Table 4.
Model # | True model | Selected model | Generation # | Shrinkage-related penalty | Hybrid | Runtime (h) | Fitness | Δ-fitness |
---|---|---|---|---|---|---|---|---|
1 | 1cmt, 1_abs, transit_cmt, lin_elim, prop_err | 1cmt, 1_abs, lin_elim, prop_err | 20 | 0 | No | 18.2 | 2370.6 | – 65 |
1cmt, 1_abs,, lin_elim, prop_err | 11 | 0 | Yes | 11.1 | 2370.6 | − 65 | ||
1cmt, 1_abs,, lin_elim, prop_err | 20 | 100 | No | 17.3 | 2376.5 | − 150.7 | ||
1cmt, 1_abs,, lin_elim, comb1_err | 11 | 100 | Yes | 17.7 | 2376.7 | − 150.5 | ||
2 | 1cmt, 1_abs, 0_abs, lin_elim, comb1_err | 1cmt, 1_abs, lin_elim, comb2_err | 20 | 0 | No | 22.8 | 2504.4 | − 887.7 |
1cmt, 1_abs, lin_elim, comb1_err | 11 | 0 | Yes | 11.2 | 2505.7 | − 886.4 | ||
1cmt, 1_abs, lag, lin_elim, comb1_err | 20 | 100 | No | 19.1 | 2522.2 | − 856 | ||
1cmt, 1_abs, lin_elim, comb2_err | 11 | 100 | Yes | 10.7 | 2592.4 | − 785.8 | ||
3 | 2_cmt, bolus, lin_elim, MM_elim, comb1_err | 1_cmt, bolus, lin_elim, MM_elim, comb_err | 20 | 0 | No | 16.2 | 1632.1 | − 346.8 |
1_cmt, bolus, lin_elim, MM_elim, comb1_err | 11 | 0 | Yes | 14.2 | 1633.4 | − 345.5 | ||
1_cmt, bolus, lin_elim, MM_elim, comb2_err | 20 | 100 | No | 17.3 | 1634.1 | − 364.4 | ||
1_cmt, bolus, lin_elim, MM_elim, comb2_err | 11 | 100 | Yes | 15.6 | 1638.2 | − 360.3 | ||
4 | 2_cmt, 1_abs, lag, lin_elim, add_err | 1_cmt, bolus, lin_elim, add_err | 20 | 0 | No | 20.5 | 4918.1 | − 94.1 |
1_cmt, bolus, lin_elim, MM_elim, prop_err | 11 | 0 | Yes | 14.6 | 4928.4 | − 83.8 | ||
1_cmt, bolus, lin_elim, add_err | 20 | 100 | No | 27.9 | 4921.5 | − 201.4 | ||
1_cmt, bolus, lin_elim, add_err | 11 | 100 | Yes | 8.7 | 4921.5 | − 201.4 | ||
5 | 3_cmt, bolus, lin_elim, comb1_err | 1_cmt, bolus, lin_elim, comb1_err | 20 | 0 | No | 14.2 | 2522.9 | − 101.2 |
1_cmt, bolus, lin_elim, comb1_err | 11 | 0 | Yes | 12.2 | 2522.9 | − 101.2 | ||
1_cmt, bolus, lin_elim, comb1_err | 20 | 100 | No | 18.1 | 2526.3 | − 109.3 | ||
1_cmt, bolus, lin_elim, comb1_err | 11 | 100 | Yes | 9.5 | 2526.3 | − 109.3 |
Δ delta, GA genetic algorithm, h hours, 1_cmt one compartment, 2_cmt two compartment, 3_cmt three compartment, 1_abs 1st order absorption, 0_abs 0 order absorption, lag lag time, transit_cmt transit compartments, lin_elim linear elimination, MM_elim Michaelis–Menten elimination, add_err additive error model, prop_err proportional error model, comb1_err combined1 error model, comb2_err combined2 error model. GA selection was considered successful if the best model in the last generation (selected model) had a fitness value smaller than the true model (negative Δ-fitness)