-value was\ 0.001.

Hybrid component

The GA is known to quickly converge in an optimal area,

but it can take time to make minor changes in the model to

obtain the best result [30]. A hybrid GA may be used to

tackle this drawback and increase the speed of convergence

(see Fig. 2) [31]. The hybrid component performed an

exhaustive local search around the best models every

N generation (a parameter [integer] set by the user for the

GA). This was achieved by generating a new population of

all the possible models with a change of one bit from the

best model. These models were then estimated and if some

changes led to a better model, the best model was updated

accordingly (i.e., the corresponding gene in the chromo-

some was updated). In practice, more than one model

could be selected, and an exhaustive search was done

around a pre-defined number (n = 2 in this study) of

models. Algorithms using this component are known as

hybrid GA.

Neural network for model prediction
and selection

In our application, NN training sets were constructed and

continuously enriched with simulated data using models

and PK properties commonly observed across developed

and approved drugs. An example of training parameters

coding for the two NN tasks, regression and classification,

is presented in Fig. 3. The full dataset in this study com-

prised of concentration profiles from 8000 virtual individ-

uals generated according to 20 different structural models

(Online Resource 1). From this, data from 1600 randomly

selected individuals were removed from the learning phase

and used for the test set. Two different approaches were

investigated for model selection: regression and

classification.

For the regression task, individual PK parameters were

recorded for the output. The value of 14 parameters

(transitory compartment [Mtt, Ktr], Tlag, bioavailability

[Fr], 0 order absorption [Tk0], 1 order absorption [ka],

volume for central, second and third compartment [V, V2,

and V3], clearance and inter-compartmental clearance [CL,

Q2, and Q3], and Michaelis–Menten elimination [Vm and

Km] were predicted. For predicted values close to 0,

parameters were removed thus informing the model

selection. The mean square error (MSE) was used as the

cost function with the ADAM optimizer and ELU activa-

tion function. L2 regularization with different penalty was

also used. A grid search was performed as summarized in

Online Resource 5. In total, 27 NNs were fitted, and the

best combination of hyper parameters was chosen using

cross-validation. All models were trained with 20,000

epochs and a batch size of 256. An initial learning rate of

10-3 was used with a decay of 0.9 every 1000 epochs. In

other words, the learning rate decreased by 10% every

1000 epochs.

For the classification task, the presence or absence of a

parameter was predicted. The problem was reduced to the

prediction of presence or absence (binary label simply

named ‘‘model-label’’) of nine model components: Mtt and

Ktr, 1 order absorption, 0 order absorption, Tlag, Fr, com-

partments 1–3, and linear and Michaelis–Menten elimina-

tion. Such reduction, shown in Fig. 3, resulted from

combining parameters which existed only within the same

model component (e.g., V2 and Q2 within the second

compartment). A multi-label classification model was then

trained on the training dataset derived according to this

transformation. Two scenarios were studied. In scenario 1,

the test set was created by randomly selecting 1600 ob-

servations from the whole dataset. The second scenario
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investigated the ability of the NN to predict a new model

(i.e., a model that did not appear in the training set). To

achieve this, all 400 observations of the two models were

removed from the training set and used as the test set.

As for regression, different architectures of NN were

investigated and cross-validated. The sigmoid function was

chosen as the activation function. The loss was the cross-

entropy loss. The number of epochs was set to 2000 with a

batch size of 256. The same optimizer was used per the

regression task. The learning rate was initially set to 10-3

with a decay of 10% applied every 200 iterations. For

selecting the other hyper-parameters, a grid search was

performed as summarized in Online Resource 6.

Results

PMX results

The results obtained with Monolix after estimation of the

true models are summarized in Online Resource 7. PMX

model selection followed the standard stepwise approach

involving the selection of the structural model, assessment

of the covariance matrix, and selection of the error model.

Differently from ML methods, the model search did not

include the exhaustive estimation of all models in the

library for the five generated datasets, but it was based on

decisions taken by the PMX modeler in classical stepwise

fashion and according to common practice and criteria

(mainly based on log likelihood, correlation and accuracy

of parameter estimates, shrinkage). This aspect does not

allow a direct comparison of the accuracy of the PMX

model selection vs. ML methods. The two fitness functions

for GA were based on the log-likelihood; therefore, a rel-

ative score was obtained.

GA based model selection

GA assessment on the five true models was performed

according to the two defined fitness functions, with and

without the hybrid component and with two different

generation sizes. Each model selection involved the eval-

uation of 400 models (20 generations with a population of

size 20) without the hybrid component and approximately

280 models (11 generations with a population size of 20

and 15 models for each of the 4 local searches around the

Fig. 3 Example of training output parameters for the two NN tasks.

CL clearance, Fr bioavailability, Ka 1 order absorption, Km and Vm
Michaelis–Menten elimination, Ktr transitory compartment, Mtt
transitory compartment, NN neural network, Q2 and Q3 inter-

compartmental clearance, TK0 0 order absorption, Tlag lag time,

V volume for central compartment, V2 volume for second

compartment, V3 volume for third compartment. Note For the

regression task, individual pharmacokinetic parameters constitute the

output to be predicted (top table). Data for the classification task can

be derived from this by combining parameters into model components

binarily labeled according to their presence or absence (bottom table)
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best models) with the hybrid component. In total, 20 model

selections were performed. Table 4 presents the fitness of

the best model from the last generation, along with its

difference from the true model (D-fitness = fitness

GA selected model – fitness true model, Online Resource 7), the

GA runtime, and the selected model definition.

As the selection criterion was not only based on the log-

likelihood, but also included penalty terms (for parameters,

shrinkage, and correlation), models without the highest

Table 4 Summary of GA-based model selection

Model

#

True model Selected model Generation

#

Shrinkage-

related penalty

Hybrid Runtime

(h)

Fitness D-
fitness

1 1cmt, 1_abs, transit_cmt,

lin_elim, prop_err

1cmt, 1_abs, lin_elim,

prop_err

20 0 No 18.2 2370.6 – 65

1cmt, 1_abs,, lin_elim,

prop_err

11 0 Yes 11.1 2370.6 - 65

1cmt, 1_abs,, lin_elim,

prop_err

20 100 No 17.3 2376.5 - 150.7

1cmt, 1_abs,, lin_elim,

comb1_err

11 100 Yes 17.7 2376.7 - 150.5

2 1cmt, 1_abs, 0_abs,

lin_elim, comb1_err

1cmt, 1_abs, lin_elim,

comb2_err

20 0 No 22.8 2504.4 - 887.7

1cmt, 1_abs, lin_elim,

comb1_err

11 0 Yes 11.2 2505.7 - 886.4

1cmt, 1_abs, lag, lin_elim,

comb1_err

20 100 No 19.1 2522.2 - 856

1cmt, 1_abs, lin_elim,

comb2_err

11 100 Yes 10.7 2592.4 - 785.8

3 2_cmt, bolus, lin_elim,

MM_elim, comb1_err

1_cmt, bolus, lin_elim,

MM_elim, comb_err

20 0 No 16.2 1632.1 - 346.8

1_cmt, bolus, lin_elim,

MM_elim, comb1_err

11 0 Yes 14.2 1633.4 - 345.5

1_cmt, bolus, lin_elim,

MM_elim, comb2_err

20 100 No 17.3 1634.1 - 364.4

1_cmt, bolus, lin_elim,

MM_elim, comb2_err

11 100 Yes 15.6 1638.2 - 360.3

4 2_cmt, 1_abs, lag, lin_elim,

add_err

1_cmt, bolus, lin_elim,

add_err

20 0 No 20.5 4918.1 - 94.1

1_cmt, bolus, lin_elim,

MM_elim, prop_err

11 0 Yes 14.6 4928.4 - 83.8

1_cmt, bolus, lin_elim,

add_err

20 100 No 27.9 4921.5 - 201.4

1_cmt, bolus, lin_elim,

add_err

11 100 Yes 8.7 4921.5 - 201.4

5 3_cmt, bolus, lin_elim,

comb1_err

1_cmt, bolus, lin_elim,

comb1_err

20 0 No 14.2 2522.9 - 101.2

1_cmt, bolus, lin_elim,

comb1_err

11 0 Yes 12.2 2522.9 - 101.2

1_cmt, bolus, lin_elim,

comb1_err

20 100 No 18.1 2526.3 - 109.3

1_cmt, bolus, lin_elim,

comb1_err

11 100 Yes 9.5 2526.3 - 109.3

D delta, GA genetic algorithm, h hours, 1_cmt one compartment, 2_cmt two compartment, 3_cmt three compartment, 1_abs 1st order absorption,
0_abs 0 order absorption, lag lag time, transit_cmt transit compartments, lin_elim linear elimination, MM_elim Michaelis–Menten elimination,

add_err additive error model, prop_err proportional error model, comb1_err combined1 error model, comb2_err combined2 error model. GA

selection was considered successful if the best model in the last generation (selected model) had a fitness value smaller than the true model

(negative D-fitness)
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likelihood or even simpler models could have been selec-

ted. Thus, GA selection was considered successful if the

best model in the last generation had a fitness value smaller

than the true model (negative D-fitness). The minimization

of the fitness function is the main objective of the GA

algorithms, which is why the definition of the fitness

function is crucial, to ultimately obtain a satisfactory

model. The results indicate that a negative D-fitness was

achieved for most of the selected models.

Comparisons of results obtained with and without the

hybrid component (Table 4) suggest differences only in

computational cost. The use of different fitness functions

led to differences in the statistical model in terms of cor-

relations or distributions of random effects, but not to the

structural and error models, which were the same.

For the first dataset, the best model across the four se-

lections (with and without the hybrid component, for the

two different fitness functions) was the 1 compartment

model with 1 order absorption and linear elimination. The

transitory compartment present in the true model was

selected for some models of the last generation for the

second fitness function. However, this was not the best

model of the last generation, and thus it does not appear in

Table 4. The selected error model was correctly predicted

for three selections (fitness function 1 with and without

hybrid component and fitness function 2 without hybrid

component). For the second dataset, a 1 compartment

model with 1 order absorption and linear elimination was

selected. The mixed absorption (0 order and 1 order) pre-

sent in the true model was not retained for the second

dataset using GA. Depending on the number of generations

(and the presence or absence of the hybrid component),

two error models were selected: combined 1 (true) and

combined 2. For the third dataset, the correct absorption

routine and elimination routine were identified by all

selections. The true error model (combined 1) was selected

by three criteria. However, only 1 compartment instead of

2 was identified in all selections. For the fourth dataset, the

selected model was far from the true one as the adminis-

tration routine, lag time, and number of compartments,

were not correctly identified by any of the four selections.

Finally, with the second fitness function, the true fifth

model was always correctly selected, except for the number

of compartments (1 instead of 3).

Neural network-based model selection

Some hyper parameters were defined before training the

NN. The best architecture for regression used 10 hidden

layers of size 50, with a weight decay of 10-2, and the grid-

search reported in Online Resource 5. A summary of model

parameter values in the generated data is reported in Online

Resource 8. Frequencies of the different model’s

components are also presented in Online Resource 9. The

evolution of the test and train error (MSE) shown during

the learning phase for regression is presented in Fig. 4a.

Despite a decrease of the MSE during the training phase, a

high final error equal to 1.7 for the training set and 2.8 for

the test set (red curves) was obtained at the end of the

training phase with the best networks. The large difference

between these two errors suggests overfitting; therefore,

additional investigations were performed.

Specifically, 14 independent and simple NNs (five hid-

den layers of size 25) were trained to assess the accuracy of

predictions for each parameter. Figure 4b represents the

evolution of the test and the training MSE for each net-

work. The results indicate that two parameters (V3 and

Km) were not correctly predicted. This failure might be

explained by a lack of sufficient data generated from

models including these parameters. For example, as dis-

played in Online Resource 9, out of the 20 models, only

five (25%) had a third compartment (versus 65% including

at least two compartments and 100% at least one com-

partment). Another reason could be that the architecture of

the regression network was still too simple. To further

assess the impact of the poor predictions for these

two parameters on overall network performance, a global

NN was trained to predict all parameters except V3 and

Km. As shown by the blue curves in Fig. 4b, better accu-

racy in terms of train and test error was achieved, and the

overfitting was no longer observed. This was further cor-

roborated by train and test MSE values for each parameter

(Online Resource 10).

Results from the classification task are presented in

Fig. 5 for the best combination of hyper parameters: three

hidden layers of size 30 with a weight decay of 10-5.

Specifically, the evolution of the percentage of the label

correctly predicted is shown. The curves show that the

two NNs converge. For scenario 1, the NN achieved a

training set accuracy of 97.9% and a final test set accuracy

of 97.5%. The second scenario achieved a training set

accuracy of 82.7% and a final test set accuracy of 73.8%.

The differences between accuracies in the two scenarios

and in particular, the lower number of model-labels cor-

rectly predicted in the second one, can be explained by one

of the basic assumptions in ML, which is that the training

and test sets should follow the same unknown distribution.

In the second scenario, as all observations of two models

were removed, this assumption does not hold.

Discussion

ML models provide predictions on the outcomes of com-

plex mechanisms by ploughing through databases of inputs

and outputs for a given problem, but without necessarily
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Fig. 4 NN train and test MSE obtained for regression, A during the

learning phase for the global NN, and B if 14 independent NN were

trained for each of the parameters. On panel A, train and test MSE

obtained during the learning phase for the global NN are shown in

dashed and solid lines, respectively, for the full NN (red) and for the

NN without prediction of Km and V3 (blue). On panel B, train and

test MSE obtained during the learning phase are shown in dashed and

solid lines, respectively, for 14 independent NN trained for each of

the parameters. CL clearance, Fr bioavailability, Ka 1 order

absorption, Km Michaelis–Menten elimination, Ktr transitory com-

partment, Mtt transitory compartment, MSE mean squared error, NN
neural network, Q2 and Q3 inter-compartmental clearance, TK0 0

order absorption, Tlag lag time, V volume for central compartment, V2
volume for second compartment, V3 volume for third compartment,

Vm Michaelis–Menten elimination. Note Various NNs for regression

were trained (Color figure online)
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capturing the nature of such processes [14]. Thus, adoption

of these models should be fit-for-purpose and enabling the

integration of interpretable output into more mechanism-

based analytical methods [32]. The integration of ML into

MID3 processes, especially PK/PD modeling, could confer

benefits such as increased confidence in decision-making,

more accurate predictions, and reduced time for model

development, hence faster decision-making [2, 33, 34].

Classical model selection in PMX is often described as a

linear process, starting with ‘‘structural’’ features, followed

by random and covariate effects, each tested one at a time.

In the optimization field, this is known as a ‘‘greedy’’ or

local search algorithm. Like other greedy algorithms (e.g.,

the quasi-Newton used for parameter optimization), clas-

sical PMX approaches are at risk of arriving at local

minima [33]. The ability of ML to leverage high-dimen-

sional data and describe nonlinear relationships suggests

ML may be better than classical PMX approaches [33].

The aim of this study was to investigate the ability of

ML to perform population PK model selection. Four dif-

ferent approaches were used to recover the true models:

PMX, GA, and NN with classification and regression.

Model selection based on classical PMX approach was

partly done manually while it was fully automated for ML

(GA and NN) approaches.

GA is a global ML search method that may be a better

alternative than classical PMX approaches [33]. GA creates

a user-defined ‘‘search space’’ of candidate models repre-

senting all hypotheses to be tested, and uses this space to

determine the optimal combination of ‘‘features’’ in a

model. Initial experience suggests that GA consistently

finds a better model than manual model selection [33]. In

the current study we investigated GA models and classic

PMX model approaches. Different settings of GA were

tested, including a hybrid component and two fitness

functions. GA selection was considered successful if the

best model in the last generation had a fitness value smaller

than the true model. The results indicate that a negative D-
fitness was achieved for most of the selected models. The

last generation of each selection showed that the best

model appeared several times in the last generation, indi-

cating GA convergence to a local or global minimum.

However, even when the fitness of the selected model was

less than the fitness criterion of the true model, GA tended

to select models that were too simple, suggesting the

penalties set for a new parameter may have been too high

in this study or the simulated design not informative

enough to enable selection of more complex models.

Lower fitness values for GA selected models were mainly

driven by the additional penalty (complexity and shrink-

age) for datasets 1, 4 and 5 and by objective function

differences for dataset 2 and 3 (Online Resource 11). As

also noted in literature, it is commonly found that a model

other than the ‘‘true’’ model may be ‘‘better’’ by any given

criteria and then, a model selection algorithm cannot be

judged based on whether it recovers the ‘‘true‘‘ model.

Hence, model selection criteria need to be adjusted to be

fit-for-purpose of each model (e.g., whether simpler model

is preferred to a complex one, successful covariance step is

required) and future extensions of this work should con-

sider comparison of the predictive properties of the selec-

ted model versus the true simulations.

The NN ML approach may also confer benefits in PK

modeling. Indeed, artificial NNs have been shown to confer

advantages over traditional approaches (such as NON-

MEM), including increased accuracy and reduced variance

[34]. Trained NNs were also able to correctly predict

treatment effects across a range of doses whilst traditional

regression provided biased predictions even when all

confounders were included in the model [33]. In the current

Fig. 5 Evolution of the

percentage of the label correctly

predicted in the NN

classification task. NN, neural

network. Note: NN

classification results are shown

for scenario 1 (random split)

where the test set was randomly

selected (red curves), and for

scenario 2 (non-random) where

all observations of two models

not included in the training set

were selected to compose the

test set (Color figure online)
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study, NNs with classification and regression were used to

train the model using existing data. NN with classification

demonstrated great ability to select models that appeared in

the training set (i.e., models that were seen by the algo-

rithm during the training phase). Although the training time

was intensive, using a trained model on a new dataset to

perform modelling did not require additional time. In

contrast, the selection of hidden models (i.e., models that

were not seen during the training phase) led to less accurate

results. The NN for regression showed satisfying results;

however, it is likely these could be improved by generating

a larger training set. Indeed, the number of observations

with non-0 values was too small for some parameters in the

most complex models. These findings suggest the perfor-

mance of the NN was strongly related to the size of the

datasets in terms of number of (virtual) patients and the

diversity of the models in the training dataset. The NN

trained in this study was not able to accurately identify new

models, likely due to the small size of the dataset. Despite

the limitations of NN for regression in this study, this

approach should be investigated in future with larger

datasets. The library of PK models used in this work is a

good representation of the true models describing the PK of

the majority of compounds in literature. Further increasing

the variety of models and the size of the training set will

allow to increase the performances and the generalizability

of NN. The model library may also be further extended to

include additional complexities in terms of tested model

structures and statistical models to include hierarchical

variabilities. With the latter, the NN implementation would

differ to account for inter-occasion variabilities of param-

eters as, for example, different instances from predicted

parameter distributions. In summary, NN with classifica-

tion can be used to select the structural model, followed by

PMX software runs to fit the selected model. The trained

NN methods can then be used to identify base models

quickly for new compounds or drugs in development.

Computational costs were roughly equal for all models

investigated but could not be directly compared. This is

because PMX strategy cost depends on user validation, GA

cost depends on user choice for the number of generations

and the size of the generation, and because NNs do not

require computation after the training (which in this study

was within 1 day for regression and in less than 1 h for

classification). However, computational costs required by

ML methods suggested a significant benefit over traditional

PMX procedures. A closer look at the GA runs showed that

the first iterations required more time than the last ones.

However, with average computational costs below 1 day,

GA provided accurate model selections. Additionally, the

use of the hybrid component in GA modeling reduced the

computational cost by 34%. Of note, in our implementa-

tion, GA started with a random population of models with a

first generation that can be ‘‘far’’ from the true model and

then require increased computational costs, particularly if it

seeks to estimate a complex model. A complete random

generation is not mandatory in GA; optimization of initial

parameters setting informed by existing knowledge could

be explored in future work to constraint the generation

around plausible models.

This work aimed at first establishing the proof of con-

cept that ML can provide substantial benefit in terms of

automation of the PK structural and random effect model

selection. Further investigations would be needed to pro-

vide appropriate guidelines for its actual use. For instance,

the impact of study design on models performance could be

explored by considering real Phase I/II PK sampling

schemes with investigation of multiple dosing and dose

ranges. Representation of diverse data and PK models in

the library would still be key to ensure generalizability.

Future assessments should include the identification of

suitable metrics for direct and automated methods com-

parison including the evaluation of typical PMX output

(e.g., goodness of fit plots, relative standard errors) for GA

as well as assessment of model predictive power.

Methodological workflows presented in the current work

focused on the base model selection. While the optimiza-

tion of covariate screening by using ML approaches can be

addressed separately [21], both these model building steps

could be combined by expanding GA and NN approaches

to include the assessment of relationships between

parameters and covariates. This could be done for GA by

adding dimensions to the search space. For NN, a single

prediction could be done to predict all features (structural,

statistical, covariate) with a larger training set (in terms of

individuals and in terms of features). Such network would

be more complex than the one presented in this study and

thus will require more data and computational power to be

trained using the observed concentrations and any addi-

tional covariates.

Conclusions

The use of ML in the pharmaceutical industry is in its

infancy, with major advances anticipated in the coming

years. In this new digital era, where increasing amounts of

data are collected, integrating ML with PMX processes

could confer great benefits within this discipline, including

reduced computational costs and the ability to handle dif-

ferent data types without losing interpretability. The results

of this study demonstrated that ML methods can greatly

increase the efficiency of population model selection in

case of large datasets or complex models requiring long

run-times. Our results suggest that ML approaches can

achieve a first fast selection which can be followed by more
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conventional PMX approaches. In addition, whilst we were

unable to directly compare computational costs, our find-

ings suggest costs are different between methods. NN

requires a potentially time-consuming training step

(although in this study this took less than 1 day); however,

predictions can then be very fast. In this study, GA advised

a model in less than 1 day. On the other hand, conventional

PMX methods could take several days to weeks, depending

on previous knowledge.
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