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Abstract
Purpose  This work was set out to investigate the feasibility of dose reduction in SPECT myocardial perfusion imaging (MPI) 
without sacrificing diagnostic accuracy. A deep learning approach was proposed to synthesize full-dose images from the 
corresponding low-dose images at different dose reduction levels in the projection space.
Methods  Clinical SPECT-MPI images of 345 patients acquired on a dedicated cardiac SPECT camera in list-mode format 
were retrospectively employed to predict standard-dose from low-dose images at half-, quarter-, and one-eighth-dose levels. 
To simulate realistic low-dose projections, 50%, 25%, and 12.5% of the events were randomly selected from the list-mode data 
through applying binomial subsampling. A generative adversarial network was implemented to predict non-gated standard-
dose SPECT images in the projection space at the different dose reduction levels. Well-established metrics, including peak 
signal-to-noise ratio (PSNR), root mean square error (RMSE), and structural similarity index metrics (SSIM) in addition to 
Pearson correlation coefficient analysis and clinical parameters derived from Cedars-Sinai software were used to quantita-
tively assess the predicted standard-dose images. For clinical evaluation, the quality of the predicted standard-dose images 
was evaluated by a nuclear medicine specialist using a seven-point (− 3 to + 3) grading scheme.
Results  The highest PSNR (42.49 ± 2.37) and SSIM (0.99 ± 0.01) and the lowest RMSE (1.99 ± 0.63) were achieved at 
a half-dose level. Pearson correlation coefficients were 0.997 ± 0.001, 0.994 ± 0.003, and 0.987 ± 0.004 for the predicted 
standard-dose images at half-, quarter-, and one-eighth-dose levels, respectively. Using the standard-dose images as reference, 
the Bland–Altman plots sketched for the Cedars-Sinai selected parameters exhibited remarkably less bias and variance in 
the predicted standard-dose images compared with the low-dose images at all reduced dose levels. Overall, considering the 
clinical assessment performed by a nuclear medicine specialist, 100%, 80%, and 11% of the predicted standard-dose images 
were clinically acceptable at half-, quarter-, and one-eighth-dose levels, respectively.
Conclusion  The noise was effectively suppressed by the proposed network, and the predicted standard-dose images were 
comparable to reference standard-dose images at half- and quarter-dose levels. However, recovery of the underlying signals/
information in low-dose images beyond a quarter of the standard dose would not be feasible (due to very poor signal-to-noise 
ratio) which will adversely affect the clinical interpretation of the resulting images.
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Introduction

Single-photon emission computed tomography (SPECT) 
is a widely used molecular imaging modality in various 
clinical domains, including the assessment of cardiovas-
cular diseases [1]. SPECT myocardial perfusion imaging 
(MPI) is an effective non-invasive method for the diagnosis 
of coronary artery disease, predicting disease progression, 
and evaluating acute coronary artery syndromes [2, 3]. To 
achieve high-quality images in nuclear medicine, a sufficient 
dose of radiopharmaceuticals should be injected. Reducing 
the injected dose beyond the prescribed limit would lead to 
poor signal-to-noise ratio (SNR) and low-quality images, 
thus hampering diagnostic performance [4, 5].

Since SPECT is considered the second leading contribu-
tor to radiation dose among medical imaging modalities 
(with approximately 90% stress imaging studies performed 
annually in the USA), concerns about the radiation risks of 
this imaging modality have increased [6–8]. Multiple studies 
have been conducted to cope with the challenge of reduc-
ing the injected activity of radiopharmaceuticals in nuclear 
medicine imaging without sacrificing the diagnostic/clini-
cal value. The proposed strategies fall into four categories: 
statistical iterative image reconstruction, post-reconstruction 
filtering or post-processing, recent advances in hardware, 
and machine learning techniques [8, 9].

Iterative image reconstruction algorithms formulate low-
dose image reconstruction as a convex optimization problem 
and suppress noise through statistical modeling of the signal 
formation and noise. Advanced iterative image reconstruc-
tion algorithms have shown that the injected dose or acqui-
sition time could be decreased by a factor of two or higher 
in SPECT-MPI imaging [10–14]. In this regard, Ramon 
et al. quantified the accuracy of perfusion-defect detection 
in SPECT-MPI images as a function of the injected dose 
to minimize the administrated dose without sacrificing 
diagnostic performance [12]. The other approaches rely on 
different post-processing and/or post-reconstruction denois-
ing techniques, including nonlocal mean (NLM) or bilateral 
filters to suppress the noise in low-dose images [15–17]. 
Recently, innovative designs of collimators and SPECT 
cameras as well as novel algorithms were mainly designed 
to reduce scanning time or injected activity while preserv-
ing underlying information and clinical values. Scintillation 
crystals equipped with PMTs and parallel-hole collimators 
employed on conventional dual-head SPECT systems have 
limited performance owing to low resolution and sensitiv-
ity, and commonly require long data acquisition time, high 
administrated dose, etc. Dedicated cardiac SPECT instru-
mentation has witnessed tremendous improvements over the 
last few years. New dedicated commercial ultrafast solid-
state cardiac cameras (DSPECT and GE 530c/570c) enable 

low-dose diagnostic quality imaging [8, 18–20]. In addition 
to the aforementioned methods, which to some extent enable 
the recovery of the underlying signals/structures in low-dose 
images, deep learning algorithms have exhibited promising 
performance/potential in directly estimating/predicting high-
quality standard-dose images from the corresponding low-
dose images [21].

It has been shown that various types of deep neural net-
works are capable of suppressing the noise in low-dose 
computed tomography (CT) as well as positron emission 
tomography (PET) images leading to dependable estima-
tion of the standard-dose images [9, 22–29]. Likewise, a 
number of studies have been conducted in the field of low-
dose SPECT-MPI. In this regard, Ramon et al. demonstrated 
the feasibility of using several 3D convolutional denoising 
networks for SPECT-MPI denoising in the image domain at 
1/2, 1/4, 1/8, and 1/16 of standard clinical dose levels [30]. 
Song et al. investigated a 3D residual convolutional neural 
network (CNN) model to predict standard-dose images from 
1/4-dose gated SPECT-MPI images [31]. Shiri et al. evalu-
ated the potential of acquisition time reduction in SPECT-
MPI using a residual network (ResNet) [32]. They followed 
two different approaches, namely, reducing the number of 
projections and reducing the acquisition time per projection.

The aim of this study is to reduce the administrated activ-
ity while preserving crucial/underlying structures without 
losing diagnostic accuracy and clinical value of SPECT-
MPI images. Taking advantage of the remarkable success 
of deep neural networks in the field of image processing/
synthesis [33], we propose an end-to-end image translation 
approach to denoise low-dose SPECT-MPI in the projection 
domain. This work employs a deep generative adversarial 
network (GAN) model to estimate standard-dose images 
from the corresponding 1/2, 1/4, and 1/8 low-dose images 
in an attempt to determine which reduced dose-level could 
be recovered by the GAN model with minimal loss of image 
quality and clinical value. Moreover, a comprehensive clini-
cal assessment is conducted to assess the clinical value of 
deep learning–assisted prediction of standard-dose from cor-
responding low-dose SPECT-MPI.

Materials and methods

Data acquisition

This prospective single-institution study was approved by 
the institutional ethics committee, and all patients gave 
written informed consent. SPECT-MPI data were acquired 
for 345 patients (193 female and 152 male) scanned on the 
ProSPECT (Parto Negar Persia, Iran), a dedicated cardiac 
SPECT camera with dual-head fixed 90° angle detectors. 
Each head in the ProSPECT camera consists of a 40 × 25 
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cm2 thallium-activated sodium iodide (NaI(Tl)) scintillation 
crystal with 9.5-mm thickness and a lightweight low-energy 
high-resolution (LEHR) collimator with 35-mm thickness. 
The scintillation detector is coupled to a square array of 
24 photomultiplier tubes (76 × 76 mm) which are optically 
connected to fused-quartz light-guide with a thickness of 
20 mm. A silicon-based curing compound is employed as 
optical glue. Based on NEMA standards, the system spatial 
resolution without scatter with LEHR collimator at 10 cm 
from the surface of the detector, energy resolution within the 
useful field-of-view (UFOV), and sensitivity are 7.6 mm, 
9.5%, and 79 cps/MBq, respectively [34]. To prevent radiop-
harmaceutical re-injection, data acquisition was carried out 
in list-mode format to simulate the corresponding low-dose 
images. Using a 2-day rest/stress acquisition protocol, image 
acquisition was conducted approximately 1 h after injec-
tion of 814 ± 111 MBq of 99mTc-sestamibi. To reduce breast 
tissue and diaphragm attenuation, women and men under-
went supine and prone imaging, respectively. The acquisi-
tion protocol consisted of 32 projections with 20 to 25 s 
per projection from the right anterior oblique (RAO) to the 
left posterior oblique (LPO). According to the synchronized 
electrocardiography (ECG) signal collected during acquisi-
tion, the detected photons were split into 8 gate intervals 
during a cardiac cycle.

To simulate half-dose, quarter-dose, and one-eighth-
dose acquisitions, regardless of the temporal information, 
the number of detected photons was reduced by applying 
a binomial subsampling. In this subsampling method, each 
registered photon in the projection space would be either 
kept or rejected through a probability function mimicking 
the different low-dose levels.

The software provided with the ProSPECT camera was 
employed to convert the list-mode data to non-gated pro-
jection data (64 × 64 × 32 voxels) and gated projection data 
(64 × 64 × 256 voxels) with a voxel size of 6.4 × 6.4 × 6.4 
mm3.

Data preparation

Since the count rate from the liver absorption in SPECT-
MPI is relatively high, projection images were manually 
cropped by a nuclear medicine physician to exclude the liver 
from cardiac images. Fifteen patients were excluded from 
the dataset since it was not possible to distinguish between 
the heart and liver. Projection data of 295 patients were ran-
domly selected as training dataset, whereas the remaining 
35 patients were used as an external test dataset to assess the 
performance of the GAN model. According to the clinical 
indication and reporting of SPECT-MPI, the patients were 
divided into four groups: healthy, low-risk, intermediate-
risk, and severe-risk. In this light, the test dataset included 

8, 16, 6, and 5 samples from these groups, respectively, to 
fairly evaluate the network performance.

Deep network architecture

The GAN architecture is composed of a generator network 
to predict/estimate standard-dose images and a discrimina-
tor network that classifies the synthesized images as real 
or fake [35]. These networks are trained concurrently in an 
adversarial process to compete with each other. The dis-
criminator weights are updated independently, while the 
generator model is updated via the discriminator feedback 
(Supplemental Figure 1).

Generator network

The generator network in this architecture is an encoder-
decoder model (U-Net) (Fig. 1). This model utilizes low-
dose images as input to estimate standard-dose images; it 
encodes the input image to the bottleneck layer, then decodes 
the data from the bottleneck layer to synthesize the output 
image. In this network, skip connections are used between 
the corresponding encoder and decoder layers.

In the encoding path, the input layer is followed by six 
encoder blocks. The numbers of 4 × 4 kernels with stride 2 
in the encoder blocks are 64, 128, 256, 512, 512, and 512. In 
the second to fourth encoder blocks, the batch normalization 
layer is used after the convolutional layers. These layers are 
followed by the Leaky ReLU (with a slope of 0.2) activation 
function in the first five encoder blocks. Likewise, the ReLU 
activation function is used in the sixth encoder block.

After the bottleneck layer, six decoder blocks are used 
in the decoding path. In these blocks, the number of fea-
ture maps decreases from 512 to 1 according to the defined 
encoders. Each block consists of 4 × 4 kernel in the decon-
volution layer by a stride of 2 in each direction, followed by 
a batch normalization layer. In the first five decoders, skip 
connections are used to concatenate the data from each layer 
in the encoder path to the corresponding layer in the decoder 
path. These shortcut connections are aimed to prevent the 
gradient vanishing issue that may occur in complicated deep 
neural networks. Finally, concatenated results are passed 
through a ReLU activation function. In the last decoder, the 
defined deconvolutional layer is followed by the sigmoid 
activation function. Empirically, in the first decoder block, 
we use a drop-out layer to prevent overfitting. Due to the 
fact that the pooling layers reduce the spatial resolution of 
the input images, these layers were not considered in this 
architecture to avoid any feature/information loss throughout 
the synthesis process.

The generator is updated via a weighted sum of both the 
adversarial loss and the L2-norm loss. The update of the 
trainable parameters is carried out to minimize the L2-norm 
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loss calculated between the predicted standard-dose and the 
reference standard-dose images. The L2-norm loss was 
selected as it provided high-quality synthesis of the stand-
ard-dose SPECT images. Besides, through using adversarial 
loss, the generator weights are updated to minimize the loss 
of the discriminator (to better distinguish between real or 
fake samples) leading to overall better performance of the 
GAN model to produce more realistic images. Within the 
training process, a weighting factor of 100/1 was optimized 
in favor of the L2-norm loss, leading to overall peak perfor-
mance of the GAN model.

Discriminator network

The discriminator network, serving as an image classifier, 
takes low-dose and standard-dose images (both reference 
and synthesized) as inputs to determine whether the input 
standard-dose image is real or fake translation of the low-
dose image. Figure 2 illustrates the architecture of the dis-
criminator. The network consists of a concatenate layer and 
five convolutional blocks. The number of 4 × 4 kernels with 
stride 2 applied in the first convolutional block is 48, and 
this number is doubled at each three following convolutional 
blocks, while the stride step in the fourth convolutional 
block becomes 1. The 2D convolutional layer is followed 
by the batch normalization layer and Leaky ReLU (with a 
slope of 0.2) activation function in each of the four convo-
lutional blocks. Finally, the data is passed through a 1 × 1 
single-filter convolutional layer, a batch normalization layer, 
and a sigmoid activation function. The binary cross-entropy 

loss function was used for the training of the model with 
about 50 epochs.

The network was implemented using the Keras deep 
learning framework based on the TensorFlow libraries 
in Python 3.7. All the experiments were carried out on 
NVIDIA GeForce GTX 1060 with a 6 GB memory graphi-
cal processing unit. Adaptive moment estimation (Adam) 
optimizer with a learning rate of 0.001 was used to minimize 
the loss functions.

Image reconstruction

The low-dose projection data (for 1/2, 1/4, and 1/8 levels) 
obtained from random sampling of the list-mode acquisition 
were employed for the training of the GAN model consid-
ering the standard-dose projection data as a reference. The 
model was trained and evaluated separately for non-gated 
half-dose to standard-dose, non-gated quarter-dose to stand-
ard-dose, non-gated one-eighth-dose to standard-dose, and 
gated half-dose to standard-dose.

Standard-dose, low-dose, and predicted standard-dose 
projection data from the test dataset were reconstructed 
using OSEM algorithm (8 iterations and 2 subsets) and the 
Cedars-Sinai software used to orient the images in three 
standard cardiac planes; short-axis (SA), vertical long-axis 
(VLA), and horizontal long-axis (HLA). Furthermore, we 
applied a post-smoothing Butterworth filter with order = 10 
and cutoff = 0.45.

Fig. 1   Architecture of the 
generator network in the GAN 
model
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Assessment strategy

Quantitative analysis

The quality of predicted standard-dose data, either in the 
projection or image space, was assessed using standard 
quantitative metrics, including peak signal-to-noise ratio 
(PSNR), root mean square error (RMSE), and structural 
similarity index metrics (SSIM) given in Eqs. 1, 2, and 3, 
respectively, considering the standard-dose data as a ref-
erence. Moreover, these metrics were also calculated for 
the low-dose images to provide a baseline for performance 
assessment of the GAN model.

In Eq. (1), Peak indicates the maximum count of either 
predicted standard-dose or low-dose data, and MSE stands 
for mean squared error. In Eq. (2), n and i denote the total 
number of voxels and voxel index, respectively. y indicates 
the standard-dose data and ỹ is either the synthetic or low-
dose data.�y and 𝜇ỹ in Eq. (3) denote the mean values of the 
reference and synthetic/low-dose images, respectively. 𝛿y.ỹ 
indicates the covariance of �y and 𝛿ỹ , which in turn represent 
the variances of the standard-dose and predicted standard-
dose/low-dose images, respectively. The constant parameters 
C1 and C2 (C1 = 0.01 and C2 = 0.02) were set to avoid divi-
sion by very small values.

(1)PSNR(dB) = 20log10
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Cedars‑Sinai quantitative analysis

Extent, summed stress percent (SS%) or summed rest per-
cent (SR%), summed stress score (SSS) or summed rest 
score (SRS), total perfusion deficit (TPD%), volume, wall, 
shape eccentricity, and shape index were calculated using 
quantitative perfusion SPECT (QPS) package implemented 
in Cedars-Sinai software. The abovementioned metrics were 
calculated on the reconstructed reference, low-dose, and 
predicted standard-dose SPECT images using the standard 
reconstruction settings used in clinical routine. Bland–Alt-
man plots were sketched to describe the agreement between 
the predicted standard-dose/low-dose and reference stand-
ard-dose images. Finally, the Pearson correlation coeffi-
cient was computed for the derived parameters according 
to Eq. (4).

Clinical evaluation

The summed score (SS) parameter was calculated for the 
low-dose, predicted standard-dose, and reference standard-
dose reconstructed images in the test dataset by a nuclear 
medicine physician. Subsequently, a scoring scheme rang-
ing from − 3 to + 3 was employed to express diagnostic dif-
ferences in the predicted standard-dose/low-dose SPECT 
images with respect to the standard-dose ground truth, 
wherein 0 is equivalent to no diagnostic changes, and ± 3 is 
equivalent to considerable changes compared to the refer-
ence standard-dose data. Positive numbers indicate higher 
tracer uptake, whereas negative numbers indicate lower 
tracer uptake compared to the reference standard-dose 
images. Finally, the Pearson correlation coefficient was 

(4)𝜌 =

∑n

i=1
(yi − 𝜇y)(ỹi − 𝜇ỹ)

�

∑n

i=1
(yi − 𝜇y)

2
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∑n

i=1
(ỹi − 𝜇ỹ)

2

Fig. 2   Architecture of the discriminator network in the GAN model. Conv2D, 2D convolutional layer; BN, batch normalization layer; Lrelu, 
Leaky ReLU activation function
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calculated between the reference standard-dose and the pre-
dicted standard-dose /low-dose images.

Results

Qualitative assessment

The predicted standard-dose SPECT MPI in both projection 
and image domains exhibited considerable improvement in 
image quality compared to the low-dose images. Figure 3 
depicts the predicted non-gated standard-dose projections 
for the different low-dose levels. The visual inspection 
revealed that at half-dose, compared to the quarter-dose and 
one-eighth-dose, the GAN model achieved nearly similar 
image quality as the reference standard-dose images. Image 
quality improvement is apparent for the predicted projec-
tions at quarter-dose level. However, increased signal loss is 
observed in the predicted projections from one-eighth-dose 
data. Figure 4 displays the SA, VLA, and HLA views of 
the reconstructed non-gated SPECT-MPI, including refer-
ence standard-dose, low-dose, and predicted standard-dose 
for a representative patient with severe-risk diagnosis. It 
can be seen that the noise is appropriately suppressed at 
different reduced dose levels, where the LV wall appears 
more uniform/natural. Overall, the predicted SPECT images 
exhibited good agreement with the reference standard-dose 

images, whereas notable signal loss and/or noise-induced 
pseudo-signals were observed in the low-dose images. The 
reconstructed non-gated images for patients diagnosed with 
normal perfusion, low-risk, and intermediate-risk are pre-
sented in Supplemental Figures 2-4.

Quantitative analysis

PSNR, SSIM, and RMSE metrics were calculated separately 
for all 35 patients in the test dataset for the non-gated pre-
dicted and low-dose data using Eqs. (1) to (3). The mean 
and standard deviation of these metrics calculated in the 
projection and image domains are reported in Tables 1 and 
2, respectively. Additionally, the paired sample t-test at 
5% significance level was conducted between the PSNR, 
SSIM, and RMSE metrics obtained from the low-dose and 
the corresponding predicted standard-dose data. The p val-
ues obtained from the statistical test are also presented in 
Tables 1 and 2.

There was a substantial increase in PSNR metric (12.4%, 
25.2%, and 32.1%) for the predicted projections from half-, 
quarter-, and one-eighth-dose levels, respectively (Table 1). 
The SSIM increased by 2.1%, 4.3%, and 6.7%, whereas the 
RMSE decreased markedly by 38.5%, 56.3%, and 59.7% 
for the predicted projections from half-, quarter-, and one-
eighth-dose levels, respectively. Table 2 summarizes the 
quantitative analysis results of PSNR, RMSE, and SSIM 

Fig. 3   The predicted non-gated 
projections for a randomly 
selected patient from the test 
dataset at half-, quarter-, and 
one-eighth-dose levels com-
pared to the reference standard-
dose and low-dose projections
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metrics in the image space. The predicted images at half-
dose level achieved the highest SSIM (0.99 ± 0.01) and 
PSNR (42.49 ± 2.37), and the lowest RMSE (1.99 ± 0.63) 
with respect to the reference standard-dose images, while 
the predicted images at one-eighth-dose level resulted in the 
lowest PSNR (33.44 ± 2.63) and SSIM (0.95 ± 0.02), and the 
highest RMSE (5.70 ± 1.90) compared to reference standard-
dose images.

The null hypothesis of the t-test was rejected in the pro-
jection and image domains for most of the cases with low 
p values. The box plots of these quantitative metrics are 
presented in Supplemental Figure 5. Furthermore, image 
quality was quantified using the Pearson correlation coeffi-
cient calculated using Eq. (4) for the low-dose and predicted 
standard-dose reconstructed images versus the reference 
standard-dose counterparts. Figure 5 shows the mean and 
standard deviation of the Pearson correlation coefficients 
obtained from 35 patients in the non-gated test dataset for 
all reduced dose levels. The mean of Pearson correlation 
coefficient increased up to 1 for the predicted images as the 

dose level increased from 1/8 to 1/2 wherein a significant 
decrease in standard deviation was observed for all dose lev-
els compared to the corresponding low-dose images (Fig. 5). 
For instance, the predicted standard-dose images yielded 
ρ = 0.994 ± 0.003 compared to ρ = 0.987 ± 0.007 obtained 
from the low-dose images at quarter-dose level.

Cedars‑Sinai quantitative analysis

The quantitative accuracy of the non-gated synthetic images 
was further investigated using QPS software indices, includ-
ing Defect, Extent, SS% or SR%, SSS or SRS, TPD%, 
Volume, Wall, Shape Eccentricity, and Shape Index. The 
Bland–Altman plot was employed to present the derived 
indices from the low-dose and predicted standard-dose 
reconstructed images along with Pearson correlation analy-
sis. The Bland–Altman plots of SSS/SRS and TPD% quan-
titative parameters are presented in Figs. 6 and 7 for the 
different dose levels. Considering the SSS/SRS index shown 
in Fig. 6, the Bland–Altman plots displayed the lowest bias 

Fig. 4   Reconstructed non-gated images for a patient with severe-
risks. a Short-axis view, b long vertical-axis view, and c horizontal 
long-axis view. In a, b, and c, the rows from top to bottom correspond 

to the standard-dose (SD), half-dose (HD), quarter-dose (QD), one-
eighth-dose (OD), predicted half-dose (PHD), predicted quarter-dose 
(PQD), and predicted one-eighth-dose (POD), respectively

Table 1   Quantitative results 
associated with the different 
dose levels in the projection 
space. The p value between 
the low-dose and the predicted 
standard-dose projections at 
each reduced dose level is given

HD half-dose, PHD predicted half-dose, QD quarter-dose, PQD predicted quarter-dose, OD one-eighth-
dose, POD predicted one-eighth-dose

Projection space

Parameters HD PHD QD PQD OD POD

PSNR 1.93 ± 33.22 1.33 ± 37.34 1.99 ± 28.25 1.56 ± 35.37 1.69 ± 24.51 1.77 ± 32.37
p value < 0.001 p value < 0.001 p value < 0.001

SSIM 0.01 ± 0.96 0.01 ± 0.98 0.01 ± 0.93 0.01 ± 0.97 0.02 ± 0.89 0.01 ± 0.95
p value < 0.001 p value < 0.001 p value < 0.001

RMSE 1.19 ± 5.69 0.52 ± 3.50 2.19 ± 10.10 0.78 ± 4.41 3.26 ± 15.52 1.23 ± 6.26
p value < 0.001 p value < 0.001 p value < 0.001
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(0.17) and variance (95% CI: − 1.02, + 1.36) for the predicted 
half-dose images compared with the reference standard-dose 
images. At quarter-dose level, the data points associated with 
the low-dose images exhibited variability nearly twice as 
large as the predicted standard-dose images. At one-eighth-
dose level, despite the large dispersion of the data points, 
closer agreement was observed between the predicted stand-
ard-dose and reference standard-dose images in compari-
son with the low-dose images. Likewise, the TPD% index 
presented in Fig. 7 showed less bias and variance in the 
predicted standard-dose images than the low-dose images at 
all reduced dose levels. The Bland–Altman plots for the rest 
of the indices can be found in Supplemental Figures 6–12. 
Moreover, the box plots of these indices at the different dose 
levels are shown in Supplemental Fig. 13.

Table 3 presents the Pearson correlation coefficients for 
the QPS indices. Despite the overall improvements seen for 
the predicted half-dose and quarter-dose images, no sig-
nificant improvement was observed for the one-eighth-dose 
level due to the extremely high noise level.

Clinical evaluation

The summed scores assigned by the nuclear medicine physi-
cian for the low-dose, standard-dose, and predicted standard-
dose images, as well as diagnostic changes compared with 
the reference standard-dose, are presented in Supplemental 
Table 1 for all patients in the external test dataset. Pearson 
correlation coefficients (Table 4) and bar plots (Fig. 8) were 
employed to summarize the information in Supplemental 
Table 1. The Pearson correlation coefficients increased 
considerably for the scores assigned to the predicted stand-
ard-dose images compared to the corresponding low-dose 
images at the three dose levels. However, the prediction from 
one-eighth-dose exhibited less significant correlation coef-
ficient (86%). We carried out a paired sample t-test at 5% 
significance level on the SS values distributions for the low-
dose and the corresponding predicted standard-dose values. 
The t-test resulted in p values < 0.001, indicating that the 
mean values for the low-dose and predicted standard-dose 
data were statistically different.

A bar chart was used to display the diagnostic differ-
ences in the low-dose and predicted standard-dose images 
compared to reference images. Figure 8 shows that the 
absolute value of the differences decreased from low-dose 
to predicted standard-dose at all three reduced dose levels. 
The physician’s assessment enabled to conclude that cases 
with a score difference of 0 and ± 1 were considered clini-
cally acceptable with no notable diagnostic changes which 
are indicated by hatched charts in Fig. 8. In this light, the 
percentage of acceptable cases was 100% for the half-dose, 
80% for the quarter-dose, and 11% for the quarter-dose level. 
To provide a more comprehensive assessment of the model 
based on patients’ gender, bar plots of the performance dif-
ferences for 20 female and 15 male subjects are presented in 
Supplemental Figs. 14 and 15, respectively. The percentage 
of acceptable cases is almost equal to gender-independent 
analysis. Hence, there is no significant relationship between 
network performance and patients’ gender.

Table 2   Quantitative results 
associated with different dose 
levels in the image space. The 
p value between the low-dose 
and the predicted standard-dose 
projections at each reduced dose 
level is given

HD half-dose, PHD predicted half-dose, QD quarter-dose, PQD predicted quarter-dose, OD one-eighth-
dose, POD predicted one-eighth-dose

Image space

Parameters HD PHD QD PQD OD POD

PSNR 2.68 ± 39.12 2.37 ± 42.49 2.72 ± 35.75 2.89 ± 40.17 2.74 ± 32.09 2.63 ± 33.44
p value < 0.001 p value < 0.001 p value < 0.04

SSIM 0.01 ± 0.97 0.01 ± 0.99 0.02 ± 0.95 0.01 ± 0.98 0.04 ± 0.90 0.02 ± 0.95
p value < 0.001 p value < 0.001 p value < 0.001

RMSE 0.96 ± 2.94 0.63 ± 1.99 1.48 ± 4.37 1.19 ± 2.93 2.04 ± 6.66 1.90 ± 5.70
p value < 0.001 p value < 0.001 p value < 0.05

Fig. 5   Comparison of Pearson correlation coefficients obtained from 
the low-dose and predicted standard-dose reconstructed images at 
half-, quarter-, and one-eighth-dose levels
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Discussion

This study aimed to assess the possibility of dose reduc-
tion in SPECT-MPI without sacrificing the diagnostic 

performance of the resulting images. To this end, a genera-
tive adversarial network was employed to predict high-qual-
ity standard-dose SPECT images from the corresponding 
low-dose data in the projection space. The proposed network 

Fig. 6   Bland–Altman plots of 
SSS index for the low-dose and 
predicted standard-dose images 
at a half-dose, b quarter-dose 
level, and c one-eighth-dose 
levels compared with the refer-
ence standard-dose images. 
The blue and red dashed lines 
indicate the mean and 95% 
confidence interval of the SSS 
differences in the low-dose and 
predicted standard-dose images, 
respectively. HD, half-dose; 
PHD, predicted half-dose; QD, 
quarter-dose; PQD, predicted 
quarter-dose; OD, one-eighth-
dose; POD, predicted one-
eighth-dose
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was applied to suppress noise in the non-gated projections 
at different reduced dose levels. The clinical assessment 
showed that the proposed network has a promising per-
formance for half- and quarter-dose levels. All estimated 
SPECT images at half-dose level were considered clinically 

acceptable. However, at quarter-dose level, the number of 
clinically acceptable cases was reduced to 80%. Evaluation 
at quarter-dose level revealed that almost all poor-quality 
predicted cases are associated with patients diagnosed with 
moderate/severe-risk conditions. The performance of the 

Fig. 7   Bland–Altman plots of 
TPD% index for the low-dose 
and predicted standard-dose 
images at a half-dose, b quarter-
dose, and c one-eighth-dose lev-
els compared with the reference 
standard-dose images. The blue 
and red dashed lines designate 
the mean and 95% confidence 
interval of the TPD% differ-
ences in the low-dose and 
predicted standard-dose images, 
respectively. HD, half-dose; 
PHD, predicted half-dose; QD, 
quarter-dose; PQD, predicted 
quarter-dose; OD, one-eighth-
dose; POD, predicted one-
eighth-dose
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deep learning model for special cases largely depends on 
the training samples containing similar and/or representative 
cases. Since patients with moderate/severe medical diagno-
sis are less abundant in the training dataset, the performance 

of the network is relatively limited for these patients at quar-
ter and one-eighth-dose levels. Supplemental Fig. 16 depicts 
a representative study illustrating suboptimal performance 
of the model for a patient with moderate risks. Adding 

Table 3   Pearson correlation 
coefficients of the QPS 
quantitative parameters 
considering the actual standard-
dose images as reference

HD half-dose, PHD predicted half-dose, QD quarter-dose, PQD predicted quarter-dose, OD one-eighth-
dose, POD predicted one-eighth-dose. p value between the low-dose and the predicted standard-dose pro-
jections at each reduced dose level

Parameters HD PHD QD PQD OD POD

Defect 0.94 0.99 0.90 0.99 0.83 0.75
p value < 0.001 p value < 0.001 p value < 0.03

Extent 0.87 0.99 0.83 0.97 0.71 0.70
p value < 0.001 p value < 0.001 p value < 0.01

SSS / SRS 0.83 0.99 0.75 0.96 0.68 0.70
p value < 0.001 p value < 0.001 p value < 0.01

SS% / SR% 0.82 0.99 0.75 0.97 0.66 0.70
p value < 0.001 p value < 0.001 p value < 0.01

TPD% 0.88 0.99 0.82 0.98 0.76 0.76
p value < 0.001 p value < 0.001 p value < 0.01

Volume 0.99 1.00 0.99 1.00 0.95 0.97
p value < 0.001 p value < 0.03 p value = 0.29

Wall 0.98 1.00 0.97 1.00 0.93 0.96
p value < 0.001 p value < 0.001 p value = 0.39

Shape Eccentricity 0.94 0.99 0.93 0.99 0.84 0.82
p value < 0.001 p value < 0.001 p value < 0.01

Shape Index 0.72 0.95 0.60 0.88 0.54 0.72
p value < 0.001 p value < 0.004 p value < 0.03

Table 4   Pearson correlation coefficients for SS values assigned by the nuclear medicine specialist. The p value between the low-dose and the 
predicted standard-dose projections at each reduced dose level are given

HD half-dose, PHD predicted half-dose, QD quarter-dose, PQD predicted quarter-dose, OD one-eighth-dose, POD predicted one-eighth-dose

Parameter HD PHD QD PQD OD POD

Pearson correlation coefficient 0.909 0.984 0.823 0.963 0.665 0.861
p value < 0.001 p value < 0.001 p value < 0.001

Fig. 8   Results of image quality 
assessment (summed score 
difference) by the nuclear medi-
cine specialist for the low-dose 
and predicted standard-dose 
images at the three reduced 
dose levels. Clinically accept-
able cases are hatched. HD, 
half-dose, PHD, predicted 
half-dose, QD, quarter-dose, 
PQD, predicted quarter-dose, 
OD, one-eighth-dose, POD, 
predicted one-eighth-dose
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more similar samples to the training dataset could poten-
tially reduce the number and severity of such outliers. Dose 
reduction in gated SPECT-MPI was also considered. How-
ever, since the signal-to-noise ratio (SNR) in gated images 
is remarkably poor compared to the non-gated images, only 
half-dose level was studied. The fact that gated imaging was 
conducted in 8-time intervals, the projection data already 
bear high noise levels, and dose reduction by half led to 
extremely poor SNR. Figure 9 shows a representative pre-
dicted gated projection compared to half-dose and the ref-
erence standard-dose counterparts, wherein the excessive 
amount of noise in the reduced dose, as well as the reference 
gated projections, led to over-smoothed predictions. Dose 
reduction in gated SPECT-MPI faces the challenge of poor 
SNR and noise-induced artifacts. However, deep learning 
approaches (such as the proposed GAN model) could be 
employed to enhance the quality of standard/conventional 
gated SPECT-MPI (without dose reduction) as they have 
almost the same signal-to-noise properties of the one-eight 
low-dose non-gated images.

Regarding similar previous works in SPECT-MPI, 
Ramon et al. [30] proposed a couple of 3D convolutional 
auto-encoders with/without skip connections to denoise the 
reconstructed non-gated images (corrected for attenuation 
and scatter) at 1/2, 1/4, 1/8, and 1/16 of standard-dose levels. 
Reconstruction strategies used in this study were optimized 
previously for low-dose acquisitions [12]. They reported 
a Pearson correlation coefficient of 0.992 ± 0.001 for pre-
dicted images compared to 0.982 ± 0.001 for the low-dose 
input at 1/4-dose level with respect to standard-dose OSEM 
reconstructed images. A similar observation was made in our 
study wherein the Pearson correlation coefficient improved 
from ρ = 0.987 ± 0.007 to ρ = 0.994 ± 0.003 at the quarter-
dose. It should be noted Ramon et al. performed data acqui-
sition using a 1-day rest/stress SPECT-MPI protocol with 
administrated activities ranging from 1110 to 1332 MBq, 
while in our study, the patients underwent a 2-day rest/stress 
SPECT-MPI protocol with administrated activities ranging 
between 740 and 925 MBq. Therefore, the absolute amount 
of injected activity at quarter-dose level in our study is less 
than the administrated activity in the above-referenced study. 

Nevertheless, a significant/comparable improvement was 
observed at the quarter-dose level.

Shiri et  al. [32] employed a residual deep learning 
model to reduce the acquisition time per projection by 50%, 
wherein the full-time projections were predicted from the 
corresponding half-time projections. The reconstruction 
of the predicted projections led to SSIM = 0.98 ± 0.01, 
PSNR = 36.0 ± 1.4, RMSE = 3.1 ± 1.1, and Pearson cor-
relation ρ = 0.987 in the image domain. Shiri et al. only 
studied half-time acquisition in their work. Relatively 
better performance was observed at 1/2-dose level in our 
study with SSIM of 0.99 ± 0.01, PSNR of 42.49 ± 2.37, 
RMSE of 1.99 ± 0.63, and Pearson correlation coefficient 
of 0.997 ± 0.001. It should be noted that both studies used 
the same SPECT scanner, injected activities, and acquisition 
protocols. In this study, in addition to the investigation of the 
1/4-dose and 1/8-dose levels, a detailed clinical assessment 
was performed by a nuclear medicine physician to provide a 
useful insight into the clinical value of the resulting images.

Though there is a fundamental difference between fast 
image acquisition and low-dose imaging, the reduced num-
ber of detected photons would lead to information loss and 
lower SNR which can significantly affect clinical diagnosis 
in both scenarios. However, fast image acquisition would 
be less affected by involuntary patient movement, such as 
respiratory motion. In this light, the noise suppression model 
investigated in this study could also be employed for fast 
image acquisition protocols. It is worth emphasizing that 
clinical adoption of low-dose SPECT-MPI could signifi-
cantly reduce radiation dose to patients and hence the risks 
from nuclear medicine examinations to both adult and pedi-
atric population [36].

Previous work reported on the comparison of the perfor-
mance of standard-dose PET image prediction from low-
dose (5%) PET in the image space versus the projection 
space [37]. It was concluded that standard-dose PET image 
estimation in the projection space exhibited more accurate/
robust performance and produced higher image quality com-
pared to implementation in image space. Moreover, network 
training in projection space is independent of image recon-
struction algorithm and post-processing techniques. Hence, 

Fig. 9   The predicted gated pro-
jections for a randomly selected 
patient from the test dataset at 
the half-dose level compared to 
the reference standard-dose and 
low-dose projections
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the results reported in this work would be generalizable to 
other clinical settings.

This study was set out to investigate the magnitude of rea-
sonable dose reduction in SPECT- MPI without scarifying 
image quality. To this end, errors in clinical interpretation 
were considered as criteria to determine acceptable recov-
ery of low-dose images. Though the deep learning model 
was capable of significantly enhancing the overall quality 
of high low-dose SPECT images (for 1/4 and 1/8 low-dose 
levels), the number of outliers with gross errors would limit 
the applicability of these levels in clinical setting. Special 
caution should be exercised to the occurrence of outliers 
resulting from deep learning models when ultra-low-dose 
imaging is sought (such as gated imaging). Deep neural net-
works exhibit higher robustness and performance when the 
task-specific training is performed using data acquired on 
a single SPECT camera with the same acquisition proto-
col. Moreover, the size of the training cohort greatly deter-
mines the robustness and overall accuracy of the model. In 
this regard, the training cohort should contain a realistic/
balanced distribution of patients/pathologies to develop a 
comprehensive deep learning solution. Advances in the field 
provide more powerful and accurate deep learning models 
which would enable further dose reduction in SPECT and 
PET imaging. Nevertheless, task-specific data collection and 
creation of training datasets with a large number of samples 
and realistic distribution is essential for the development of 
robust deep learning models.

Conclusion

This study was set out to investigate the feasibility of dose 
reduction in SPECT-MPI without sacrificing the quantita-
tive accuracy and clinical value of the resulting images. A 
deep learning framework was assessed at different reduced 
dose levels to predict standard projection data from low-
dose counterparts. The clinical assessment and quantitative 
analysis demonstrated that the deep learning model could 
effectively recover the underlying information in 1/2-dose 
and 1/4-dose SPECT images. However, due to the extremely 
high noise levels in 1/8-dose and gated SPECT-MPI, the 
deep learning model failed to fully recover the underlying 
signal/image quality.
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