Table 2.
S.No. | Plant | Family | Chemical constituents | Antidiabetic action | References |
---|---|---|---|---|---|
1 | Abies pindrow | Pinaceae | Globulol, maltol, borneol, linalool | Stimulation of insulin secretion | Sinha et al., 2019 |
2 | Acacia arabica | Fabaceae | Mallic acid, chlorogenic acid, catechin, epicatechin, chiorogenic acid, ellagic acid, corosolic acid, | Increasing the release of insulin |
Hegazy et al. (2013), Bharti et al. (2018) |
3 | Achyranthes rubrofusca | Amaranthaceae | Betulinic acid, momordin Ib, zingibroside R1, Achyranthoside IV | Reduction of blood glucose level and restore pancreatic enzymatic activity | Geetha et al. (2011); He et al. (2017) |
4 | Agrimony eupatoria | Rosaceae | 4-caffeoylquinic acid, 3,5-dicaffeoyl quinic acid and luteolin-7-O-glucoside | Insulin-like and insulin releasing activity | Kuczmannová et al. (2016) |
5 | Albizzia lebbeck | Fabaceae | Albizziahexoside, lupeol, docosanoic acid, oleanolic acid, beta- sitosterol | α-amylase and α-glucosidase inhibitor activity | Verma et al. (2013); Ahmed et al. (2014) |
6 | Aloe vera | Asphodelaceae | lophenol, and cycloartanol | Inhibition of α-amylase and α-glucosidase enzymes | Tanaka et al. (2006); Muñiz-Ramirez et al. (2020) |
7 | Amaranthus tricolor | Amaranthaceae | Betacyanins, betaxanthins, rutin, isoquercetin, ferulic,ellagic, p-coumaric | Anti-α-amylase and anti-α-glucosidase activity | Yang et al. (2020); Peter and Gandhi (2017) |
8 | Anacardium occidentale | Anacardiaceae | Anacardic acid, cardanol, cardol | α-glucosidase inhibitor | Jaiswal et al. (2016); Palheta and Ferreira (2018) |
9 | Annona squamosa | Annonaceae | Acetogenin, annonacin, annonastatin samaquasine, squamone, acetogenin | Increase level of plasma insulin | Shirwaikar et al. (2004); Zahid et al. (2018) |
10 | Averrhoa bilimbi | Oxalidaceae | Cyanidin-3-o-h-glucoside, citric acids, amino acids | Increase level of plasma insulin | Kurup and S, 2017; Mathew et al. (2017) |
11 | Azadirachta indica | Meliaceae | Nimbidin | Normalizing altered insulin signaling molecules | Satyanarayana et al. (2015) |
12 | Barleria prionitis | Acanthaceae | Balarenone, pipataline, prioniside B, lupeol | Decrease blood glucose and increase serum insulin level | Dheer and Bhatnagar (2010); Shukla and Gunjegaonkar (2018); Banerjee et al. (2012) |
13 | Bauhinia thoningii | Fabaceae | Alepterolic acid, methyl-ent-3β-hydroxylabd-8(17)-en-15-oate, 2β-methoxyclovan-9α-ol (1) | Insulin mimetic activity | Salehi et al. (2019) |
14 | Bixa orellana | Bixaceae | Cryptoxanthin, phytoene, lutein, zeaxanthin | Promote binding of insulin on receptor and increase plasm insulin level | Vilar et al. (2014) |
15 | Boerhaavia diffusa | Nyctaginaceae | β-Sitosterol, arachidic acid, Ecdysone, urosilic acid, palmitic acid, hexacosonoic, β-triacontanol, hentriacontane |
Increase level of plasma insulin | Alam et al. (2018) |
16 | Caesalpinia ferrea | Fabaceae | Galactomannan, kaempferol, galloylorientin, heptacosan | α-Amylase enzyme inhibitory action |
Hassan et al. (2015); Macêdo et al. (2020) |
17 | Camellia sinensis | Theaceae | Catechins, theaflavins, and caffeine | α-Amylase and α-Glucosidase inhibitory activity | Fu et al. (2017); Ardiana et al. (2017) |
18 | Capsicum frutescens | Solanaceae | Octadecadienal (Z), tetracosane, 3-carene, 5-eicosene, docosane | Stimulation of insulin secretion | Dougnon and Gbeassor (2016); Gurnani et al. (2016) |
19 | Casearia esculenta | Flacourtiaceae | 3-hydroxymethyl xylitol | Insulin mimetic action | Govindasamy et al. (2011); Prakasam et al. (2005) |
20 | Cassia fistula | Fabaceae | β-sitosterol, lupeol, kaempferol, fistulin, rhein, leucopelargonidin | Increase insulin-stimulated glucose uptake | Einstein et al. (2013); Rahmani et al., 2015 |
21 | Cassia grandis | Fabaceae | Linalool | α-glycosidase inhibitory activity | Lodha et al. (2010); Prada et al. (2018) |
22 | Catharanthus roseus | Apocynaceae | Limonene, dotriacontane, geraniol, citral, phytol | Increased secretion of insulin from β-cells pancreas | Rasineni et al. (2010); Lawal et al. (2015) |
23 | Cecropia pachystachya | Urticaceae | C-glycosyl flavonoids, proanthocyanidins | Increase secretion of insulin | Rivera-Mondragón et al. (2017); Costa, 2011 |
24 | Ceriops decandra | Rhizophoraceae | Ceriopsin, lupeol, oleanolic acid, α-amyrin, ursolic acid, and catechin | Regeneration of β cells | Mahmud et al. (2018); Nabeel et al., 2010; Arora et al. (2014) |
25 | Chiliadenus iphionoides | Asteraceae | 1,8-cineole, camphor, α-terpineol, terpin-4-ol, and bornyl formate | Increase secretion of insulin | Salehi et al. (2019); Abdelhalim et al., 2020 |
26 | Cinnamomum cassia | Lauraceae | Cinnamaldehyde | Insulin mimetic action | Elumalai et al. (2011); Yan et al. (2015) |
27 | Citrullus colocynthis | Cucurbitaceae | Cucurbitacin L, isovitexin, khekadaengoside E |
Restoration of pancreatic β-cells | Zheng et al. (2020); Dhakad et al. (2017); Shi et al. (2014) |
28 | Clausena anisata | Rutaceae | β-pinene, germacrene-D, sabinene, linalool, estragole | Stimulation of insulin secretion | Yakoob et al. (2016); Govindarajan, 2010 |
30 | Coscinium fenestratum | Menispermaceae | Hentriacontan, palmitic acid, β-sitosterol, oleic acid | Decrease gluconeogenesis and increase enzymatic activity | Nayak et al. (2012); Malarvili et al. (2011) |
31 | Eucalyptus citriodora | Myrtaceae | Citronellol acetate, cis-geraniol, dihydrocarveol acetate, β-bisabolene, 3-hexen-1-ol, and pregn-5-en-20-one,3,17-dihydroxy-3-acetate | Increase glucose transporter 4 (GLUT-4) translocation | Wang et al. (2014); Dey and Mitra (2013) |
32 | Eucalyptus globulus | Myrtaceae | 1,8-cineol, α-pinene | Enhance release of insulin from clonal pancreatic beta line | Chakraborty et al. (2018); Sebei et al. (2015) |
33 | Ficus religiosa | Moraceae | n-octacosanol, β-sitosteryl-D-glucoside, stigmasterol, lanosterol, methyl oleanolate, lupen-3-one |
Stimulation of insulin secretion | Pandit et al. (2010); Chandrasekar et al. (2010) |
34 | Gymnema sylvestre | Apocynaceae | Gymnemic acid, gurmarin, tartaric acid, glucose, calcium oxalate, betaine, stigmasterol, and choline | Prevents absorption of glucose by the intestine to reduce blood sugar level | Kanetkar et al. (2007); Khan et al. (2019); Tiwari et al. (2014) |
35 | Heinsia crinata | Rubiaceae | Sapogenin, neochlorogenin and diosgenin | Insulin level elevating effect | Okokon et al. (2009); Yobe et al. (2017) |
36 | Helicteres isora | Sterculiaceae | Kaempferol 7-O-coumaroylhexoside,rosmarinic acid and kaempferol 7-O-rhamnosylhexosides | Increase uptake of glucose | Olivas-Quintero et al. (2017) |
37 | Hibiscus rosa | Malvaceae | Beta-carotene, anthocyanin, Beta-sitosterol, arabinogalactans, gossypetin, l-ascorbic acid, citric acid | Stimulation of insulin secretion from beta pancreatic cells | Moqbel et al. (2011) |
38 | Ipomoea batata | Convolvulaceae | Caffeic acid, chlorogenic acid, rutin, quercetin | Decrease insulin resistance | Akhtar et al. (2018); Zengin et al. (2017) |
39 | Juniperus communis | Pinaceae | Longifolene, totarol, transcommunic acid | Stimulation of insulin secretion and increase glucose consumption | Raina et al. (2019) |
40 | Momordica charantia | Cucurbitaceae | Charantin, cucurbitacins, karounidiols, multiflorenol and nerolidol | Regulate glucose absorption by the gut and stimulate its uptake into muscles | Joseph and Jini (2013); Singh et al. (2011) |
41 | Moringa oleifera | Moringaceae | Oleic acid, ascorbic acid, 9-octadecenoic acid and 9- octadecenamide | α-glucosidase and pancreatic lipase inhibitory activity | Chen et al. (2020); Aja et al. (2014) |
42 | Murraya koenigii | Rutaceae | Linalool, geranyl acetate, elemol, allo-ocimene, myrcene, α-terpinene and neryl acetate | Increased the secretion of insulin and glycogenesis process | Rajendran et al. (2014); Sk et al. (2017) |
43 | Olea europia | Oleaceae | Oleuropeoside | Increase uptake of glucose and release of insulin | Paramanick and Sharma (2017) |
44 | Opuntia ficus-indica | Cactaceae | Phytol, palmitate palmitic acid, and vitamin E | Increases glucose uptake through activation of AMPK/p38 MAPK pathway | Halmi et al. (2012); Luo et al. (2010); Leem et al. (2016) |
45 | Origanum vulgare | Lamiaceae | Amburoside A, apigenin 7-O-glucuronide, luteolin 7-O-glucuronide, lithospermic acid, rosmarinic acid, and demethylbenzolignanoid | α-glucosidase inhibitory activity | Yu et al. (2021); |
46 | Passiflora nitida | Passifloraceae | Luteolin, apigenin, kaempferol and quercetin | α-glucosidase inhibitory activity | Casierra-Posada and Jarma-Orozco (2016) |
47 | Paspalum scrobiculatum | Poaceae | Vanillic acid, syringic acid, cis- ferulic acid, p-hydroxy benzoic acid and melilotic acid | Increase glycogen synthesis and decrease in glycated haemoglobin levels | Kiran et al. (2014); Jain et al. (2009) |
48 | Persea americana | Lauraceae | Peptone, glycosylated abscisic acid, cellulose, b-galactoside, polyuronoids, and polygalacto urease | Inhibition of insulinase activity | Yasir et al. (2010); Ezejiofor et al. (2013) |
49 | Phoenix dactylifera | Arecaceae | β-carotene, ascorbic acid, α-tocopherols, selenium | Glucose lowering effect | Abdelaziz et al. (2015) |
50 | Phyllanthus niruri | Euphorbiaceae | Phyllanthin, coumarins, chlorogenic acids, and anthocyanins | Inhibition of glucose absorption and enhancement of glucose storage | Sibiya et al. (2020); |
51 | Phyllanthus simplex | Euphorbiaceae | Corilagin, gallic acid, phyllanthin, geraniin and niranthin | Glucose lowering effect | Mao et al. (2016) |
52 | Picralima nitida | Magnoliopsida | Akuammine, akuammidine, akuammicine, pseudo-akuammigine | Regeneration of β cells | Teugwa et al. (2013); |
53 | Piper longum | Piperaceae | Piplartine and piperine | Glucose lowering effect | Singh and Navneet, 2018; Nabi et al. (2013) |
54 | Scoparia dulcis | Scrophulariaceae | scoparic acid D | Secretagogue activity of insulin | Latha et al. (2009) |
55 | Sonchus oleraceus | Asteraceae | Apigenin, luteolin, 1-cerotol, germanicyl acetate, and oleanolic acid | α-amylase and α-glucosidase inhibitory activity | Xu and Liang (2005); Li and Yang (2018) |
56 | Swertia chirayata | Gentianaceae | Amarogentin, gentianine, ursolic acid, isobellidifolin, sweroside, magniferin | Stimulation of insulin secretion from pancreatic islets | Dey et al. (2020) |
57 | Syzygium jambolana | Myrtaceae | Glucoside, anthocyanins, isoquercetin, kaemferol, ellagic acid and myrecetin | Stimulates insulin secretion | Ayyanar and Subash-Babu (2012) |
58 | Tamarindus indica | Fabaceae | Citric acid, tartaric acid, malic acid, acetic acid, formic acid, and succinic acid | α-amylase and α-glucosidase inhibitory activity | Bhadoriya et al. (2011); Krishna et al. (2020) |
59 | Terminalia chebula | Combretaceae | Chebulic acid, neo-chebulic acid mannitol, chebulagic acid, corilagin | Insulin mimetic action | Senthilkumar et al. (2006); Chang and Lin (2012) |
60 | Terminalia catappa | Combretaceae | Asiatic acid, vitexin, ursolic acid, isovitexin, gallic acid, tergallagin, tercatain, punicalagin, chebulagic acid, punicalin, terflavins A and B, and geranin | α-glucosidase and α-amylase inhibitory activity | Mininel et al. (2014); Behl and Kotwani (2017) |
61 | Tinospora crispa | Menispermaceae | apeginin, diosmetin, genkwanin, cycloeucalenol, cycloeucalenone | Stimulation of insulin secretion from pancreatic islets | Klangjareonchai et al. (2012) |
62 | Trigonella foenum-graecum | Fabaceae | Diosgenin, trigonelline, gentianine, carpaine, butanoic acid, and isovaleric acid | Restoration of pancreatic β-cells | Wani and Kumar, 2018; Geberemeskel et al. (2019) |
63 | Urtifca dioica | Urticaceae | Histamine, acetylcholine, 5-hydroxytryptamine | Stimulation of insulin secretion | El Haouari et al. (2019); Joshi et al. (2019) |
64 | Vaccinium arctostaphylos | Ericaceae | Linalool, α-Pinene, Safranal and Sandaracopimaradiene | Insulin level elevating effect | Salehi et al. (2019); Teimouri et al. (2015); Kianbakht and Hajiaghaee (2013) |
65 | Vernonia amygdalina | Asteraceae | Vernomygdin, Vernoniosides Vernodalol Vernodalin, Epivernodalol | Suppression of gluconeogenesis | Atangwho et al. (2009); Atangwho et al. (2014) |
66 | Vinca rosea | Apocynaceae | Vincristine, vinblastine | Regeneration and rejuvenation of beta cells | Ahmed et al. (2010) |
67 | Zaleya decandra | Aizoaceae | 6-octadecenoic acid, n-hexadecanoic acid | Stimulation of insulin secretion | Meenakshi et al. (2010) |
68 | Zingiber officinale | Zingiberaceae | Gingerols, paradols, shogaols, gingerdiones, zingerones, gingerdiols | Stimulation of insulin secretion and decrease glucose level | Obih et al. (2017) |
69 | Zizyphus mauritiana | Rhamnaceae | Palmitic acid, ethyl stearate and α-linolenic acid | Restoration of blood glucose level | Ashraf et al. (2015); Niamat et al. (2012) |
GLUT-4, Glucose transporter-4; AMPK, AMP-activated protein kinase; MAPK, Mitogen-activated protein kinase.