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Abstract

Recent deep learning approaches focus on improving quantitative scores of dedicated benchmarks,

and therefore only reduce the observation-related (aleatoric) uncertainty. However, the model-

immanent (epistemic) uncertainty is less frequently systematically analyzed. In this work, we

introduce a Bayesian variational framework to quantify the epistemic uncertainty. To this end,

we solve the linear inverse problem of undersampled MRI reconstruction in a variational setting.

The associated energy functional is composed of a data fidelity term and the total deep variation

(TDV) as a learned parametric regularizer. To estimate the epistemic uncertainty we draw the

parameters of the TDV regularizer from a multivariate Gaussian distribution, whose mean and

covariance matrix are learned in a stochastic optimal control problem. In several numerical

experiments, we demonstrate that our approach yields competitive results for undersampled MRI

reconstruction. Moreover, we can accurately quantify the pixelwise epistemic uncertainty, which

can serve radiologists as an additional resource to visualize reconstruction reliability.
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I. INTRODUCTION

A classical inverse problem related to magnetic resonance imaging (MRI) emerges from the

undersampling of the raw data in Fourier domain (known as k-space) to reduce acquisition

time. When directly applying the inverse Fourier transform, the quality of the resulting

image is deteriorated by undersampling artifacts since in general the sampling rate does

not satisfy the Nyquist–Shannon sampling theorem. Prominent approaches to reduce these

artifacts incorporate parallel imaging [3] on the hardware side, or compressed sensing on

the algorithmic side [4]. In further algorithmic approaches, the MRI undersampling problem

is cast as an ill-posed inverse problem using a hand-crafted total variation-based regularizer

[5]. In recent years, a variety of deep learning-based methods for general inverse problems

have been proposed that can be adapted for undersampled MRI reconstruction, including

deep artifact correction [6], learned unrolled optimization [7]–[9], or k-space interpolation

learning [10]. We refer the interested reader to [11], [12] for an overview of existing

methods and their applicability to MRI.

An established technique for solving ill-posed inverse problems are variational methods,

in which the minimizer of an energy functional defines the restored output image. A

probabilistic interpretation of variational methods is motivated by Bayes’ theorem, which

states that the posterior distribution p(x ∣ z) of a reconstruction x and observed data z is

proportional to p(z ∣ x)p(x). The maximum a posteriori (MAP) estimate [13] in a negative

log-domain is the minimizer of the energy

ℰ(x, z): = D(x, z) + ℛ(x) (1)

among all x, where we define the data fidelity term as D(x, z) ∝ − log(p(z ∣ x)) and the

regularizer as ℛ(x) ∝ − log(p(x)). Deep learning has been successfully integrated in this

approach in a variety of papers [9], [14], [15], in which the regularizer is learned from data.

However, none of these publications addresses the quantification of the uncertainty in the

model itself.

In general, two sources of uncertainties exist: aleatoric and epistemic. The former quantifies

the uncertainty caused by observation-related errors, while the latter measures the inherent

error of the model. Most of the aforementioned methods generate visually impressive

reconstructions and thus reduce the aleatoric uncertainty, but the problem of quantifying

the epistemic uncertainty is commonly not addressed. In practice, an accurate estimation

of the epistemic uncertainty is vital for the identification of regions that cannot be reliably

reconstructed such as hallucinated patterns, which could potentially result in a misdiagnosis.

This problem has been addressed in a Bayesian setting by several approaches [16]–[19],

but only very few are explicitly targeting uncertainty quantification for MRI. For instance,

Schlemper et al. [20] use Monte Carlo-dropout and a heteroscedastic loss to estimate MRI

reconstruction uncertainty in U-Net/DC-CNN based models. In contrast, Edupugantiet et

al. [21] advocated a probabilistic variational autoencoder, which in combination with a

Monte Carlo approach and Stein’s unbiased risk estimator allows for a pixelwise uncertainty

estimation.
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There are two main contributions of this paper: First, we adapt the total deep variation

(TDV) [15], [22] designed as a novel framework for general linear inverse problems to

undersampled MRI reconstruction, and show that we achieve competitive results on the

fastMRI data set [23], [24]. In detail, we apply our method to single and multi-coil

undersampled MRI reconstruction, where in the latter case no coil sensitivities are used.

Second, by roughly following the Bayes by Backprop framework [16] we pursue Bayesian

inference and thus estimate the epistemic uncertainty in a pixelwise way (see Fig. 1 for

an illustration). In detail, we draw the parameters of TDV from a multivariate Gaussian

distribution, whose mean and covariance matrix are computed in an optimal control problem

modeling training. By iteratively drawing the parameters from this distribution we can

visualize the pixelwise standard deviation of the reconstructions, which measures the

epistemic uncertainty. Ultimately, this visualization can aid clinical scientists to identify

regions with potentially improper reconstructions.

II. METHODS

In this section, we first recall the mathematical setting of undersampled MRI reconstruction.

Then, we introduce the sampled optimal control problem for deterministic and stochastic

MRI reconstruction, where the latter additionally allows for an estimation of the epistemic

uncertainty.

A. Magnetic Resonance Imaging

In what follows, we briefly recall the basic mathematical concepts of (undersampled) MRI.

We refer the reader to [25] for further details.

Fully sampled raw data u ∈ ℂnQ are acquired in the Fourier domain commonly known as

k-space with Q ≥ 1 measurement coils. Throughout this paper, the full resolution images and

raw data are of size n = width × height and are identified with vectors in ℂnQ (e.g. u ∈ ℂnQ).

If Q = 1, we refer to a single-coil, in all other cases to a multi-coil MRI reconstruction

problem. Here, the associated uncorrupted data in image domain representing the ground

truth are given by y = F−1u ∈ ℂnQ, where F ∈ ℂnQ × nQ denotes the channel-wise unitary

matrix representation of the two-dimensional discrete Fourier transform and F−1 its inverse.

In this case, the final root-sum-of-square image estimate Y for y with a resolution of n =

width × height is retrieved as

Yi = ∑
q = 1

Q
yi, q

2

for i = 1, …, n, where yi, q refers to the ith pixel value of the qth coil and | ⋅ | denotes the

absolute value or magnitude. Henceforth, we frequently denote the root-sum-of-square of

an image by upper case letters. Acquiring the entity of the Fourier space data (known

as fully sampled MRI) results in long acquisition times and consequently a low patient

throughput. To address this issue, a subset of the k-space data along lines defined by a

certain sampling pattern is acquired. However, this approach violates the Nyquist–Shannon
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theorem, which results in clearly visible backfolding artifacts. The aforementioned scheme

is numerically realized by a downsampling operator MR ∈ ℂ(nQ/R) × nQ representing R-fold

Cartesian undersampling (R ∈ ℕ), which only preserves 1
R  of the lines in frequency encoding

direction. In this case, the linear forward operator is defined as A = MRF ∈ ℂ(nQ/R) × nQ.

Thus, the observations resulting from the forward formulation of the inverse problem are

given by

z = Ay + ν ∈ ℂnQ/R, (2)

where ν ∈ ℂnQ/R is additive noise.

B. Deterministic MRI Reconstruction

The starting point of the proposed framework is a variant of the energy formulation (1). In

this paper, we use the specific data fidelity term

D(x, z) = 1
2 ∥ Ax − z ∥2

2 .

The data-driven regularizer ℛ:ℝ2nQ × Θ ℝ0
+ depends on the learned parameters

θ ∈ Θ ⊂ ℝp, where Θ is the space of admissible learned parameters. Note that we use

the identification ℂ ≅ ℝ2 to handle complex numbers. We emphasize that in our case the

regularizer is not iteration-dependent, which implies that the learned parameters θ are shared

among all iterations leading to much fewer parameters compared to a scheme where each

iteration has individual parameters. Throughout all numerical experiments, we use the total

deep variation introduced in section II-D. Our approach is not exclusively designed for the

total deep variation, which can consequently be replaced by any parametric regularizer.

In what follows, we model the training process as a sampled optimal control problem [28].

To this end, let yi, zi
i = 1
I ∈ ℂnQ × ℂnQ/R be a collection of I pairs of uncorrupted data yi in

image domain and associated observed R-fold undersampled k-space data zi for i = 1, …, I,

where both are related by (2).

Next, we approximate the MAP estimator of ℰ (1) w.r.t. x. To this end, we use a proximal

gradient scheme to increase numerical stability [34], which is equivalent to an explicit step

in the regularizer and an implicit step in the data fidelity term. We recall that the proximal

map of a function g with step size h > 0 is defined as

proxℎg(x) = argmin
x

1
2 ∥ x − x ∥2

2 + ℎg(x) . (3)

Unrolling a proximal gradient scheme on (1), we obtain our model
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xs + 1 = proxT
S D xs − T

S ∇xℛ xs, θ , (4)

for s = 0, …, S − 1. Here, S ∈ ℕ denotes a fixed number of iteration steps, T > 0 is a learned

scaling factor, and ∇x denotes the gradient with respect to the x-component. We define the

initial state as x0 = F−1MR
∗ z and the terminal state of the gradient descent xS defines the

output of our model. The considered proximal map exhibits the closed-form expression

proxT
S D(x) = F−1 Id+ T

S MR∗ MR
−1

Fx + T
S MR∗ z ,

for which we used A = MRF . For a detailed computation we refer the reader to section V-A.

Following [14], [15], [22] we cast the training process as a discrete optimal control

problem with control parameters T and θ. Optimal control theory was introduced in the

machine learning community to rigorously model the training process from a mathematical

perspective in [28]. Intuitively, the control parameters, which coincide with the entity of

learned parameters, determine the computed output by means of the state equation. During

optimization, the control parameters are adjusted such that typically the generated output

images are on average as close as possible to the respective ground truth images, where the

discrepancy is quantified by the cost functional. In our case, the state equation is given by

(4) with initial condition x0 = F−1MR
∗ z. To define the associated cost functional, we denote

by xS(z, T , θ) the terminal state of the state equation using the parameters T and θ and the

data z. Furthermore, XS(z, T , θ) defined as the root-sum-of-square of xS(z, T , θ) coincides

with the reconstructed output image. We use the subsequent established loss functional

J(y, z, T , θ) = XS(z, T , θ) − Y 1
+τ 1 − SSIM XS(z, T , θ), Y (5)

for τ > 0, which balances the l1-norm and the SSIM score. Note that the loss functional only

incorporates the difference of the magnitudes of the reconstruction XS(z, T , θ) and the target

Y. In the cost functional given by

inf
T ∈ ℝ0

+, θ ∈ Θ

1
I ∑

i = 1

I
J yi, zi, T , θ (6)

the discrepancy of the reconstructions and the targets among the entire data set is minimized.

For further details we refer the reader to the literature mentioned above.

C. Bayesian MRI Reconstruction

Inspired by [16], we estimate the epistemic uncertainty of the previous deterministic model

by sampling the weights from a learned probability distribution. Here, we advocate the

Gaussian distribution as a probability distribution for the parameters, which is justified by
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the central limit theorem and has been discussed in several prior publications [29]–[31]. For

instance, according to [32] a neural network with only a single layer and a parameter prior

with bounded variance converges in the limit of the kernel size to a Gaussian process. For

further examples of central limit type convergence estimates for neural networks we refer

the reader to the aforementioned literature and the references therein. The second major

advantage of this choice is the availability of a closed-form expression of the Kullback–

Leibler divergence for Gaussian processes, which is crucial for the efficient proximal

optimization scheme introduced below.

We draw the weights θ of the regularizer from the multivariate Gaussian distribution N(μ, Σ)
with a learned mean μ ∈ Θ ⊂ ℝp and covariance matrix Σ ∈ ℝp × p. To decrease the amount

of learnable parameter, we reparametrize Σ = LL⊤ ∈ ℝp × p, where L ∈ ℝp × p is a learned

lower triangular matrix with non-vanishing diagonal entries. In particular, Σ is always

positive definite and symmetric. For simplicity, we assume that Σ admits a block diagonal

structure, in which the diagonal can be decomposed into blocks of size o2 × o2. Here, each

block describes the covariance matrix of a single kernel of size o × o of a CNN representing

the regularizer. In particular, there is no correlation among the kernel weights of different

kernels, i.e. o = 3 throughout this work.

Realizations of parameters θ can simply be computed by using the reparametrization

θ = μ + Lz for z ∼ N(0, Id).

As a straightforward approach to model uncertainty, one could minimize (6) w.r.t. μ and L.

However, in this case a deterministic minimizer with θ = μ and Σ being the null matrix is

retrieved. Thus, to enforce a certain level of uncertainty we include the Kullback–Leibler

divergence KL in the loss functional [33]. We recall that KL for two multivariate probability

distributions p1 and p2 with density functions f1 and f2 on a domain Ω reads as

KL p1 ∥ p2 = ∫
Ω

f1(x)log
f1(x)
f2(x) dx .

In particular, KL is non-negative and in general non-symmetric, and can be regarded as

a discrepancy measure of two probability distributions. In the special case of multivariate

Gaussian probability distributions p1 = N μ1, Σ1  and p2 = N μ2, Σ2 , the Kullback–Leibler

divergence admits the closed-form expression

KL p1 ∥ p2 = 1
2 log Σ2

Σ1
+ tr Σ2

−1Σ1

+ μ2 − μ1
⊤Σ2

−1 μ2 − μ1 − d .
(7)

In this paper, we use the particular choice

p1 = N(μ, Σ), p2 = N μ, α−1Id ,
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where μ and Σ = LL⊤ are computed during optimization and α > 0 is an a priori given

constant. This choice is motivated by the fact that the mean of the sampled weights should

be determined in the optimal control problem while the constant α is essential to control the

level of uncertainty in the model.

Here, smaller values of α enforce higher levels of uncertainty, and in the limit case α ∞
the deterministic model is retrieved.

Neglecting constants and scaling the Kullback–Leibler divergence with β ≥ 0 leads to the

subsequent stochastic sampled optimal control problem

inf Eθ ∼ N μ, LL⊤ 1
I ∑

i = 1

I
J yi, zi, T , θ

+β αtr LL⊤ − log det LL⊤ :

T ∈ ℝ0
+, μ ∈ Θ, L ∈ ℝp × p with det(L) ≠ 0 .

(8)

Note that (8) coincides with the deterministic model if β = 0. Indeed, in this case the MAP

estimate is retrieved which minimizes the functional J since no uncertainty is promoted. In

summary, α controls the covariance matrix of the Gaussian distribution to which the learned

Σ should be close. The parameter β can be regarded as the strength of the penalization to

enforce this constraint, and thus also controls the dynamics during optimization.

Next, we are concerned with the minimization of (8). First, we observe that (8) is actually

composed of the nonconvex loss function

J(T , μ, L): = Eθ ∼ N μ, LL⊤ 1
I ∑

i = 1

I
J yi, zi, T , θ

as well as the convex regularization term

f(L): = β αtr LL⊤ − log det LL⊤ .

For minimizing the composite loss function (8), we again use a proximal gradient descent-

based scheme. A proper optimization crucially relies on different step sizes ℎlu
k  for each

diagonal o2 × o2 block lu of L due to the different magnitudes in the correlation matrix. Here,

we used that the block diagonal structure of Σ translates to the corresponding structure in L,

which admits a decomposition into o2 × o2 blocks. Hence, our update scheme is given by

Tk + 1

μk + 1

luk + 1
=

Tk − ℎT
k ∇T J Tk, μk, Lk

μk − ℎμk∇μJ Tk, μk, Lk

proxℎlu
k f luk − ℎlu

k ∇LJ Tk, μk, luk

Narnhofer et al. Page 7

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for all u, where the iteration-dependent step sizes ℎT
k, ℎμ

k, ℎlu
k > 0 are adjusted by the ADAM

optimizer [35]. On each block lu, the proximal map is defined as

proxℎf l u = argmin
lu

1
2ℎ lu − l u 2

2 + f lu , (9)

where the minimum is taken among all non-singular lower triangular matrices of size o2 × o2.

Given a regular lower triangular block matrix l ∈ ℝo2 × o2
, the proximal map of f admits the

closed-form expression

proxℎf(l )ab =
laa + laa

2 + 8βℎ(1 + 2αβℎ)
2(1 + 2αβℎ) , a = b,

(1 + 2αβℎ)−1lab, a ≠ b .

A detailed computation of this proximal map can be found in section V-B.

Finally, we stress that β determines the level of entropy inherent in the model. We define

that the mean entropy H as a measure of uncertainty in the model [36] for the convolutional

kernels K1 and K2 of all residual blocks as

H(Σ) = 1
2NK ∑

i = 1

NK
ln 2πdet Σi ,

where NK is the total number of stochastic convolutional kernels in the network and Σi is the

collection of associated covariance matrices of each kernel.

D. Total Deep Variation

The data-driven TDV regularizer ℛ(x, θ), depending on the learned parameters θ ∈ Θ ⊂ ℝp,

was originally proposed in [15], [22]. In detail, ℛ:ℝ2nQ × Θ ℝ0
+ is computed by summing

the pixelwise regularization energy r:ℝ2nQ × Θ ℝn, i.e. ℛ(x, θ) = ∑l = 1
n r(x, θ)l, which is

defined as r(x, θ) = wψ K0x . Note that we use the identification ℂ ≅ ℝ2 to handle complex

numbers. The building blocks of r are as follows:

• K0 ∈ ℝnm × 2nQ is the matrix representation of a 3×3 convolution kernel with m

feature channels and zero-mean constraint, which enforces an invariance with

respect to global shifts,

• ψ :ℝnm ℝnm is a convolutional neural network (CNN) described below,

• w ∈ ℝn × nm is the matrix representation of a learned 1 × 1 convolution layer.

Note that θ encodes K0, and all convolutional weights in ψ and w. The CNN ψ is

composed of 3 macroblocks connected by skip connections (Fig. 2, second row), where

each macroblock consists of 7 residual blocks (Fig. 2, third row). We remark that the
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core architecture is inspired by a U-Net [26] with additional residual connections and

a more sophisticated structure. Each residual block has two bias-free 3×3 convolution

layers K1, K2 ∈ ℝnm × nm and a smooth log-student-t activation function ϕ(x) = 1
2 log 1 + x2

as depicted in Fig. 2 (last row). This choice of the activation function is motivated by the

pioneering work of Mumford and coworkers [27]. The down-/upsampling are realized by

learned 3×3 convolution layers and transposed convolutions, respectively, both with stride 2.

For the stochastic setting, we henceforth assume that T is fixed and that K0, the down- and

upsampling operators, and w are always deterministic.

E. Numerical Optimization and Training Data

To optimize the optimal control problems in the deterministic (6) and stochastic (8) regime,

we use the ADAM algorithm [35] with a batch size of 8, momentum variables β1 = 0.5

and β2 = 0.9, where the first and second moment estimates are reinitialized after 50000

parameter updates. The initial learning rate is 10−4, which is halved each 50000 iterations,

and the total number of iterations is 120000 for Q = 1 and 200000 for Q ≥ 2. The memory

consumption is reduced by randomly extracting patches of size 96 × 368 in frequency

encoding direction as advocated by [8]. To further stabilize the algorithm and increase

training performance, we start with S = 2 iterations, which is successively incremented by 1

after 7500 iterations. For the same reason, we retrain our model for R = 8 starting from the

terminal parameters for R = 4 using 100000 iterations for Q = 1 and 130000 for Q ≥ 2.

In all experiments, we train our model with the data and the random downsampling

operators of the single and multi-coil knee data of the fastMRI data set [23], for which

two different acquisition protocols were used: PD (coronal proton density scans) and PD-FS

(coronal proton density scans with fat saturation).

Moreover, the undersampling pattern defining MR is created on-the-fly by uniformly

sampling lines outside the fixed auto calibration area such that only 1
R  of the lines are

preserved. The associated ground truth images are computed using the emulated single-coil

methodology [37] in the single-coil case and the root-sum-of-squares reconstructions in the

multi-coil setting, which is consistent with the methodology in [23]. We emphasize that no

separate training for different modalities including the acquisition protocol, the field strength

and the manufacturer is conducted.

Training and inference were performed on a 20 core 2.4GHz Intel Xeon machine equipped

with a NVIDIA Titan V GPU. The entire training of a single example took roughly 10

days/14 days in the deterministic/stochastic case requiring 12GB of GPU memory. In both

cases, inference takes 3 seconds per sample and requires 3.2GB of GPU memory.

F. Stochastic Reconstruction

Next, we discuss how to retrieve estimates of the undersampled MRI reconstruction in the

stochastic setting. First, we integrate the learned distribution p(θ) of the parameters in the

Bayesian formula by noting that p(z ∣ x, θ) = p(z ∣ x) as follows:

Narnhofer et al. Page 9

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



p(x, θ ∣ z) = p(z ∣ x)p(x ∣ θ)p(θ)
p(z) .

By marginalizing over θ we obtain

p(x ∣ z) = ∫
Θ

p(z ∣ x)p(x ∣ θ)p(θ)
p(z) dθ .

In our case, a closed-form solution of the integral is not available due to the non-linearity in

the regularizer. However, an approximation of the integral can be obtained by Monte–Carlo

sampling

p(x ∣ z) ≈ 1
N ∑

i = 1

N p(z ∣ x)p x ∣ θi
p(z) , (10)

where θi is randomly drawn from the probability distribution p(θ). We refer the reader to [1],

[2] for the consistency of this approximation as well as the corresponding convergence rates.

Furthermore, for each instance θi we denote by xs z, T , θi  the approximate optimal solution

of the variational problem

argmax
x ∈ ℂnQ

p(z ∣ x)p x ∣ θi (11)

in this setting. Note that p(z) appearing in (10) does not affect the maximizer, that is why we

omit this term in (11).

To retrieve estimates of the undersampled MRI reconstruction in the stochastic setting,

we draw N ∈ ℕ instances, θN = θ1, …, θN ∈ ΘN from N μ, LL⊤ , where μ and L are

determined by (8). In a negative logarithmic domain, the maximization problem (11) is

equivalent to

argmin
x ∈ ℂnQ

D(x, z) + ℛ x, θi ,

where we have identified the first factor with the data fidelity term and the second factor

with the regularizer as above. As before, the approximate minimizer is denoted by xS z, T , θi

and computed as in (4). Then, the average xN and the corresponding standard deviation σN

of N independent

xS
N z, T , θN = 1

N ∑
i = 1

N
xS z, T , θi ,
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σS
N z, T , θN j

2 = 1
N ∑

i = 1

N
xS z, T , θi − xS

N z, T , θN j
2

for each pixel j = 1, …, n. In particular, xS
N z, T , θN  refers to the averaged output image.

This approach is a special form of posterior sampling and summarized in Fig. 1. Finally,

the root-sum-of-square reconstruction XS
N z, T , θN  of xS

N z, T , θN  and the corresponding

standard deviation are given by

XS
N z, T , θN = 1

N ∑
i = 1

N
XS z, T , θi , (12)

σS
N z, T , θN j

2
= 1

N ∑
i = 1

N
XS z, T , θi − XS

N z, T , θN j
2
,

respectively.

III. NUMERICAL RESULTS

In this section, we present numerical results for single and multi-coil undersampled MRI

reconstruction in the deterministic and stochastic setting. In all experiments, we set the

initial lower triangular matrix L0 = 10−3Id, α = 10, S = 15 and N = 32, in all multi-coil

results we have Q = 15 coils.

A. MRI Reconstruction

Table I lists quantitative results for R ∈ 4, 8  of the initial zero filling, two state-of-the-art

methods (U-Net [23] and iRim [38], values taken from the public leaderboard of the fastMRI

challenge (https://fastmri.org/leaderboards) for both the deterministic and stochastic version

of our approach. We stress that we jointly train our model for all contrasts without any

further adaptions. In particular, we did not incorporate any metadata in the training process

such as contrast levels, manufacturer or field strength. Moreover, our model exhibits an

impressively low number of parameters compared to the competing methods, which have

up to 300 times more parameters. Note that although the number of trainable parameters

in the stochastic TDV is larger compared to the deterministic version, the number of

sampled parameters θ used for reconstruction is identical to the deterministic case. All

MRI reconstructions are rescaled to the interval [0,1] to allow for an easier comparison.

Fig. 3 depicts two prototypic ground truth images of the PD data in the single (first row)

and multi-coil (second row) case, the corresponding zero filling results, the deterministic

X15 and the mean X15
32 with β = 10−4 for Q = 1 and β = 7.5·10−5 for Q = 15 (see (12)),

and the standard deviation σ15
32 for an undersampling factor of R = 4. The associated entropy

levels are H(Σ) = − 11.90 and H(Σ) = − 13.68, respectively. In both the deterministic and
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the stochastic reconstructions even fine details and structures are clearly visible, and the

noise level is substantially reduced compared to the ground truth, which can be seen in the

zoom with magnification factor 3. Note that hardly any visual difference is observed in both

reconstructions. Clearly, the quality in the single-coil case is inferior to the multi-coil case.

Moreover, large values of the standard deviation are concentrated in regions with clearly

pronounced texture patterns, which are caused by the lack of data in high-frequency k-space

regions. Thus, the standard deviation can be interpreted as a local measure for the epistemic

uncertainty. Since the proximal operator is applied after the update of the regularizer, high

values of the standard deviation can only be found in regions where data is unknown.

The k-space associated with the aforementioned singlecoil case is depicted in Fig. 4. In

detail, the leftmost image visualizes the undersampling pattern resulting from the predefined

Cartesian downsampling operator MR, which yields the zero-filled observation (second

image) when combined with the fully sampled raw data (third image), where we plot the

magnitudes in a logarithmic scale. The fourth and the fifth image depict the mean x15
32 and

the standard deviation σ15
32 of the reconstruction in k-space. As a result, our proposed method

accurately retrieves the central star-shaped structures of the k-space representing essential

image features, although the undersampling pattern is still clearly visible. Moreover, the

standard deviation peaks in the central star-shaped section when data is missing and thus

empirically identifies regions with larger uncertainty.

Likewise, Fig. 5 depicts the corresponding results for PD-FS data and R = 4 using the same

entropy levels as before, all other parameters are the same as in the previous Fig. 3. We

remark that the signal-to-noise ratio is smaller in PD-FS data than in PD data and thus

the reconstructions have a tendency to include more noise and imperfections. The inferior

quality compared to PD is also reflected in the higher average intensities of the standard

deviations.

Fig. 6 shows the multi-coil reconstruction results for 8-fold undersampling and both

data sets in the same arrangement as before, the entropy level is H(Σ) = − 31.41. As

expected, the overall reconstruction quality is quantitatively and qualitatively inferior to

the case R = 4. As before, the difference of the deterministic and the stochastic restored

images is relatively small and the standard deviations properly identify regions with higher

uncertainties. Finally, Fig. 7 depicts zooms of two different MRI reconstructions (R = 4,

PD), in each row the ground truth, two realizations, the stochastic reconstruction and the

standard deviation are visualized. The regions highlighted by the arrows indicate structures

and patterns that differ among various samples. The variability of the single realizations

can be interpreted as hallucinations, which are properly detected in the corresponding

standard deviations. This empirically validates that our proposed method to measure the

standard deviation actually quantifies the magnitude of the model-related uncertainty. Fig.

8 contains a visual comparison of our method with selected competitive methods from the

fastMRI leader board. As a result, both E2EVN [42] and iRim [38] achieve slightly superior

quantitative results at the expense of significantly more learnable parameters. In a qualitative

comparison, we observe that our proposed method is capable of retrieving fine details, only
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the signal of a few high-frequency patterns is lost. Finally, U-Net [23] results are inferior to

the considered competitive methods – both quantitatively and qualitatively.

B. Covariance Matrices

Fig. 9 contains triplets of color-coded covariance matrices of the convolution layers K2

in different macroblocks and residual blocks (using the abbreviations MBi for i = 1,2,3

and Rj for j = 1,4,7, respectively) in the multi-coil case with β = 7.5 · 10−5. Note that

we use different scalings for positive and negative values among each residual block.

Each visualized covariance matrix is the mean of the individual covariance matrices of

each convolution block K2 appearing in Σ. The resulting covariance matrices are clearly

diagonally dominant with a similar magnitude of the diagonal entries among each residual

block, but different magnitudes among different residual blocks. Furthermore, most of the

off-diagonal entries significantly differ from 0. As a result, the entries of the covariance

matrices associated with the first residual block in each macroblock have a tendency to

smaller values compared to the ones of the last residual block. Thus, the uncertainty of the

network is primarily aggregated at latter residual blocks within each macroblock, which is

in correspondence with error propagation theory: perturbations occurring shortly after the

initial period have commonly a larger impact on a dynamical system than perturbations

occurring later.

C. Eigenfunction Analysis

Next, we perform a nonlinear eigenfunction analysis [39] following the approach in

[14], [22] to heuristically identify local structures that are favorable in terms of energy.

Classically, each pair (v, λ) ∈ ℂn ∖ 0 × ℂ of eigen-function/eigenvalue for a given matrix

A ∈ ℝn, n solves Av = λv, where the eigenvalue can be computed using the Rayleigh quotient

v∗Av
v∗v

. Nonlinear eigenfunctions v for the matrix ∇vℛ(v, θ) satisfy ∇vℛ(v, θ) = Λ(v)v, where

the generalized Rayleigh quotient defining the corresponding eigenvalues is given by

Λ(v) =
∇vℛ(v, θ), v

∥ x ∥2
2 .

Thus, nonlinear eigenfunctions v are minimizers of the variational problem

min
v ∈ ℂnQ

1
2 ∇vℛ(v, θ) − Λ(v)v 2

2
(13)

subject to a fixed initial image. We exploit Nesterov’s projected gradient descent [40] for

the optimization in (13). The nonlinear eigenfunctions locally reflect energetically minimal

configurations and thus heuristically identify stable patterns that are favored by the model.

Fig. 10 depicts two pairs of reconstructed images X for the initialization and the

corresponding root-sum-of-squares of the eigenfunctions in the deterministic singlecoil

case. The resulting eigenfunctions predominantly exhibit piecewise smooth regions, where

additional high-frequency stripe patterns and lines in the proximity of bone structures as
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well as blood vessels are hallucinated. This behavior originates from two opposing effects:

some backfolding artifacts caused by missing high-frequency components in k-space are

removed in our approach, whereas certain high-frequency information are hallucinated.

D. Effects of Entropy Level and Averaging

In the final experiment, we analyze the effects of the entropy level and the averaging on

the PSNR values. To this end, we draw 32 instances θ32 = θ1, …, θ32 ∈ Θ32 from N(μ, Σ).
Then, for different levels of the entropy enforced by different values of β we calculate

the lower and upper bounds of the PSNR values of Xs
N z, T , θN  for 1 ≤ N ≤ 32, where θN

is any subset of θ32 with N elements. Fig. 11 depicts the resulting color-coded spans for

N ∈ 1, 4, 16, 32  and five different levels of entropy (including the limiting case H(Σ) = − ∞
in the deterministic case). As a result, the PSNR curves monotonically decrease with higher

levels of entropy, but even at the highest entropy level induced by β = 5·10−4 we observe

only a relatively small decrease in the PSNR value. Moreover, the spans of the different

averaging processes clearly prove that higher values of N are beneficial, that is why an

averaging among a larger number of realizations should be conducted whenever possible.

Finally, we observe that the performance saturates with larger values of N.

E. Limitations

In the following we discuss potential limitations of our approach. Since in each iteration the

network parameters have to be drawn from the learned distribution, the training takes longer

in the stochastic compared to the deterministic case. Furthermore, to accurately quantify

the uncertainty, N reconstructions have to be computed. This leads to an N-fold increased

reconstruction time compared to the deterministic scheme. Higher levels of uncertainty

result in a decrease of the PSNR score, as shown in Fig. 11. However, we believe that the

advantage of having an estimate about the uncertainty outweighs the addressed limitations.

IV. CONCLUSION

In this paper, we proposed a Bayesian framework for uncertainty quantification in single and

multi-coil undersampled MRI reconstruction exploiting the total deep variation regularizer.

To estimate the epistemic uncertainty, we introduced a stochastic optimal control problem,

in which the weights of the regularizer are sampled from a learned multivariate Gaussian

distribution.

With the proposed Bayesian framework, we can generate visually appealing reconstruction

results alongside a pixelwise estimation of the epistemic uncertainty, which might aid

medical scientists and clinicians to revise diagnoses based on structures clearly visible in

the standard deviation plots.
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V.: APPENDIX

A. Proximal map of the data fidelity

To derive a closed-form expression of proxD, we first recall that the proximal map of D
reads as

proxT
S D(x) = argmin

x
1
2 ∥ x − x ∥2

2 + T
2S ∥ Ax − z ∥2

2 .
= :G(x)

We note that

∇G(x) = x − x + T
S A∗Ax − A∗z,

which implies that the first-order optimality condition for G is

proxT
S D(x) = Id+ T

S A∗A
−1

x + A∗z .

Taking into account A = MRF  we can expand

Id+ T
S A∗A = F−1 Id+ T

S MR∗ MR F ,

where we exploited F∗ = F−1 since F is unitary. Thus,

proxT
S D(x) = F−1 Id+ T

S MR∗ MR
−1

F x + T
S F−1MR∗ z ,

which ultimately leads to

proxT
S D(x) = F−1 Id+ T

S MR∗ MR
−1

Fx + T
S MR∗ z .

Note that the inverse of the diagonal matrix can be computed very efficiently.

B. Proximal map of Kullback–Leibler divergence

Next, we present a more detailed derivation of the proximal map eq. (9) for

f(L): = β αtr LL⊤ − log det LL⊤

appearing in (7). We first observe that
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tr LL⊤ = ∑
i, j

LijLij = ∑
i, j

Lij2 ,

det LL⊤ = det(L)det L⊤ = det(L)2 = ∏
i

Lii2 .

Recall that L admits a block diagonal structure, in which each block l1, …, lU ∈ ℝo2 × o2
 is

a regular lower triangular matrix. A straightforward computation reveals f(L) = ∑u = 1
U f lu .

Thus, we can restrict to a single block matrix l and rewrite f as follows:

f(l) = αβ ∑
i, j = 1

p
lij2 − 2β ∑

i = 1

p
log lii .

The proximal map of the function f reads as

proxℎf(l ) = argmin
l

E(l): = 1
2ℎ ∥ l − l ∥2

2 + f(l) ,

where the minimum is taken among all lower triangular and regular matrices. The gradient

of E is given by

(∇E(l))ab =
laa2 (1 + 2αβℎ) − laalaa − 2αℎ, a = b,

2αβℎlab + lab − lab, a ≠ b .

Thus, the optimization problem (9) can be optimized component-wise and results in a

quadratic equation. Over-all, a closed-form expression for f reads as

proxℎf(l )ab =
laa + laa

2 + 8βℎ(1 + 2αβℎ)
2(1 + 2αβℎ) , a = b,

(1 + 2αβℎ)−1lab, a ≠ b .

The expression for the proximal map of f for the entire matrix L is given as the

concatenation of the proximal maps for the individual blocks.
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Fig. 1.
Illustration of the stochastic MRI undersampling reconstruction model to calculate the

epistemic uncertainty. Here, N instances of the model parameters θ are drawn from

N μ, LL⊤ , which lead to N output images XS
θ1, …, XS

θN. The associated pixelwise mean

and standard deviation are depicted on the right.
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Fig. 2.
The building blocks of the total deep variation with 3 macroblocks (Figure adapted from

[15, Figure 1]). Complex data are transformed to a pixelwise energy as seen in the top right

corner.
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Fig. 3.
Single (first row) and multi-coil (second row) MRI reconstruction results for PD data and R
= 4. From left to right: ground truth images Y, zero filling, deterministic reconstructions X15,

stochastic reconstructions X15
32 and standard deviations σ15

32 (0  0.02).
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Fig. 4.
Visualization of the magnitude images in k-space (logarithmic scale) for R = 4 in the

single-coil case. From left to right: undersampling pattern, zero-filled observation, fully

sampled raw data, mean x15
32, standard deviation σ15

32 (−14.1  −4.74).

Narnhofer et al. Page 22

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5.
Single (first row) and multi-coil (second row) MRI reconstruction results for PD-FS data and

R = 4. From left to right: ground truth images Y, zero filling, deterministic reconstructions

X15, stochastic reconstructions X15
32 and standard deviation σ15

32 (0  0.035).
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Fig. 6.
Multi-coil MRI reconstruction results for PD (first row) and PD-FS (second row) data and R
= 8. From left to right: ground truth images Y, zero filling, deterministic reconstructions X15,

stochastic reconstructions X15
32 and standard deviation σ15

32 (0  0.02).
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Fig. 7.
Zooms of multi-coil MRI reconstruction (R = 4, PD). From left to right: ground truth, two

distinct samples, stochastic reconstruction and standard deviation (0  0.03). The

arrows highlight patterns that are only visible in distinct samples.
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Fig. 8.
Visual comparison of selected MRI reconstruction methods for PD (first row) and PD-FS

(second row), both with R = 4. From left to right: E2EVN, UNet, iRim, TDV(deterministic),

TDV(stochastic).
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Fig. 9.
From left to right: triplets of color-coded covariance matrices of the convolution layers K2 in

different macroblocks (MBi for i = 1,2,3) and residual blocks (Rj for j = 1,4,7). Note that we

use different scalings for positive and negative values among each residual block.
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Fig. 10.
Pairs of fully sampled initial images along with the corresponding eigenfunctions using PD

(first pair) and PD-FS (second pair) as initialization.
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Fig. 11.
Dependency of the PSNR value on the entropy and the averaging.
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