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Abstract
Modelling and simulation in mechanobiology play an increasingly important role to unravel the complex mechanisms that 
allow resident cells to sense and respond to mechanical cues. Many of the in vivo mechanical loads occur on the tissue 
length scale, thus raising the essential question how the resulting macroscopic strains and stresses are transferred across the 
scales down to the cellular and subcellular levels. Since cells anchor to the collagen fibres within the extracellular matrix, 
the reliable representation of fibre deformation is a prerequisite for models that aim at linking tissue biomechanics and cell 
mechanobiology. In this paper, we consider the two-scale mechanical response of an affine structural model as an example 
of a continuum mechanical approach and compare it with the results of a discrete fibre network model. In particular, we shed 
light on the crucially different mechanical properties of the ‘fibres’ in these two approaches. While assessing the capability 
of the affine structural approach to capture the fibre kinematics in real tissues is beyond the scope of our study, our results 
clearly show that neither the macroscopic tissue response nor the microscopic fibre orientation statistics can clarify the 
question of affinity.
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1  Introduction

Soft biological tissues exhibit nonlinear anisotropic behav-
iour at the macroscopic ( ∼ mm ) length scale analysed in 
ex vivo mechanical tests (e.g. Fung 1967). These distinctive 
characteristics result from the composition and assembly of 
their extracellular matrix (ECM), whose macromolecules 
are continuously remodelled by resident cells and organised 
to serve the tissue specific functions. The ECM transmits 
forces and displacements from the tissue boundary to the cell 
membrane, where complexes of membrane proteins further 
translate them to the intracellular structures (Humphrey et al. 
2014). Cells are thus able to sense mechanical cues through 

the ECM (Humphrey et al. 2014) and respond by activation 
and regulation of cellular processes.

The understanding of how deformations are transferred 
from the organ and tissue (‘macroscopic’) length scale to the 
cell and ECM (‘microscopic’) scale of a few micrometers 
is therefore fundamental for a variety of mechanobiological 
challenges, such as the understanding of mechanics-driven 
regenerative or degenerative processes (Filippo and Atala 
2002; Mazza and Ehret 2015). Existing experimental analy-
ses of the length scale dependent deformation patterns sug-
gest that this transfer is generally not uniform, neither in 
native nor engineered tissues, and that it can be characterised 
by both ‘attenuation’ and ‘amplification’ in strain (Upton 
et al. 2008; Han et al. 2013; Mazza and Ehret 2015).

Fibre-forming collagens interconnected in networks are 
recognised as the main structural solid component of the 
ECM in most tissues (Fratzl 2008), both in terms of volume 
fraction and mechanical contribution. Moreover, with regard 
to the cell-ECM interface, the transmission of displacements 
and forces between structural proteins and cells through 
focal adhesions represents the mechanical corner stone of 
one of the most established mechanotransduction pathways 
(Alenghat and Ingber 2002; Ingber 2006; Humphrey et al. 
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2014). The understanding of how collagen fibres deform 
within the deforming tissue therefore represents one of the 
essential aspects to bridge the gap between tissue-scale bio-
mechanics and cell-scale mechanobiology.

The structural role of collagen has long been accepted in 
modelling, and several continuum theories have been pro-
posed and profitably implemented to describe the macrome-
chanical behaviour of fibrous soft tissues (see e.g. Chagnon 
et al. 2015; Lanir 2016). More recently, discrete approaches 
have been employed in biomechanics, which describe the 
microstructure by means of a large but finite set of ‘fibres’, 
typically modelled as springs or structural elements like 
rods or beams, randomly disposed in space. They are con-
nected to form a network and loaded at the boundary of 
the definition domain (Stylianopoulos and Barocas 2007; 
Picu 2011). The huge number of fibres easily reachable 
with the typical sizes of soft tissue samples prevents from 
modelling full scale, complex geometries. Hence, the typi-
cal domain usually consists of a cuboid representative vol-
ume element (RVE), homogeneously loaded at the faces. 
The ‘macroscopic’ homogenised stress tensor can be com-
puted by volume averaging (Picu 2011), enabling a direct 
comparison with continuum models and stress-strain curves 
obtained from experiments on tissues, but, in addition, these 
discrete network models (DNMs) integrate the underlying 
mechanisms at the fibre scale responsible for the tissue-scale 
response (Chandran and Barocas 2005).

Such computational models are increasingly used to 
rationalise the cause-effect nexus between mechanical cues 
and the corresponding cell reaction (Mak et al. 2015), to 
model mechanosensitive processes like cell contraction, 
alignment and migration (Vernerey and Farsad 2011; 
Obbink-Huizer et al. 2014; Kim et al. 2018), mechanical 
homeostasis (Eichinger et al. 2021), or to understand and 
guide the development of effective tissue equivalents, scaf-
folds and grafts in tissue engineering (Stella et al. 2008; 
Zündel et al. 2019; Domaschke et al. 2020). In view of the 
key role of fibre deformation as a scale-bridging element, it 
seems evident that the definition of a ‘fibre’ in these mod-
els and the assumed relation between fibre kinematics and 
macroscopic strain is a decisive factor in determining the 
reliability of these approaches.

Exactly with respect to fibre kinematics the vast majority 
of the current continuum approaches are distinct from the 
discrete ones: the former consider the tissue at a continuum 
length scale, largely neglect the real microstructure and 
model ‘fibres’ as vectorial line elements that represent direc-
tions of mechanical reinforcement, and whose deformation 
is completely predetermined through a kinematic relation 
that couples their change in orientation and shape with the 
gradient �(X, t) = Grad �(X, t) of the macroscopic deforma-
tion �(X, t) or its history. This includes the affine case where 
the fibre vectors are considered as material line elements that 

are mapped linearly by the deformation gradient (see e.g. 
Lanir 2016). This deterministic coupling implies that, under 
homogeneous loading conditions, fibres with equal reference 
orientation are mapped onto fibres with equal orientation in 
the deformed state. Conversely, in DNMs, the heterogene-
ous microstructure of the tissue is explicitly represented, 
even if in an idealised form. The loads applied at the bound-
ary of the domain are transferred among the fibre elements 
through their interaction points (crosslinks), and the result-
ing deformations obey to the balance of forces and moments 
at these nodes and are then driven by energy minimisation 
(Chandran and Barocas 2005; Picu 2011). Hence, even under 
homogeneous affine boundary conditions, the deformations 
of the single fibre elements are generally non-affine and their 
relation with the macroscopic deformation is generally not 
unique. Notably, both the orientation distribution and the 
mechanical properties of the matrix affect the fibre kinemat-
ics (Hatami-Marbini and Picu 2009; Lake et al. 2011; Zhang 
et al. 2013). The case where the interaction between matrix 
and fibres dominates over the network effect has motivated 
alternative continuum models, e.g. based on fibres modelled 
as cylindrical inclusions in a soft matrix, that also serve to 
account for non-affine fibre kinematics (Morin et al. 2018; 
Bianchi et al. 2020). Generally, the questions of how much 
load is transferred through matrix and the fibre connections, 
respectively, and whether fibre kinematics are affine or non-
affine in soft collagenous tissues have not been answered 
conclusively, and the answers may be highly tissue-specific.

The image-based analysis of the fibre kinematics in tis-
sues, tissue-equivalents or tissue-engineering scaffolds 
remains inconclusive on whether the affine hypothesis 
applies or not, since the observed fibre reorientation upon 
macroscopic deformation could be explained successfully 
both in terms of affine (Lee et al. 2015; Stella et al. 2008) 
and non-affine models (Sander et al. 2009; Bircher et al. 
2017; Ehret et al. 2017). Moreover, our own previous work 
has shown that both types of kinematics provide models 
able to fit the same sets of data from macroscopic mate-
rial characterisation and generally capture the macroscopic 
behaviour, including even unusual characteristics of network 
materials (e.g. Buerzle and Mazza 2013; Bircher et al. 2017; 
Ehret et al. 2017; Domaschke et al. 2019).

Evidences to explain these apparent contradictions can 
be found in a revelatory study by Chandran and Barocas 
(2005), who compared the fibre kinematics of an illustra-
tive 2D DNM when either affine boundary conditions were 
applied only at the RVE boundary or all fibres were forced to 
deform affinely. While, as expected, the predicted stretches 
experienced by the fibres were notably different and the 
stresses were markedly lower in the non-affine case, the 
analysis pointed at only small differences in the prediction of 
the averaged reorientation of fibres, concomitant with a lack 
of correlation between fibre orientation and stretch in the 
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non-affine model (cf. Figs. 6, 7, 9 and 11 in Chandran and 
Barocas 2005). This aspect will be revisited and enhanced 
later in the present study. However, we start from a different 
setting: we use an established continuum constitutive model 
and an anisotropic 3D DNM that share (i) the form of the 
fibre orientation distribution in the reference state, (ii) the 
form of the fibre and matrix constitutive laws, and (iii) the 
macroscopic mechanical behaviour at tissue length scale. 
On the basis of these ‘equal competitors’, we investigate 
the quality of micro-to-macro and macro-to-micro predic-
tions by exchanging material parameters between the two 
approaches, we shed light on the implications of the affinity 
assumption in the macro-to-micro strain transfer, and we 
discuss the results with regard to the interpretation of experi-
mental data.

2 � Strategy of the study

The present study addresses (i) the capability of the CM 
and DNM approaches to capture the macroscopic response 
of soft biological tissue, (ii) the difference in their predic-
tions to boundary value problems not used for parameter 
identification, (iii) the potential for predictions across the 
scales, and, finally, (iv) the fibre kinematics predicted by the 
two models. To this end, the following strategy is applied 
(Fig. 1). Based on the same constitutive law of matrix and 
fibres, and the same statistical functions describing the fibre 
orientation distribution, we define both a CM and a DNM. 
An existing data set on uniaxial (UA) monotonic extension 
on porcine pericardium (pPC) samples (Ehret et al. 2017) is 
used to calibrate the DNM, which then replaces the experi-
mental data as new ground truth. The parametrised DNM 
is used to simulate equibiaxial extension (EB) and simple 
shear (SH). To address aspect (i), the CM is fitted and com-
pared to the stress and lateral contraction responses in the 
UA and EB cases. To analyse the predictive qualities (ii), the 
SH response of the parametrised CM is compared to that of 

the DNM. The fitted parameters associated with the ‘fibres’ 
in the CM and DNM, respectively, are exchanged between 
the models for either micro-to-macro ( �2M) predictions of 
the CM tissue response based on ‘true’ fibre properties, or 
macro-to-micro (M2� ) predictions of the fibre and network 
scale characteristics implied by the fitted CM parameters 
(iii, iv).

3 � Common concepts

3.1 � Tissue‑scale kinematics

Let the deformation of a material body � at time t be given 
through the mapping x = �(X, t) for all material particles 
of � with position vectors X and x in the reference and 
current configurations with respect to an arbitrary origin, 
respectively. The deformation gradient and its determinant 
J = det� are defined by

and in what follows, the general dependence on position 
and time will be understood and the arguments omitted in 
writing. Finally, the right and left Cauchy-Green tensors are 
denoted by

respectively.

3.2 � Tissue free energy

Following the common modelling approaches, soft bio-
logical tissues are considered as composite materials of 
a non-fibrous matrix (m) and collagen fibres (f), disposed 
and interconnected to form a 3D network. When the tis-
sue deforms, the fibres, here understood as the vectorial 
line elements between the crosslinks of the network, 

(1)�(X, t) = Grad �(X, t), J(X, t) = det�(X, t)

(2)� = �
T
�, � = ��

T,

Fig. 1   Block diagram illustra-
tion of the strategy adopted in 
the present study
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generally change in orientation and length. Let this length 
change be given by the ratio � of the fibre’s end-to-end 
length between the deformed and reference state, that will 
shortly be referred to as ‘fibre stretch’ in what follows. 
We consider the special case where the free energy �f of 
a fibre per unit reference volume V of a collagenous tissue 
depends exclusively on the change of its end-to-end length, 
so that �f can be expressed as a function

in terms of � or its square � = �2 . Such fibres can only trans-
mit forces along the fibre axis, and thus form a central force 
network.

The overall free energy density �  of a tissue with such 
network microstructure consisting of N fibres results by 
summation of the individual contributions and addition 
of the matrix free energy density �m per unit reference 
volume of the tissue V

where the abbreviation ��f has been introduced as the sum 
of the free energy densities of the N single fibres. For later 
use, we note that this cumulative fibre free energy density is 
equivalent to N times the arithmetic mean of the fibre free 
energy density

and can thus be written as a multiple of the expected value 
E[�f ].

3.3 � Fibre mechanical response

Let the free energy of a single fibre per unit reference 
volume V of the tissue be defined through a function 
𝛹f = 𝛹̂f (𝜆) . Assuming that the former is determined 
through the product of a dimensionless, generally nonlin-
ear function Gf = Ĝf (𝜆) with properties

and a scalar factor k′
1
 with dimension of stress, one may for-

mally express the fibre free energy (3) as

Setting the non-dimensional stiffness (6)3 equal to a positive 
constant makes the decomposition (7) unique.

(3)𝛹f = 𝛹̂f (𝜆) = 𝛹̃f (𝛬), 𝛹̂f , 𝛹̃f ∶ (0,∞) → [0,∞).

(4)� = �m + ��f = �m +

N∑
k=1

� k
f
,

(5)��f =

N∑
k=1

� k
f
= N

N∑
k=1

1

N
� k
f
= N E[�f ],

(6)Ĝf (1) = 0,
dĜf (𝜆)

d𝜆
(1) = 0,

d2Ĝf (𝜆)

d𝜆2
(1) = 4,

(7)�f = k�
1
Gf .

The arbitrary choice d2Gf ∕d�
2(1) = 4 is merely a conse-

quence of consistency with the particular constitutive model 
in Sect. 5.1.

The axial force acting on a fibre is then given by the fibre 
reference cross-sectional area Af multiplied by the fibre 
nominal stress

where Vf and Lf denote the volume and length of a single 
fibre, and the factor K1 = V∕Lfk

�
1
 with dimension of force 

has been introduced.

3.4 � Orientation distribution of fibres

Let the orientation of a fibre in the reference state be 
defined by a unit vector A ∈ S on the three-dimensional 
unit sphere S = S2 that, with respect to an orthonormal basis 
{ex, ey, ez} placed in the centre of the sphere, can be specified 
through the (modified) spherical coordinates � ∈ [0, 2�) , 
� = � − �∕2 ∈ [−�∕2,�∕2]

where � and � denote the azimuth and polar angles, respec-
tively. The orientation statistics of the large numbers of 
fibres ( N ≫ 1 ) is typically represented through a continuous 
orientation density function (e.g. Lanir 1979, 1983)

such that the elemental probability dPA to find a fibre unit 
vector A within the elemental area dS = cos �d�d� of S is

and is subject to the normalisation condition

When the tissue deforms, the fibres change their length and 
orientation, and their end-to-end vector changes from A to 
a� = �a , where |a| = 1 . Hence, in the deformed current state 
at time t, the fibres are likewise characterised by an orienta-
tion distribution function. Upon expressing a with respect to 
the same spherical angles �, � in analogy to Eq. (9), the latter 
can be given by 𝜚a = 𝜚̌t(𝜙, 𝜃) . Importantly, however, the rela-
tions A ↦ a , A ↦ � are neither deterministic nor one-to-one 
in a random network. Closed form relations between �A and 
�a therefore only exist for special cases such as the affine 
transformations considered in Rezakhaniha et al. (2012), Lee 
et al. (2015).

(8)f = Af

V

Vf

��f

��
=

V

Lf
k�
1

dGf

d�
= K1

dGf

d�
,

(9)A = cos� cos �ex + sin� cos �ey + sin �ez,

(10)𝜚A = 𝜚̂0(A) = 𝜚̌0(𝜙, 𝜃),

(11)dPA = 𝜚̌0(𝜙, 𝜃)
1

4𝜋
cos 𝜃d𝜃d𝜙,

(12)∫
S

dPA =
1

4𝜋 ∫
2𝜋

0
∫

𝜋

2

−
𝜋

2

𝜚̌0(𝜙, 𝜃) cos 𝜃d𝜃d𝜙 = 1.
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3.5 � Non‑fibrous ECM

The Helmholtz free energy associated with the solid matrix 
is typically described phenomenologically in terms of iso-
tropic hyperelastic constitutive models. Considering that 
biological tissues are highly swollen materials in vivo (Lanir 
1987), and owing to the notable volume changes that the 
tissues can undergo during deformation by exchange of 
liquid with the environment (Ehret et al. 2017), here we 
used a chemomechanical isotropic compressible hyperelas-
tic model, that represents the equilibrium case of a bipha-
sic, osmotically active material (Stracuzzi et al. 2018). Its 
free energy is specified through a mechanical contribution 
𝛹M = 𝛹̂M(�) = 𝛹̂M(�) and a term �X that accounts for the 
chemomechanical coupling (Hong et al. 2008; Ehlers et al. 
2008; Ehret et al. 2017; Stracuzzi et al. 2018)

so that the Cauchy stress reads

where � denotes the identity tensor. In equilibrium, the chem-
ical potential, whose gradient drives the fluid flow, vanishes, 
and the hydrostatic pressure p in Eq. (14) is balanced by the 
osmotic pressure difference ��(J) , so that p = ��(J) . The 
latter, in turn, calculates from �X as (Stracuzzi et al. 2018)

and satisfies the condition ��(1) = 0.

4 � Continuum and discrete network models 
of fibrous tissues

Based on the common concepts outlined in Sect. 3, the mod-
elling approaches can generally be differentiated into two 
main strategies: continuum mechanical and discrete compu-
tational approaches. Discrete models have gained increased 
interest in recent years, particularly to shed light on multi-
scale deformation mechanisms and cell-scale events (Picu 
2011; Beroz et al. 2017; Ehret et al. 2017; Zündel et al. 
2019; Bircher et al. 2019; Eichinger et al. 2021). Continuum 
mechanical models, on the other hand, have successfully 
been used for decades, and among the various theories pro-
posed, here we consider one variant of the affine structural 
model established in the 1970s (Lanir 1979, 1983), that has 
shown great versatility and whose offshoots have become 
a popular approach in soft tissue biomechanics (e.g. Sacks 
2000; Li et al. 2018).

(13)𝛹m = 𝛹̂M(�) + 𝛹X(J),

(14)�m =
2

J

��m

��
� =

2

J

��M

��
� − p�,

(15)��(J) = −
d�X

dJ

4.1 � Affine structural continuum model (CM)

Noteworthy, in the original approach by  Lanir (1979, 
1983) the presence of fibres with different lengths was 
accounted for by a first ‘averaging’ step, that collects the 
contribution of all fibres with different lengths but equal 
orientation (e.g. Eq. 34 in Lanir 1979). In view of Eq. (10), 
this implies that the vector A characterises the orientation 
of a whole family of fibres and that, accordingly, Eqs. (3) 
and (7) account for the lumped response of all fibres with 
equal orientation in the reference state.

4.1.1 � Relation between macro‑ and micro‑kinematics

A key question in continuum mechanical approaches is 
the relation between macroscopic (tisse-scale) and micro-
scopic (fibre-scale) deformations, i.e. how orientation and 
length of a fibre change when the tissue is subject to a 
local deformation characterised by the deformation gra-
dient � . The affine structural model assumes that the unit 
vector A transforms like a material vectorial line element 
as

with �A = |�A| and |aA| = 1 . The subscript (⋅)A indicates that 
the stretch is completely determined by the deformation gra-
dient and the referential direction A in this case. The squared 
stretch of a family of fibres initially aligned with the vector 
A is therefore given by the invariant

of the two tensors � and � = A⊗ A (Spencer 1984).

4.1.2 � Free energy and stress

Equating the fibre stretch by the affine stretch �A (16), and 
considering the result in (3), the free energy density of a 
fibre becomes a scalar invariant of � and � , so that Eq. (3) 
reads

As a major consequence of the affine assumption, the fibre 
(family) stretch and thus its strain-energy density (18) for a 
given macroscopic deformation � are uniquely defined in 
terms of the orientation of A . In view of the statistics of 
fibre stretch and energy, this implies that they are exclu-
sively determined through the statistics of the referential 
orientation. The sampling space for a statistical sample thus 
becomes the unit sphere. In particular, the expected value 

(16)�A = �AaA

(17)IA = �2
A
= � ∶ �

(18)𝛹f = 𝛹̃f (IA) =
�𝛹f (�,�).
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of a fibre family’s free energy is obtained as an average over 
the fibre orientation distribution

where we bear in mind that the components of A and � can 
be expressed in terms of � and � . In accordance with Eq. (5), 
the cumulative free energy density provided by the CM thus 
takes a typical form of the strain-energy density associated 
with the fibres in the structural approach (Sacks 2000; Billiar 
and Sacks 2000; Chagnon et al. 2015)

that was reformulated by use of (7) in terms of 
Gf = Ĝf (

√
IA) . The second Piola-Kirchhoff stress contribu-

tion of the fibre families as follows:

and upon addition of the matrix part (14) the tissue stress 
provided by the continuum model in equilibrium ( p = �� ) 
is thus given by

where �CM
�f

= J−1��CM
�f

�T.

4.1.3 � Numerical approximation

Integration of equations (20) and (21) is known to be cum-
bersome, and in many relevant cases not achievable analyti-
cally, depending on the functional form of the integrand, i.e. 
the product of orientation distribution density and fibre free 
energy (Alastrué et al. 2009; Ehret et al. 2010). As a conse-
quence, numerical integration methods have to be employed 

(19)

E[𝛹f ] =∫
S

𝛹f dPA

=
1

4𝜋 ∫
2𝜋

0
∫

𝜋

2

−
𝜋

2

𝜚̂0(A)
�𝛹f (�,�) cos 𝜃d𝜃d𝜙,

(20)

𝛹CM
𝛴f

= NE[𝛹f ]

=
N

4𝜋 ∫
2𝜋

0
∫

𝜋

2

−
𝜋

2

𝜚̂0(A)
�𝛹f (�,�) cos 𝜃d𝜃d𝜙

=
N

4𝜋 ∫
2𝜋

0
∫

𝜋

2

−
𝜋

2

𝜚̂0(A) k
�
1
Ĝf (

√
IA) cos 𝜃d𝜃d𝜙 = Nk�

1
E[Gf ]

(21)

�
CM
𝛴f

= 2
𝜕𝛹CM

𝛴f

𝜕�

=
N

2𝜋 ∫
2𝜋

0
∫

𝜋

2

−
𝜋

2

𝜚̂0(A)
𝜕𝛹̃f (IA)

𝜕IA
A⊗ A cos 𝜃d𝜃d𝜙

=
N

4𝜋 ∫
2𝜋

0
∫

𝜋

2

−
𝜋

2

𝜚̂0(A)
k�
1√
IA

dĜf (𝜆)

d𝜆

�����𝜆=√IA

A⊗A cos 𝜃 d𝜃d𝜙

(22)�
CM = �

CM
�f

+
2

J

��M

��
� − ��(J)�,

to obtain acceptable approximate solutions by cubature on 
the sphere (see e.g. Dai and Xu 2013), so that

and

where Bk , k = 1, 2, ...,M define a set of integration points on 
the sphere, �k denote weights with the property 

∑M

k=1
�k = 1 

and �k = Bk ⊗ Bk . Given the typical J-shaped fibre consti-
tutive laws and their nonuniform distribution in collagen-
ous tissues, the integrand may be highly nonlinear and 
even non-analytical, e.g. piecewise defined to exclude com-
pressed fibres (Li et al. 2018), or characterised by a pole 
to include finite extensibility (Menzel and Waffenschmidt 
2009). Therefore, the discretised models (23) are in gen-
eral not exact, and moreover need a careful consideration 
of potential induced anisotropy inherited from the orien-
tation of the M directions of the integration scheme (see 
the discussions in Verron 2015; Itskov 2016). Nevertheless, 
detaching from the idea of spherical integration, the discre-
tised versions of continuum models with spatially distributed 
fibres become models on their own, and the set of directions 
formerly representing the integration scheme becomes part 
of the modelling assumption. Independent of whether seen 
as cubatures of the continuous integrals or as models on 
their own, the discrete versions have received great atten-
tion and application in soft tissue biomechanics during the 
last decade. Among the various cubature methods, we will 
restrict to spherical t-designs, designed to integrate exactly 
polynomials of order ≤ t (Hardin and Sloane 1996). They are 
characterised by equal weights �k = 1∕M , so that

Implicit but worth noting is the fact that, if M is large, the 
arithmetic mean of the M sampling directions in Eq. (25) 
provides an estimate of N times the expected value E[�f ].

4.2 � A discrete network model (DNM)

Several approaches have been proposed to model the 
network of collagen fibres by a connected set of discrete 
springs or structural elements. In this section, we resume a 
particular DNM, adopted from our previous research, and 
tailored for the application to flat collagenous tissues and 
membranes (Ehret et al. 2017).

(23)𝛹CM
𝛴f

≈ N

M∑
k=1

𝜔k 𝜚̂0(Bk)
�𝛹f (�,�k),

(24)�
CM
𝛴f

≈NJ−1
M�
k=1

𝜔k 𝜚̂0(Bk)
k�
1�
IBk

dĜf (𝜆)

d𝜆

�����𝜆=√IBk

�Bk ⊗�Bk,

(25)𝛹CM
𝛴f

≈
N

M

M∑
k=1

𝜚̂0(Bk)
�𝛹f (�,�k).
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4.2.1 � Generation of the RVE

At first, we define cuboid-shaped RVEs of dimensions 
bRVE × bRVE × tRVE , and seed a random set of points at a 
density �xl that define the referential positions of crosslinks 
between collagen fibres. These are interconnected by 1D 
straight lines with connectivity z = 4 by means of a ran-
dom weighted process in MatlabⓇ (The Mathworks, ver-
sion 2018a), steered by a target distribution of fibre length 
and orientation that defines the associated weight as

in terms of the orientation distribution density (10), and a 
given distribution density of referential fibre length between 
0 and Lcut

The latter is prescribed in terms of the �-distribution

with shape parameter a and scale parameter h, and renor-
malised by

With these choices, the following normalisation condition 
holds on the sphere

and the two decoupled functions in (26) can be viewed as 
the contribution to the probability elements (Fisher et al. 
1987) of fibre length and orientation, defined by �L(L)L2 dL , 
𝜚̌0(𝜙, 𝜃) cos 𝜃d𝜃d𝜙 , respectively.

Notably, by this procedure one generates a network of 
straight connectors instead of curvy fibres. These straight 
links representing the end-to-end vectors of the fibre seg-
ments between the cross-links will be referred to as fibres 
in what follows. In analogy to the continuum model, the 
fibre’s elastic behaviour originating from intricate mecha-
nisms of bending and stretching will be described through 
the nonlinearity of the strain-energy function �f in terms 
of its end-to-end stretch, according to Eq. (7, 8).

The RVE is generated in Abaqus/Standard (Das-
sault Systèmes Simulia Corp, Providence, RI, USA) and 
each fibre is discretised by an axial connector element 
(CONN3D2). Finally, the mechanical contribution of the 
soft matrix is considered via tetrahedral solid continuum 

(26)𝜚f0(L,𝜙, 𝜃) = 𝜚L(L)𝜚̌0(𝜙, 𝜃),

(27)𝜚L(L) =
𝛾(L)

L2Ccut

, 0 < L < Lcut .

(28)�(L) =
1

� (a)ha
La−1e−

L

h ,

(29)Ccut = ∫
Lcut

0

�(L)dL.

(30)
1

4� ∫
Lcut

0
∫

2�

0
∫

�

2

−
�

2

�f0(L,�, �)L
2 cos �d�d�dL = 1,

elements (C3D4) obtained by triangulating a subset of 
crosslinks of the RVE by means of a 3D Delaunay trian-
gulation scheme. In particular, we considered 50% of the 
crosslinks (cf. Fig. 2) at which fibre connectors and con-
tinuum elements are tightly connected (Stracuzzi 2020). 
For the simulations presented herein the RVE param-
eters were specified as bRVE = 250�m , tRVE = 150�m , 
�xl = 0.001275 nodes∕�m3 . Furthermore, the parameter 
of the length distribution density (28) were a = 15 and 
h = 1�m , respectively, so that they define the mean con-
nector length Lfc = ah = 15�m , and Lcut = 2Lfc.

4.2.2 � Fibre free energy and homogenised stress

The force-stretch law of the connector elements represent-
ing the fibres is prescribed by Eq. (8), so that for each fibre 
i = 1, 2, ...,N  in the DNM the force is

The elastic energy wk
f
 stored in a single fibre that has changed 

its length from Lk to lk = �kLk reads

(31)f (𝜆k) = K1

dĜf

d𝜆k
.

a

b

Fig. 2   Example of discrete network architecture (a) and meshed RVE 
(b). The red spheres in (a) are plotted in the locations of the inter-
nal crosslinks used for the 3D triangulation procedure. For illustra-
tion purposes the images presented in this figure were generated with 
bRVE∕3 , tRVE∕3 , Lfc∕3 , �xl × 2 compared to the values specified in 
Sect. 4.2.1
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where 𝜓̂f (𝜆k) denotes the corresponding free energy per unit 
reference length of a fibre, and for the total network within 
the RVE domain consisting of Q fibres one obtains

where Ltot =
∑Q

k=1
Lk . Division by the volume VRVE of the 

RVE provides the network’s free energy density contribution 
as introduced in (5)

and the tissue free energy density

is obtained after addition of the matrix contribution from the 
tetrahedral elements within the RVE.

The macroscopic deformations are imposed on the RVE 
by means of homogeneous boundary conditions, e.g. by 
prescribing the deformation of the RVE faces, and thus the 
displacements of the boundary nodes according to the corre-
sponding deformation gradient � . In the case of equilibrium 
at the crosslinks, i.e. zero internal forces, and quasi-static 
conditions, the RVE-averaged Cauchy stress is evaluated as 
(e.g. Chandran and Barocas 2005)

with Nb , f i and xi the number of boundary crosslinks, 
their corresponding current force and position vectors, 
respectively.

4.3 � Matching DNM and CM in the affine case

The CM and DNM described in the previous sections share 
the mechanical behaviour of matrix and fibres as well 
as the orientation distribution of the latter discussed in 
Sects. 3.3–3.5. Nevertheless, given that the CM considers 
N fibres of unspecified length, whereas the RVE of the DNM 
contains Q fibres of various length between 0 and Lcut sum-
ming up to Ltot , a reconciliating assumption is required to 
match the amount of fibre material present in both models, 
and thus to relate the constants k′

1
 and K1 in Eq. (8). To this 

(32)wk
f
=

lk

∫
Lk

f (x)dx = Lk

𝜆k

∫
1

f (y)dy = Lk𝜓̂f (𝜆k),

(33)

w𝛴f =

Q∑
k=1

wk
f
=

Q∑
k=1

Lk𝜓̂f (𝜆k)

=Ltot

Q∑
k=1

Lk

Ltot
𝜓̂f (𝜆k) = LtotE[𝜓̂f ],

(34)𝛹DNM
𝛴f

=
w𝛴f

VRVE

=
Ltot

VRVE

E[𝜓̂f ],

(35)�DNM = �DNM
m

+ �DNM
�f

(36)� =
1

JVRVE

Nb∑
i=1

f i ⊗ xi,

end, we consider the hypothetical case where the fibres in 
the DNM undergo affine deformations, and match the free 
energy density with that of the affine CM. Imposing affine 
kinematics onto the crosslinks and thus the nodes of the tet-
rahedral elements of the RVE, the matrix free energy density 
��m is identical for the CM and DNM. As a consequence, 
our matching criterion simplifies to

Since each fibre connector with initial orientation Ak in the 
DNM is now mapped affinely, its length change is charac-
terised by the stretch �k =

√
IAk

 , and the energy per unit 
fibre length (32) thus reads

Substituting this result in (34), the linearity property of the 
expectation operator provides

By direct comparison of (39) and (20) one finds

where, for consistency with current approaches in soft tissue 
modelling, the number of fibres N was lumped into k1 = Nk�

1
 , 

whose units reflect the ‘energy stored in all fibres per unit 
volume of tissue’.

We emphasise that the imposition of affinity onto the fibre 
kinematics in the random network leads to additional forces 
at the crosslinks caused by the constrained kinematics. The 
affine case is thus generally not a minimiser of the (uncon-
strained) RVE’s free energy and it is therefore hypothetical.

4.4 � Distribution densities and image‑based 
histograms of fibre orientation

Microscopy techniques and methods for image analysis 
are available to estimate the orientation of collagen fibres 
(Sander and Barocas 2009; Mauri et al. 2015), such as the 
‘Directionality’ tool or the ‘OrientationJ’ plugin in ImageJ 
(Schneider et al. 2012; Rezakhaniha et al. 2012). The latter, 
for example, uses the local image structure tensor in a small 
domain, e.g. a single pixel, which contains information on 
the principal direction of orientation and the degree of align-
ment in the eigenvector corresponding to the maximal eigen-
value and the coherency, i.e. the ratio between difference 
and sum of the eigenvalues, respectively (Rezakhaniha et al. 
2012). When applied over a larger region, e.g. the whole 

(37)�CM
�f

≡ �DNM
�f

.

(38)𝜓k
f
= ∫

√
IAk

1

f (𝜆)d𝜆 = K1Ĝf (
�

IAk
).

(39)

𝛹DNM
𝛴f

=
Ltot

VRVE

E[𝜓̂f ] =
Ltot

VRVE

E[K1Gf ] =
Ltot

VRVE

K1E[Gf ].

(40)
Ltot

VRVE

K1 = Nk�
1
=∶ k1,
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image, binning of the domain-wise outcomes with regard to 
the product of their orientation and coherency allows gener-
ating histograms of orientation R (Rezakhaniha et al. 2012), 
that provide an indication of the distribution of aligned 
structures within this region. Consequently the histograms 
represent the ‘fraction of fibre material per angle’. Literally, 
a longer fibre will generally occupy more pixels (or voxels in 
3D) in an image than a shorter one of identical orientation. 
When using experimental histograms R(�, �) to define the 
fibre distribution 𝜚̌0(𝜙, 𝜃) in the reference state, this particu-
larity is irrelevant for the models used in this study: since a 
longer fibre can be seen as a multiple of shorter fibres, this 
merely changes the meaning of the constant N in (5), which 
thus refers to the density of the ‘shorter fibres’. Moreover, 
in the proposed DNM the distributions of fibre length and 
orientation are independent of each other so that each direc-
tion is characterised by the same distribution of fibre length. 
However, the difference between the orientation distribu-
tion and the image histogram becomes consequential for 
the comparison between tissue data and models in the case 
where the fibre length correlates with the orientation. This 
situation concerns the deformed state of both DNM and CM, 
where the orientation distribution has changed from 𝜚̌0(𝜙, 𝜃) 
to 𝜚̌t(𝜙, 𝜃) . While 𝜚̌t(𝜙, 𝜃) reflects the realignment of the 
fibres, it does not account for the change of fibre material in 
a certain direction due to stretching. We therefore represent 
the distribution of orientation in a (current) length weighted 
form (cf. also Sander et al. 2009) so that

In the affine CM, we account of the change in fibre length 
through the affine stretch so that

where CCM is a normalising constant. In the DNM we rec-
oncile the two representations of orientation by weighting 
the orientation distribution 𝜚̂t(𝜙, 𝜃) predicted by the model 
by the fraction of fibre material aligned with a certain direc-
tion. Thus we have

where CDNM is again a constant for normalisation and 
the sum adds the current lengths of all fibres lk(�, �) with 
orientation specified by the angles 𝜙 ≤ 𝛼 < 𝜙 + d𝜙 and 
𝜃 ≤ 𝛽 < 𝜃 + d𝜃 . Since in the reference state fibre length 
and orientation are uncorrelated by (26), lk(�, �) in Eq. (43) 
becomes a constant, and R(�, �) reduces to 𝜚̌0(𝜙, 𝜃) . To gen-
erate histograms for the affine model the 240 integration 
point set of a spherical 21-design (Hardin and Sloane 1996) 

(41)R(𝜙, 𝜃) ≈ �(𝜙, 𝜃)𝜚̌t(𝜙, 𝜃).

(42)�(�, �) = C−1
CM

�A

(43)
�(𝜙, 𝜃) = C−1

DNM

∑
k

𝜙≤𝛼<𝜙+d𝜙
𝜃≤𝛽<𝜃+d𝜃

lk(𝛼, 𝛽),

was considered and subjected to an additional 100 random 
rotations to obtain 24240 sampling directions.

In-plane histograms R�(�) were produced by mapping 
the 3D histograms R(�, �) onto the plane � = 0 . The cor-
responding length weights therefore correspond to the pro-
jected lengths.

4.5 � Distribution of fibre stretch

Typically difficult to obtain in experiments but easily acces-
sible in simulations, we also extracted the distributions of 
axial strain or stretch in the fibres (e.g. Chandran and Baro-
cas 2005; Stylianopoulos and Barocas 2007; Sander et al. 
2009; Mauri et al. 2016; Bircher et al. 2017). Slightly differ-
ent from these fibre counts, here we use the length-weighted 
stretch distributions L(�) , that take into account the amount 
of material stretched. This concerns the DNM, where fibres 
have different length.

5 � A case study: porcine pericardium

With a thickness of 110–280� m (Naimark et  al. 1992; 
Gauvin et al. 2012; Caballero et al. 2017; Rassoli et al. 
2019), pPC is a highly hydrated collagenous membrane 
enveloping the pig heart, with a water content of about 90% 
and a total collagen content per dry weight of around 70% 
(Naimark et al. 1992). Here we use an existing data set on 
pPC samples (Ehret et al. 2017) to specify the fibre and 
matrix characteristics and to identify the material parameters 
of the DNM and the CM. To investigate the role of the dif-
ferent fibre descriptions inherent to the CM and DNM with 
regard to the mechanical response, four homogeneous states 
of deformation (cf. Fig. 3) were simulated. Furthermore, EB 
extension of a membrane with a circular defect was studied 
as an example of a heterogeneous case (see Sect. 6.5).

5.1 � Model specification

In Ehret et al. (2017), pPC specimens were subjected to 
simple tension tests. The results contained in Fig. 4a dem-
onstrate the typical, highly nonlinear J-shaped stress-strain 
response, characteristic of soft biological tissues, where the 
tension data in Ehret et al. (2017) was converted to stress for 
a typical thickness of 0.2mm.

Therefore we here describe the mechanical properties 
of the collagen fibres by the often used exponential strain-
energy density function

(44)�f = k�
1
Gf =

k�
1

2k2

�
ek2⟨�2−1⟩2 − 1

�
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according to Holzapfel et al. (2000), that specifies the CM. 
Macaulay brackets ⟨x⟩ = (x + �x�)∕2 are used to model negli-
gible fibre contribution under compression. Eq. (44) implies 
the fibre force-stretch relation

that defines the fibre behaviour in the DNM.
The membranous structure of the tissue suggests to 

model the orientation distribution (10) by a decoupled 
representation

(45)f = K1

dGf

d�
= 2K1�⟨�2 − 1⟩ek2⟨�2−1⟩2

such that � specifies the angle within the membrane plane, 
and � the out-of-plane angle, which is frequently applied to 
flat collagenous tissues (Holzapfel et al. 2015; Ehret et al. 
2017). The comparison of bovine and porcine pericardia 
suggests that the anisotropy in pPC is less pronounced 
(Gauvin et al. 2012). Moreover, the data used herein (Ehret 
et al. 2017) do not specify the orientation with respect to the 
physiological directions of the tissue, so that conclusions on 
a potential in-plane anisotropy cannot be drawn. Therefore, 
and given that this point is not fundamental for the purpose 
of our study, in-plane isotropy is assumed, i.e.

while the out-of-plane distribution is specified in terms of a 
von-Mises-type distribution density, so that (cf. Holzapfel 
et al. 2015)

The functions (47) and (48) are plotted in Fig. 5a,b.
Similar to other collagenous membranes, pPC is char-

acterised by strong lateral contraction and severe volume 
reduction under tensile load (Fig. 4b–d) and responds to 
changes of the osmolarity of the environment (Ehret et al. 
2017). In line with these results, the matrix constitutive 
law (14) was therefore specified by (Ehret et al. 2017; 
Stracuzzi et al. 2018)

where

providing the osmotic pressure difference with respect to 
the reference value �0 and with � a nonlinearity parameter.

5.2 � Numerical implementations

All DNM simulations were run in Abaqus (Abaqus/Standard 
6.14-1, Dassault Systèmes Simulia Corp, Providence, RI, 
USA) using the Python interface, and based on custom For-
tran user material subroutine (UMAT) for the matrix con-
tribution. For numerical stabilisation of the computations, a 
small additional damping contribution dc𝜆̇f ( dc = 0.001�Ns ) 
was added to the force (45) of each connector (cf. Mauri 
et al. 2016). The CM simulations in Sect. 6.5 were also 
simulated using Abaqus and adopting the same material 

(46)𝜚̌0(𝜙, 𝜃) = 𝜚0
𝜙
(𝜙)𝜚0

𝜃
(𝜃),

(47)𝜌0
𝜙
(𝜙) = 1, 0 ≤ 𝜙 < 2𝜋,

(48)𝜌0
𝜃
(𝜃) = 2

�
2b

𝜋

e{b[cos(2𝜃)−1)]}

erf(
√
2b)

, −
𝜋

2
≤ 𝜃 <

𝜋

2
.

(49)�m =
c

J

[
� − J2m�

]
− ��(J)�,

(50)��(J) = �(J) − �0 = �0

⎡
⎢⎢⎣

�
1 − �ref

s

J − �ref
s

��

− 1

⎤⎥⎥⎦
,

Fig. 3   Sketches of the homogeneous deformation states used for 
numerical investigations: uniaxial (UA), equibiaxial (EB), simple 
shear in the xz (S-xz) and xy (S-xy) planes, respectively
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subroutine for the matrix. The simulations of homoge-
neous deformation states of the CM as well as all the 

postprocessing analyses were performed with custom-made 
scripts using Matlab® (version R2018a, The MathWorks, 
Inc.).

6 � Comparison of CM and DNM

6.1 � Calibration of the DNM

The DNM was calibrated against the UA tension data in 
terms of both nominal stress and kinematics (Fig. 4a,b,c) 
(Ehret et  al. 2017). Since an approximate match of the 
response was sufficient for the scope of the study, the 
unknown parameters of the DNM were hand-tuned in order 
to represent the UA behaviour of pPC. In consideration of 
the observable experimental variability, acceptable agree-
ment was obtained with the parameters listed in Table 1 in 
terms of the nonlinear stress-strain response and the reduc-
tions in width, thickness and, consequently, volume (black 
lines in Fig. 4).

The experimental data were given with respect to a small 
threshold load of 0.1N defining the reference state (Ehret 
et al. 2017), corresponding to the stretch ��

1
= �1∕�th = 1 

and a nominal stress threshold of 0.0333MPa for a typical 
thickness of 0.2mm. This threshold stress is also applied 
during the calibration of the DNM, which afterward pro-
vides access to the stress and kinematics responses start-
ing from the zero-stress state, i.e. �1 = 1 (cf. black lines in 
Fig. 6). For this reason, and in view of the experimental 
scatter, the parametrised model was used as a new ground 
truth for reference, and in addition to the UA data, an EB 
data set was generated by a DNM simulation of the EB load 

Fig. 4   Nominal stress (a) and 
kinematics (b–d) in UA tests of 
pPC (experimental data from 
Ehret et al. 2017) and cor-
responding DNM (black solid 
lines). Data are represented 
with respect to a threshold force 
Fth = 0.1N with correspond-
ing stretch �th , and the abscissa 
was scaled accordingly so that 
�
1
= ��

1
�th . Green lines and 

shaded areas in (c,d) represent 
mean and ± standard deviation, 
respectively

a b

dc

a

b

Fig. 5   In-plane (a) and out-of-plane (b) fibre orientation density 
functions nominally imposed with the RVE generation algorithm 
(black curves) and extracted (histograms) from the actual RVE 
realisation. Histograms were mapped to the domain 0 ≤ 𝜙 < 𝜋 , 
0 ≤ 𝜃 < 𝜋∕2 , due to symmetry. The out-of-plane orientation function 
was re-calibrated (dashed red curve) to perform the simulations pre-
sented in Sect. 6.5.3
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case (Fig. 3) to serve as a basis for comparison with the CM 
(Fig. 7). 

6.2 � Fitting of the CM

The CM was calibrated against the stress and kinematic 
responses of the parametrised DNM under UA and EB con-
ditions by minimizing the objective function of the form

where wq represent weight factors. Eq. (51) estimates the 
cumulative square error deriving from the point-to-point 
comparisons between the CM and the corresponding DNM 
curves for the ith �1 , where � ∶= { UA,EB } identifies the 

(51)
∑
�

∑
q

e�
q
, e�

q
= wq

∑
i=1

(
q�
i
||CM − q�

i
||DNM

)2
,

Fig. 6   First Piola-Kirchhoff 
stress (a) and kinematics (b, c, 
d) in UA test for both the DNM 
(black) and CM (red)

a b

dc

Table 1   Material parameters involved in the calibration of the mod-
els. Other parameters used in the simulations and equal for the two 
models: �

0
= 0.001MPa , � = 1.1 , �ref

s
= 0.1

*Nominal value (cf. Fig. 5)

Parameter Units DNM CM

c [MPa] 0.1 0.15803
m [-] 1.8 2.2811
b [-] 4∗ 5.9865
k
2

[-] 19.3 21.4274
K
1

[N] 0.1 –
k
1

[MPa] – 41.247

a b c

Fig. 7   First Piola-Kirchhoff stress (a) and kinematics (b, c) under EB loading simulated with the DNM (black) and CM (red), respectively
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type of deformation and q ∶= {�2, �3,Pxx} the specific 
quantities considered, whose target curves are plotted in 
Figs. 6a–c and 7a,b. We note that, for the fitting procedure, 
no stress threshold was considered and also that in the EB 
load case �2 was prescribed and does not contribute to the 
error.

Noteworthy, not only the fibre-related parameters b, k1 
and k2 , but also m and c associated to the matrix had to be 
included in the optimisation procedure to obtain acceptable 
agreement with the DNM in both the UA (Fig. 6) and EB 
(Fig. 7) cases. Table 1 lists the parameters involved in the 
optimisation routine, while those common to the DNM and 
CM are given in the caption.

6.3 � Predicted macroscopic response in simple shear

To evaluate the predictive capabilities of the fitted CM in a 
different deformation state, we then simulated simple shear 
in the xy and xz planes with corresponding deformation 
gradients

For both the shear (Fig. 8a) and normal (Fig. 8b,c,d) com-
ponents of the Cauchy stress, the results of the simulations, 
for both the DNM and CM, show an expected stiffer behav-
iour for the S-xy case compared to the S-xz, due to the pro-
nounced in-plane orientation of the fibres (48). However, 
when comparing DNM and CM, considerable disagreement 
is observed for all the stress components. Drastic discrepan-
cies are observed in the initial slope, i.e. the shear stiffness 

(52)�S-xy = � + 𝛾ex ⊗ ey �S-xz = � + 𝛾ex ⊗ ez.

at small deformations, and in the nonlinearity of the curves. 
The results highlight that the ‘equivalence’ between the 
DNM and the CM, once matched with UA and EB data, 
does not hold in general at the macroscale for generic states 
of deformation.

6.4 � Micro‑to‑macro predictions

The fibre parameters of the calibrated DNM can be trans-
ferred to the CM to predict the tissue response based on 
‘true’ fibre properties. To this end, the parameter k1 of the 
CM was calculated through the relation (40), where the fac-
tor Ltot∕VRVE is obtained from the used RVE realisation of 
the DNM (see Table 1). Furthermore, given that in the DNM 
the RVE’s statistical realisation of the out-of-plane distribu-
tion is not perfectly matching the nominal one, a new value 
of the parameter b of the von-Mises function was deter-
mined from the extracted fibre distribution (see Fig. 5b) and 
adopted to provide a fair comparison. The simulations of UA 
(Fig. 6) and EB (Fig. 7) extensions show large differences 
between the DNM (black lines) and the �2M predictions 
(dashed red lines), for both stress and kinematics responses. 
Since the same microscale parameters were used to charac-
terise the fibre distribution and mechanical response of the 
fibres, the observed mismatch provides a first indication of 
the impact of the affinity assumption intrinsic to the CM.

6.5 � Macro‑to‑micro predictions

Vice versa the calibrated CM provides another set of 
fibre-scale material parameters that define the constitutive 

Fig. 8   Shear (a) and diagonal 
(b, c, d) components of the 
Cauchy stress tensor in simple 
shear test for both the DNM 
(black) and CM (red)

a b

dc
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behaviour of the fibres in this model. Moreover, the affine 
assumption predefines their reorientation with applied strain. 
These macro-to-micro (M2� ) predictions were compared to 
the DNM results.

6.5.1 � Predicted fibre behaviour

Using Eq. (40), we calculated the single fibre stiffness 
parameter K1 from the corresponding, fitted k1 of the fitted 
CM, and plotted the corresponding force-stretch law of a sin-
gle fibre (Fig. 9). The comparison with the analogous ground 
truth constitutive law implemented in the DNM reveals the 
considerable difference in the fibre elastic behaviour, with a 
M2� prediction that is much softer than the ‘true’ one used 
in the calibrated DNM (cf. Fig. 9).

6.5.2 � Predicted network kinematics in presence of a defect

We further compared the matched DNM and CM models 
in terms of the spatial orientation of the fibres in an inho-
mogeneous load state. We considered the EB extension of a 
tissue-scale square piece of membrane with a central circular 
defect of 1mm radius. Due to the symmetry of the material, 
load and geometry, we used and meshed only one octant of 
the full domain and applied symmetry boundary conditions 

(Fig. 10), resulting in a final side length and thickness of 
10mm and 100� m, respectively. The membrane was equibi-
axially extended by 8 % of its original dimensions and the local 
deformation gradient was extracted at the centroids of finite 
elements located at the defect (near field) and, for compari-
son, at the membrane boundary (far field), respectively. (cf. 
Fig. 10). With respect to the bases constructed from the vec-
tors {ex, ey, ez} of the global reference frame in Fig.10, the 
(rounded) components read

These two tensors were used to generate homogeneous 
boundary conditions for the DNM in two corresponding 
simulations. From these, we extracted the weighted distri-
butions of the spatial R and in-plane R� orientation, and we 
evaluated the distribution of the fibre stretch L (Figs. 11 and 
12). For the sake of comparability, the 2D histograms are 
normalised such that ∫

I
g(x)dx = 1 , with g(x) the analysed 

distribution density of x and I its definition domain (‘pdf’ 
option in Matlab). The 3D spatial distributions R were 
evaluated in the domain (�,�) ∈ [0,�∕2] × [0,�] and then 
properly mirrored to get a 360◦ solid aspect.

The results for the near and the far field are reported in 
Figs. 11 and 12, respectively. The first column displays the 
distributions analysed in the reference configuration. The 
differently fitted parameters of the von-Mises distribution in 
the CM and DNM (cf. Table 1) lead to a slight mismatch of 
the out-of-plane distributions already in the reference state. 
In the second column, we show the orientation and stretch 
distributions extracted from the deformed configurations. 

(53)[Fij]
near =

⎡
⎢⎢⎣

0.810 − 0.007 0.005

−0.005 1.147 0.0

−0.018 0.0 0.580

⎤
⎥⎥⎦
,

(54)
�
Fij

�far
=

⎡
⎢⎢⎣

1.079 0.0 0.0

0.0 1.080 0.0

0.0 0.0 0.548

⎤
⎥⎥⎦
.

Fig. 9   Force-stretch response of the fibre connectors in the DNM 
(black) and as obtained from the fitted CM (red)

Fig. 10   Computational model of a tissue sample with a circular defect. The deformation gradient tensor � is extracted in the near and far fields, 
and it is used to evaluate the distribution of orientation and stretch of the fibre connectors
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The difference between the two models in terms of orien-
tation is due to not only a propagation of the discrepancy 
at the reference, but also an effect of the different fibre 
motion. Most notable is the large difference between the 
models in terms of the stretch distribution (last row) ascrib-
able to the affine vs. non-affine motions of the fibres in the 
two approaches. To better visualise the mismatch, we sub-
tracted the histograms from each other and represented the 
absolute value of the difference in another histogram (last 
column). Adding up each bin’s volume ( R ) or area ( R� ), 
respectively, and relating it to the corresponding values of 
the DNM provides a scalar measure � to quantify the mis-
match. Interestingly, despite the mismatch in the referential 

angular distribution between DNM and CM, the values of � 
associated with the orientation distributions (6.8% and 4.1% 
for near and far field, respectively) are small, especially if 
compared to the corresponding values estimated for the 
stretch distributions (114.5% and 183.5%). This aspect is 
further analysed in the next paragraph, in which the source 
of error due to the fibre orientation in the reference configu-
ration was properly eliminated. 

6.5.3 � Affine vs. non‑affine DNM

In the previous analysis, the measured errors between 
DNM and CM in the fibre stretch and orientation 

Fig. 11   Fibre orientation histograms R (first row), R� (second row) 
and stretch distributions (third row) in the reference (first column) 
and deformed (second column) configurations of an element extracted 
from the circular hole (cf. Fig. 10) and subjected to �near . Data from 

DNM simualtions are reported as grey or grey-scale histograms. Data 
from the fitted CM are reported as red lines or red-scale histogram. 
In the last column, the corresponding absolute differences between 
DNM and CM data in the deformed configuration are reported
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distributions may not only result from the different defor-
mation behaviour of the fibres, but also from the different 
parameters in the referential out-of-plane density functions 
between CM and DNM (cf. Table 1). To illustrate the iso-
lated effect of the affinity assumption on kinematics, affine 
deformations were enforced in the DNM by prescribing 
the displacements of all crosslinks in the RVE in terms 
of the deformation gradients �near and �far (cf. Chandran 
and Barocas 2005). Interestingly, the in-plane orientation 
histograms in the deformed configurations are almost coin-
cident for both the affine and non-affine DNMs (black solid 
lines and grey histograms, respectively, in Fig. 13). How-
ever, similar to Figs. 11 and 12, the corresponding fibre 

stretch distributions are considerably different between the 
two cases (last row in Fig. 13), thus revealing the distinc-
tive motion of the fibres for each DNM.

For the sake of completeness, we also included the 
same results obtained with a CM for which we considered 
a parameter of the von-Mises distribution b = 3.27 , i.e. 
coincident with the best fit to the used DNM (see Fig. 5b). 
As expected, the results are essentially overlapping those 
obtained with the affine DNM (black vs. dashed red lines 
in Fig. 13).

Fig. 12   Fibre orientation histograms R (first row), R� (second row) 
and stretch distributions (third row) in the reference (first column) 
and deformed (second column) configurations of an element extracted 
from the far field (cf. Fig. 10) and subjected to �far . Data from DNM 

simualtions are reported as grey or grey-scale histograms. Data from 
the fitted CM are reported as red lines or red-scale histogram. In the 
last column, the corresponding absolute differences between DNM 
and CM data in the deformed configuration are reported
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7 � Discussion and conclusions

The DNM and CM presented in the previous sections are 
developed in a coherent way and share the same features. 
Specifically, the fibre orientation distributions describing the 
material anisotropy, the constitutive relations for matrix and 
fibres and the ‘fibre content’. However, the need for indi-
vidual parameter identification to obtain the same response 
in homogeneous UA and EB states and the ample mismatch 
of the predictions in the shear states (cf. Fig. 8) evidence 
that the DNM and the CM do not describe the same mate-
rial per se.

7.1 � Macro‑ and micro‑behaviours are not bijective

The evident sound agreement between CM and DNM 
approaches when compared to a limited set of tissue scale 
experimental data (Figs. 6, 7) suggests that they have similar 
capacity in representing the macromechanical response of 
soft biological tissues. This is not surprising and in agree-
ment with the vast amount of work that contributed to the 
advances in the biomechanics of soft biological tissues 

during the last decades. Given that, most probably, any 
CM would outperform a DNM in terms of computational 
efficiency, the effective CM approach would therefore 
remain the model of choice for many problems in tissue 
biomechanics.

However, the agreement in terms of the macroscopic 
response is in general not a sufficient condition to assume 
agreement in terms of micromechanics, i.e. the mechanisms 
of deformation at lower length scales. Vice-versa, furnish-
ing the models with identical fibre-scale properties does not 
imply that the tissue-scale responses are in agreement. This 
is showcased by the � 2M and M2� predictions: the former 
demonstrates that, if the parameters of the DNM are trans-
ferred to an equivalent CM, the predicted stress responses 
for homogeneous deformations (cf. Figs. 6 and 7) are consid-
erably higher than the DNM ones (cf. Chandran and Barocas 
2005). Correspondingly, the M2� analysis predicts a much 
softer response of a discrete ‘fibre’ (cf. Fig. 9), when the 
parameters of the calibrated CM are used to derive the force-
strain law of an axial connector in the DNM. In view of the 
shared ingredients of the two models, this discrepancy must 

Fig. 13   In-plane fibre orientation histograms R� (first row) and 
stretch distributions (second row) in the reference (first column) and 
deformed configurations, near field (second column) and far field 
(third column). DNM simulations are reported as grey histograms, 

DNM simulations with affine deformations as black curves, and 
predictions of the CM with re-calibrated out-of-plane orientation 
( b = 3.27 , cf. Fig. 5b) as dashed red lines
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be attributed to the different fibre kinematics inherent to the 
two approaches.

7.2 � Affinity may not desrcibe the cell‑scale 
environment

Continuum models with ‘fibres’ have been successfully used 
to rationalise ex vivo tests on soft biological tissues. At this 
length scale of analysis ( ∼ mm ), the continuum hypothesis 
applies and the strain field is well approximated by affinity. 
Yet, microscopy studies reveal that the strain transfer across 
the scales in soft biological tissues is generally nonuniform 
(Upton et al. 2008; Han et al. 2013), so that deformations 
at the lower length scales can be highly heterogeneous and 
non-affine, and only become affine upon averaging over a 
critical length scale. This is consistent with the computa-
tional results of this study, as well as previous work (Mauri 
et al. 2016; Bircher et al. 2017; Chandran and Barocas 2005; 
Sander et al. 2009), that showed that the ECM deforms 
heterogeneously within the RVE and in particular that the 
fibres are subjected to stretches within a wide range, but of 
typically lower magnitude than the macroscopic principal 
stretches.

Considered as an indicator of the error in predicting local 
strains, the stretch distributions obtained with our simula-
tions (cf. second column, last row in Figs. 11 and 12) show a 
remarkable differences between the ‘true’ DNM (grey histo-
grams) and the corresponding CM (red lines). In fact, in the 
DNM the fibre elements tend to accommodate the applied 
macroscopic deformation by reorienting and limiting their 
extension at the same time, thus explaining the peak of the 
stretch histograms around 1 (grey histograms in Figs. 11 
and 12). More directly, the cumulative distribution func-
tions (CDFs) derived from these histograms (Figs. 14a,b) 
demonstrate that the percentage of highly stretched ‘fibres’ 
is very small in the DNM, while it is much higher in the 
CM, even trespassing the 90% in the equibiaxially loaded 
far field (Fig. 14b).

In addition to this, while in the CM the initial orienta-
tion is uniquely correlated with both the orientation and the 
stretch at a given deformation state, such a correlation is 
lacking in the DNM. In Figs. 15 and 16 we plot the stretch 
and the out-of-plane angle of each ‘fibre’ of the DNM, 
respectively, in the deformed states, near field (a), far field 
(b), as a function of the reference angles � and � . For com-
parison, we also plot the predicted fibre stretch and out-
of-plane angle in the deformed states, as prescribed from 
the affine assumption, i.e. �f (�,�) =

√
� ∶ �(�,�) and 

�∗(�,�) = arcsin
(
�A(�,�) ⋅ ez∕|�A(�,�)|

)
 . The figures 

clearly indicate that, while the function �f (�,�) and �∗(�,�) 
describe smooth surfaces for the affine case, the correspond-
ing values in the case of the DNM are highly scattered. This 

result is in line with the 2D analysis in Chandran and Baro-
cas (2005, Figs. 8a, 9a therein).

The significant difference between the stretch distribu-
tions of continuum and discrete approaches, and the lack of a 
one-to-one correspondence between a reference fibre vector 
and its deformed counterpart complicate the mathematical 
description of the multiscale mechanics of soft tissues by 
means of continuum approaches. Such a description would 
be key for studies on the effect of macroscopic loads on the 
cell or fibre scales. For example, mechanobiological models 
involving cell-matrix interactions (e.g. Obbink-Huizer et al. 
2014; Loerakker et al. 2016; van Kelle et al. 2019) or those 
dealing with changes of microstructure due to fibre over-
stretching, preconditioning and damage (e.g. Balzani et al. 
2006; Ehret and Itskov 2009; Sáez et al. 2011). Although 
these models provide a good phenomenological represen-
tation of the macroscale responses induced by changes at 
the lower length scales, the information that can be inferred 
about the state of the microscale components (cell or fibres) 
could be strongly corrupted by the affinity assumption, since 
in real tissues cell and fibre strains may be considerably dif-
ferent from the ones obtained with an affine behaviour.

a

b

Fig. 14   Cumulative distribution functions (CDFs) of the fibre stretch 
�f for the deformation states of the near field (a) and far field (b), 
deriving from the corresponding histograms plotted in Fig.  11 and 
Fig. 12. Black lines correspond to the DNM, red lines to the CM
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7.3 � Fibre reorientation is not a sufficient indicator 
of affinity

Various microscopy techniques were used to study the fibre 
reorientation in soft tissues upon application of mechani-
cal loads, and the measured mapping between reference and 
deformed orientations was analysed to verify the existence 
of affine kinematics. For example, light microscopy of col-
lagen through the thickness of porcine skin in unconfined 
compression tests indicated non-affine behaviour (Hepworth 
et al. 2001). Non-affine deformations of fibres were also 
assumed in human supraspinatus tendon by interpretation 
of polarised light microscopy (Lake et al. 2011), in bovine 
annulus fibrosus through confocal microscopy (Huyghe and 

Jongeneelen 2011), as well as rabbit, porcine and human 
arterial tissue by means of multiphoton microscopy (Krasny 
et al. 2018; Cavinato et al. 2020). Conversely, in the detailed 
study by Lee et al. (2015), various techniques, including 
multiphoton microscopy, small angle light scattering and 
small angle X-ray scattering, were used to measure both col-
lagen fibril and fibre orientations in biaxial tests on bovine 
mitral valve tissue. The analysis showed that the orientations 
of collagen at both scales, i.e. for fibrils and fibres, are con-
sistent with the assumption of affinity.

While the degree of affinity may not only be length scale- 
but also tissue-specific, and moreover dependent on the par-
ticular architecture and properties of the non-fibrous matrix 
constituents (Hatami-Marbini and Picu 2009; Zhang et al. 

Fig. 15   3D plots of the fibre stretch as a function of its reference 
spherical angles � and � , for the DNM (clouds of black points) and 
the CM (smooth, shaded red surfaces), in the deformation states of 
the near field (a) and far field (b)

Fig. 16   3D plots of the out-of-plane orientation �∗ as a function of 
the reference spherical angles � and � , for the DNM (clouds of black 
points) and the CM (smooth, shaded red surfaces), in the deformation 
states of the near field (a) and far field (b)
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2013), previous results with numerical models of 2D net-
works (Chandran and Barocas 2005) suggested that meas-
ures based only on orientation do not represent a reliable 
metric to quantify affinity. In line with these findings, our 
study clearly shows that the orientation distribution of the 
fibres congruent with an affine motion does not imply affin-
ity itself. This is underpinned by the comparison between the 
affine and non-affine DNMs, that reveals extremely different 
stretch distributions (second row in Fig. 13) but almost iden-
tical orientation histograms (first row in Fig. 13) between 
the two cases. In conclusion, these results indicate that an 
analysis of the full kinematics, i.e. orientations and stretches, 
would be required to assess affinity, and that fibre reorienta-
tion in line with the affine model merely represents a neces-
sary but not sufficient condition for affine fibre deformations.

7.4 � Concluding remarks

In this work, we considered two different approaches, dis-
crete and continuum, to describe the mechanics of soft 
fibrous tissues across the length scales. Based on parametri-
sations that capture the macroscopic response of a sample 
tissue to selected deformed states with similar quality, the 
implemented DNM and CM were used to predict the defor-
mations of what is termed ‘fibres’ in these models.

Clearly, the DNM and CM used in this work represent 
particular choices and the results will be specific to these 
selections to some extent. The network architecture, in 
particular the fibres’ density, orientation, their length dis-
tribution and the network’s coordination number, often 
identified in reconstituted collagen gels below the value of 
z ≈ 4 used here (Lindström et al. 2010; Jansen et al. 2018), 
are known to affect the network response (Islam and Picu 
2018; Davoodi Kermani et al. 2021). Moreover, non-affine 
continuum mechanical approaches have been proposed to 
model fibre network materials (e.g. Raina and Linder 2014) 
to overcome limitations of the affine approach. Nevertheless, 
the models studied herein stand for the key characteristics 
of the DNM and CM approaches, primarily the difference 
between energy minimisation and kinematic prescription 
that determine the ‘fibre’ deformation, respectively. Taking 
for granted that continuum models are by definition limited 
in describing characteristics at lengths scales below which 
the continuum hypothesis applies, our study follows a struc-
tured and rigorous quantification of the potential errors and 
misinterpretations occurring when these approaches are 
applied to model the fibre scale kinematics in soft biologi-
cal tissues.

Large efforts have been made recently to investigate in 
dedicated experiments whether the deformation of the col-
lagenous structures in soft biological tissues is affine or non-
affine. In this regard, a major result of our analyses points at 

the importance of considering the full fibre kinematics, i.e. 
spatial orientations and stretches, for the assessment of affine 
vs. non-affine motion of fibres. This implies that DIC tech-
niques, mainly resting on the analysis of the change of orien-
tation to date, should also track changes in fibre lengths upon 
deformation, even if this poses a clear technical challenge.

With regard to modelling, our findings emphasise that 
continuum models are not only able to capture the macro-
scopic behaviour, but also provide meaningful insights to 
fibre reorientation. The interpretation of the stretch, energy 
or force of what is called a ‘fibre’ in the CM in terms of real 
fibres in a collagenous network and the use of these metrics 
as cell-scale stimuli in mechanobiological models, however, 
remains a risky interpretation across the length scales, unless 
the affinity, or any other modelling assumption on the fibre 
motion, has been verified.
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