Skip to main content
. 2021 Oct 27;49(2):257–270. doi: 10.1007/s10928-021-09793-6

Table 4.

Summary of GA-based model selection

Model # True model Selected model Generation # Shrinkage-related penalty Hybrid Runtime (h) Fitness Δ-fitness
1 1cmt, 1_abs, transit_cmt, lin_elim, prop_err 1cmt, 1_abs, lin_elim, prop_err 20 0 No 18.2 2370.6 – 65
1cmt, 1_abs,, lin_elim, prop_err 11 0 Yes 11.1 2370.6 − 65
1cmt, 1_abs,, lin_elim, prop_err 20 100 No 17.3 2376.5 − 150.7
1cmt, 1_abs,, lin_elim, comb1_err 11 100 Yes 17.7 2376.7 − 150.5
2 1cmt, 1_abs, 0_abs, lin_elim, comb1_err 1cmt, 1_abs, lin_elim, comb2_err 20 0 No 22.8 2504.4 − 887.7
1cmt, 1_abs, lin_elim, comb1_err 11 0 Yes 11.2 2505.7 − 886.4
1cmt, 1_abs, lag, lin_elim, comb1_err 20 100 No 19.1 2522.2 − 856
1cmt, 1_abs, lin_elim, comb2_err 11 100 Yes 10.7 2592.4 − 785.8
3 2_cmt, bolus, lin_elim, MM_elim, comb1_err 1_cmt, bolus, lin_elim, MM_elim, comb_err 20 0 No 16.2 1632.1 − 346.8
1_cmt, bolus, lin_elim, MM_elim, comb1_err 11 0 Yes 14.2 1633.4 − 345.5
1_cmt, bolus, lin_elim, MM_elim, comb2_err 20 100 No 17.3 1634.1 − 364.4
1_cmt, bolus, lin_elim, MM_elim, comb2_err 11 100 Yes 15.6 1638.2 − 360.3
4 2_cmt, 1_abs, lag, lin_elim, add_err 1_cmt, bolus, lin_elim, add_err 20 0 No 20.5 4918.1 − 94.1
1_cmt, bolus, lin_elim, MM_elim, prop_err 11 0 Yes 14.6 4928.4 − 83.8
1_cmt, bolus, lin_elim, add_err 20 100 No 27.9 4921.5 − 201.4
1_cmt, bolus, lin_elim, add_err 11 100 Yes 8.7 4921.5 − 201.4
5 3_cmt, bolus, lin_elim, comb1_err 1_cmt, bolus, lin_elim, comb1_err 20 0 No 14.2 2522.9 − 101.2
1_cmt, bolus, lin_elim, comb1_err 11 0 Yes 12.2 2522.9 − 101.2
1_cmt, bolus, lin_elim, comb1_err 20 100 No 18.1 2526.3 − 109.3
1_cmt, bolus, lin_elim, comb1_err 11 100 Yes 9.5 2526.3 − 109.3

Δ delta, GA genetic algorithm, h hours, 1_cmt one compartment, 2_cmt two compartment, 3_cmt three compartment, 1_abs 1st order absorption, 0_abs 0 order absorption, lag lag time, transit_cmt transit compartments, lin_elim linear elimination, MM_elim Michaelis–Menten elimination, add_err additive error model, prop_err proportional error model, comb1_err combined1 error model, comb2_err combined2 error model. GA selection was considered successful if the best model in the last generation (selected model) had a fitness value smaller than the true model (negative Δ-fitness)