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Following the modern synthesis, mating signals were thought of principally
as species recognition traits, a view later challenged by a burgeoning interest
in sexual selection—specifically mate choice. In the 1990s, these different
signal functions were proposed to represent a single process driven by the
shape of female preference functions across both intra- and interspecific signal
space. However, the properties of reliable ‘recognition’ signals (stereotyped;
low intraspecific variation) and informative ‘quality’ signals (condition
dependent; high intraspecific variation) seem at odds, perhaps favouring
different signal components for different functions. Surprisingly, the idea
that different components of mating signals are evaluated in series, first to
recognize generally compatible mates and then to select for quality, has
never been explicitly tested. Here I evaluate patterns of (i) intraspecific
signal variation, (ii) female preference function shape and (iii) phylogenetic
signal for male cricket call components known to be processed in series. The
results show that signal components processed first tend to have low
variation, closed preference functions and low phylogenetic signal, whereas
signal components processed later show the opposite, suggesting that
mating signal evaluation follows an ‘order-of-operations’. Applicability
of this finding to diverse groups of organisms and sensory modalities
is discussed.
1. Introduction
Over the past approximately 50 years, there has been an enormous resurgence
of interest in sexual selection and mating signal evolution. During that time,
two patterns have become firmly established in the literature: (i) mating signals
are typically species-specific and (ii) components of such displays are typically
highly exaggerated and often exceed what would seem necessary if sexual
signalling favoured simple efficiency of communication. These two features
led some authors to suppose that sexual signals serve dual functions: species
recognition and sexual selection [1,2]. As early as 1977, Popov & Shuvalov dis-
tinguished between ‘essential recognition features’ and ‘motivational features’
in acoustic signals [3]; this idea was formalized and extended by Gerhardt’s
characterization of signals as ‘static’ or ‘dynamic’ [4] in which static traits
have low variability, and so could serve as indicators of species identity,
whereas dynamic traits have high variability, and so could reveal signaller
motivation or quality (see also [5]). Logically this suggested that mating signals
could be assessed by receivers in a hierarchy: potential mates were those indi-
viduals recognized as conspecific via species recognition traits; high-value
mates were the subset of potential mates who had extreme values of dynamic,
often condition-dependent, signal traits.

Since that time, both the hierarchical nature of mate assessment and the very
concept of ‘species recognition’ have been challenged. In a series of influential
papers, Ryan and colleagues have argued that there is no duality of species rec-
ognition and mate assessment; rather mate discrimination is a single unified
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Figure 1. Conceptual models of mate discrimination; (a) shows process in pale rectangles leading to either a pool of recognized potential mates (blue ellipses) or
preferred mates (orange ellipses); (b) shows potential fitness as a function of increasing investment in mate discrimination. Total fitness increases with each added
level of mate discrimination, but the marginal fitness gain from signal recognition (i.e. selection of a generally compatible mate) far exceeds the marginal fitness
gain from sexual selection among recognized potential mates. (Online version in colour.)
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process in which mating signals are evaluated by preference
functions spanning both intra- and interspecific variation
[6–8]. Their arguments are bolstered by compelling exper-
iments with the Túngara frog, which show that conspecific
preference via a supposed ‘species recognition’ signal
element, the whine, can be reversed via the addition of an
attractive second signal element, the chuck, appended to the
whine (see especially [6]). Mendelson & Shaw [9] argue that
‘species recognition’ is too poorly defined to have conceptual
utility, that researchers should not conflate taxonomic
identity with genetic mate compatibility (at least not too
narrowly), and, most germane here, that there is no evidence
that animals process mating signals in a sequential manner,
from ‘species’ to ‘quality’. They go on to write (p. 423),
‘whether compatibility indicators are processed first in a
sequence, or even afforded the greatest weight among poten-
tially multiple indicators of quality in a complex signal, is
an intriguing hypothesis that has not, to the best of our
knowledge, been empirically tested’.

This last point forms the basis for this study: testing
whether or not mating signals and receiver signal processing
operate in series, first to assess broad genetic compatibility at
a scale consistent with conspecific identity (signal recognition),
and second to assess mate quality from among the recognized
subset of broadly compatible potential mates (mate choice).
I refer to such a processing scheme as ‘serial’ processing to
indicate the priority of information, which could result from
a literal temporally separated series, or from neural gating
such that ‘attractiveness’ information is only processed if
accompanied by ‘recognition’ input (e.g. via disinhibition;
see [10], fig. 1a3). I refer to this as the order-of-operations
model of sexual signal processing (figure 1). The order-of-oper-
ationsmodel recognizes a simple and obvious truth: the typical
marginal fitness gain from mating with a conspecific, com-
pared to indiscriminate attempted mating, greatly exceeds
the typical marginal fitness gain from discrimination among
conspecifics. Indiscriminate attempts at reproduction do
occur (e.g. wind pollination [11] or broadcast spawning [12]),
but among animals with mating signals, the potential fitness
gained from accurate signal recognition is best illustrated by
cases in which correct recognition of generally compatible
potential mates fails. This can occur in several ways, such as
via sexual attraction to abiotic items (e.g. male Julodimorpha
bakewelli beetles copulating with beer bottles [13]) or sexual
attraction to biotic but entirely non-compatible organisms
(e.g. males of several species of Hymenoptera are attracted to
sexually deceptive orchids; reviewed by [14]), or even fatal
sexual attraction to predators (e.g. aggressive sexual mimicry
by female Photuris fireflies resulting in death for duped
male Photinus fireflies [15], or males of several species of cica-
das lured to death by the predatory katydid Chlorobalius
leucoviridis, which mimics the replies of sexually receptive
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female cicadas [16]). In general, genetically compatible poten-
tial mates will be conspecifics, despite some well-known
examples of adaptive hybridization (e.g. [17]). The first step
in the continuum of mate discrimination should therefore be
compatible mate recognition (sensu Ryan & Rand [7], p. 648),
followed by expression of mate preference (i.e. choice) among
recognized potential mates, sometimes followed by post-
mating differential investment [18,19], which could include
post-copulatory elimination of unsuitable mates.

Serial processing of mating signals is a prerequisite
condition of this model, but on its own does not demonstrate
order-of-operations. Rather the critical feature is that the
signal properties given first priority are those likely to be
strongly correlated with species identity, whereas those
evaluated secondarily are those likely to be correlated with
intra-specific attractiveness. Thus, in addition to serial proces-
sing of signal components, the order-of-operations model
makes a number of inter-related and testable predictions.
We would expect that signal components processed first
(i.e. ‘recognition traits’) (i) will be ‘static’ traits with low
among individual intra-specific variation, (ii) will be subject
to closed preference functions characteristic of a band pass
filter [20,21] and (iii) will often change during speciation
such that resulting phylogenetic signal may be low [22,23],
especially so if the taxa are sympatric. Conversely signal com-
ponents processed secondarily (iv) will be ‘dynamic’ traits
with relatively high among individual intra-specific variation,
(v) will be subject to open preference functions characteristic of
a high pass filter and (vi) may be resistant to changes during
speciation, and so may track phylogeny such that resulting
phylogenetic signal may be high. In this paper, I examine
sexual signalling in field crickets to address each of these
predictions and then more broadly discuss applicability
of the order-of-operations model to other classic examples of
mate choice.

(a) Serial processing: acoustic communication and
signal recognition in crickets

Communication in field crickets has been extensively studied
at both proximate and ultimate levels [24–27]. Adult male
field crickets produce loud broadcast calls to attract sexually
receptive females from a distance [28]. Those calls are
species-specific, at least within a regional fauna [29–31].
Serial processing of mating signal components is central to
the order-of-operations model; in the case of crickets at
least, temporally separated serial processing is well estab-
lished empirically [27,32,33]. Mechanistically, female crickets
recognize male calls using a series of sensory and neural
filters at both the peripheral and central auditory systems
[27]. Frequency is filtered first, both mechanically by the
peripheral auditory system (tympanal tuning) and by best
frequency tuning of the auditory omega neurons (ON1) and
of the ascending auditory neuron (AN1). Importantly AN1
is the only auditory afferent neuron which carries temporal
calling song information to the brain [33], therefore serial
encoding is strictly enforced—no alternate parallel pathway
for acoustic calling song signal integration exists. The combi-
nation of tympanal and neural frequency filtering results in a
band pass filter such that (at relevant amplitudes) only sound
pulses of the correct frequency become temporally encoded
within AN1 and are passed to the brain where the pulse
pattern is next evaluated.
The pulse pattern recognition filter of the cricket brain
is also well characterized, at least in Gryllus bimaculatus
[34,35]. Pulse rate recognition is via a neural network of
AN1 and four local brain neurons (LN2 – LN5) which consti-
tute a delay line (LN2 + LN5) and a coincidence detector
(LN3). If the direct input to LN3 via AN1 (from sound
pulse 2) matches the delay line input to LN3 via AN1 +
LN2 + LN5 (from delayed sound pulse 1), then LN3 neural
spiking is sufficient to overcome inhibition of LN4, resulting
in LN4 spiking; LN4 spiking matches the behavioural
phonotaxis of female crickets in response to pulse rate vari-
ation [36]. Although this network has been characterized
only in G. bimaculatus, computational modelling reveals that
such a network could produce the full range of pulse pattern
recognition known in crickets [37]. Thus, in crickets, the
essential signal recognition features are frequency followed
by pulse pattern (pulse rate or duty cycle) on a short time
scale (less than 100 ms).

In crickets, pulses are typically arranged in groups,
variously called ‘chirps’ or ‘trills’ on a longer time scale
(greater than 100 ms). How female crickets evaluate the
signal information content on the longer chirp time scale is
less well understood than it is at the pulse time scale. Nonethe-
less, it appears that, given the correct frequency and pulse
pattern, the output of pulse pattern recognition is integrated
over time for stimulus power proportional to either number
of pulses (with a purely differentiating filter) or total energy
(with a purely integrating filter) [38,39]. That is, preference
functions on the longer chirp time scale may not be the
result of a separate neural filter, rather they may be an emer-
gent property from integrating over time the output of the
short pulse time scale filter.

Given serial processing of frequency→ pulse pattern→
chirp-scale energy, the order-of-operations model then pre-
dicts that frequency, pulse rate and pulse duty cycle
processed first would show low coefficients of variation
(SD/mean, hereafter CV), and closed preference functions
corresponding to band pass filters and low phylogenetic
signal, whereas chirp-scale features (pulses per chirp, chirp
rate and chirp duty cycle) would show higher CVs and
open preference functions corresponding to high pass filters
and higher phylogenetic signal. Recent taxonomic [31] and
phylogenetic [40] work provides the context for this study.
For the first time, it is now possible to analyse signal evol-
ution in the entire fauna of Gryllus crickets found in the
United States and Canada, and make generalizable con-
clusions about signal recognition and mate choice. In this
region, Weissman & Gray [31] recognize 35 named species
and an additional six genetically distinct lineages of Gryllus
crickets supported by multi-locus DNA (electronic sup-
plementary material, figure S1). Two of the species do not
call (Gryllus ovisopis [41,42] and G. cayensis [43]), but the
calls of all other species and genetic lineages were analysed
to characterize CVs and phylogenetic signal of the different
call features.
2. Methods
For each species, I used Audacity software (audacityteam.org) to
digitally analyse five exemplars of each call trait from each of five
wild-caught male crickets recorded in the laboratory at close to
25°C (mean ± s.d. = 24.78 ± 0.86). Within this range, temperature
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Figure 2. Mean ± s.e. within-species variation in cricket call components, measured as coefficient of variation for 39 Gryllus species or genetic lineages. Call traits
with grey bars are shorter time scale features of pulses: dominant frequency (FREQ), pulse rate (PRATE) and pulse duty cycle (PDC), which are evaluated first by
females; those with black bars are longer time scale features of groups of pulses: pulses per chirp (PPC), chirp rate (CRATE) and chirp duty cycle (CDC) which are
evaluated second. Traits with the same letter above the bars are not significantly different from each other.
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effects on song are expected to be minimal [44]. Controlling for
recording temperature was prioritized over controlling for the
population of origin. Song traits analysedwere dominant frequency
(FFT size 1024), pulse duration, inter-pulse duration, number of
pulses per chirp (or trill) and inter-chirp (or trill) interval. I calcu-
lated five measures of pulse rate and duty cycle from the five
measures of pulse and inter-pulse durations per individual
[rate = 1/(pulse + inter-pulse); duty cycle = pulse/(pulse + inter-
pulse)]. Similarly, five measures of chirp rate and duty cycle were
calculated from the five measures of chirp and inter-chirp interval
durations per individual, with chirp duration = [(number of
pulses per chirp × pulse duration) + (number of pulses per chirp –
1 × inter-pulse duration)]. For each trait, the five measurements
per individual were averaged, and then, for each species, the five
individuals’ means were used to calculate species’ means, s.d.
and CVs (as species s.d. divided by species mean) and used in sub-
sequent analyses. Five individuals per species is a relatively small
sample size for calculating species’ means, s.d. and CVs; however,
error is unlikely to be biased with respect to the comparison of
CVsofdifferent types of traits. TheCVs for traits processed first (fre-
quency, pulse rate and pulse duty cycle) were compared to the CVs
for song traits processed later (pulses per chirp, chirp rate and chirp
duty cycle) via nested ANOVA in SPSS v. 25 with traits nested
within trait types.

Preference functions of female-field crickets (Gryllinae)
were collected from the literature and summarized as ‘open’ or
‘closed’ [45,46]. Preference function data were collected for
frequency, pulse rate, pulse duty cycle, number of pulses per
chirp, chirp rate and chirp duty cycle. Some studies present
data on rates per se while others report data on periods, but
these are interchangeable as rate = 1/period.

I used the R package phylosignal [47], the species’ mean trait
values and the species-level phylogeny [40] to test for overall phy-
logenetic signal and to assess how phylogenetic autocorrelation
varies with phylogenetic distance. Phylogenetic autocorrelation
was assessed with two of the five metrics available in phylosignal:
Moran’s I and Abouheif’s Cmean, because they are both based
on an autocorrelation approach and do not assume a particular
(i.e. Brownian motion) model of evolution [48]. In addition,
local Moran’s I was used to identify ‘hotspots’ of locally high
values of positive or negative autocorrelation for traits which
showed overall significant phylogenetic signal [47].
3. Results
Summarized song data for each species are available in the
electronic supplemental material, appendix A1.

(a) Patterns of variation
The pulse-scale signal traits processed first had lower CVs
than did the chirp-scale signal traits processed later (n = 39
species or lineages, ANOVA with traits nested within trait
type: trait type F1,4 = 64.383, p < 0.001). The magnitude
of the difference was roughly 2 – 3 × higher CVs for the
chirp-scale traits than for the pulse-scale traits (figure 2).

(b) Preference functions
Areviewof the literature on femalepreference functions inGryl-
linae species (table 1) revealed that pulse-scale signal traits
processed first are overwhelmingly subject to closed preference
functions (frequency: 14 closed, 0 open; pulse rate: 16 closed, 1
open; pulse duty cycle: 11 closed, 3 open), whereas chirp-scale
signal traits processed later are typically subject to open prefer-
ence functions (pulses per chirp: 3 closed, 9 open; chirp rate: 3
closed, 7 open; chirp duty cycle: 0 closed, 12 open).

(c) Phylogenetic signal
Two of the three pulse-scale signal traits, frequency and pulse
duty cycle, showed no phylogenetic signal, whereas pulse
rate and all three chirp-scale signal traits did show significant
phylogenetic signal (table 2 and figure 3). Evaluation of local
Moran’s I is presented in electronic supplementary material,
figures S2–S4. It revealed that the significant phylogenetic
signal for pulse rate (electronic supplementary material,
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Table 2. Results of tests of phylogenetic signal in cricket song
components.

trait Abouheif’s Cmean Moran’s I

frequency −0.003, p = 0.316 −0.022, p = 0.337

pulse rate 0.479, p < 0.001 0.064, p < 0.001

pulse duty cycle 0.062, p = 0.126 −0.008, p = 0.065

pulses per chirp 0.333, p < 0.002 0.014, p < 0.004

chirp rate 0.392, p < 0.007 0.011, p < 0.015

chirp duty cycle 0.449, p < 0.001 0.006, p < 0.027
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Figure 3. Phylocorrelograms indicating phylogenetic autocorrelation as a function of phylogenetic distance for each of the song traits. The solid black line is Moran’s
I autocorrelation index, with dashed lines indicating 95% confidence envelope. Significantly positive regions of autocorrelation are indicated in red. (a) Frequency,
(b) pulse rate, (c) pulse duty cycle, (d ) pulses per chirp, (e) chirp rate and ( f ) chirp duty cycle. (Online version in colour.)
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figure S2) derives from two transitions to faster pulse rates,
one ancestral to the stutter-trillers (G. integer +G. armatus)
and trillers (G. texensis +G. rubens +G. regularis) and one
ancestral to (G. personatus +G. staccato +G. lineaticeps), plus
one transition to slower pulse rates (G. vulcanus +G. longicer-
cus); notably these taxa are either allopatric [31,77] or
divergent in pulse rates at the species level [58,78].
4. Discussion
As pertains to crickets, in which serial processing of signal
components was already well established [27,33], these
results strongly support that signal components processed
first are likely to be good indicators of broad-scale genetic
compatibility (i.e. species-specific), because they (i) are static
traits with low CVs, (ii) are subject to stabilizing selection
via closed preference functions, (iii) change sufficiently
rapidly during speciation that they tend to have low phylo-
genetic signal; components processed later are more likely
to indicate quality—they (iv) are dynamic traits which have
high CVs, (v) are subject to directional mate preferences
and (vi) track phylogeny, suggesting stability of quality
indicating signals relative to speciation rates. These results
support the order-of-operations model and seem general in
that they apply to an entire clade of North American Gryllus.
Studies of other cricket families or subfamilies also lend sup-
port: closed preference functions have been found for pulse
rate or frequency in Laupala cerasina in Trigoniidae [79],
Oecanthus nigricornis and O. forbesi in Oecanthinae [80,81],
and Scapteriscus acletus in Gryllotalpidae [82]; similar to my
results with Gryllus, dominant frequency in Lebinthini cricket
calls showed no phylogenetic signal, but longer time scale
song structure did [83].

The only result obtained in this study which is somewhat
at odds with the order-of-operations model was the finding
of a significant phylogenetic signal in pulse rate. Local
Moran’s I analysis (electronic supplementary material,
figure S2) showed that the significant phylogenetic signal
in pulse rate resulted from transitions ancestral to clades
which are currently allopatric (G. integer +G. armatus),
(G. personatus +G. staccato +G. lineaticeps), (G. vulcanus +
G. longicercus) [31] or, if partially sympatric, are strongly
divergent in pulse rate (G. texensis +G. rubens +G. regularis)
[58,78]. Sympatry is expected to influence the degree of
phylogenetic signal because signal will tend to deteriorate
with rapid changes at speciation, but no such changes are
required among allopatric taxa. An interesting example is
the Australian psyllids studied by Percy et al. [84], in which
species from one clade are distributed among different host
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plant species of Eucalyptus and so can be considered allopa-
tric, whereas another clade co-occurs micro-sympatrically
within a single host plant Allocasuarina verticellata. The allopa-
tric clade showed a significant phylogenetic signal in mating
calls whereas the sympatric clade showed no relationship.
That is, in the micro-sympatric clade for which signal recog-
nition is functionally related to species identity, phylogenetic
signal was absent. Sympatry versus allopatry has also been
shown to affect gains versus losses of male secondary sex
organs in hairstreak butterflies in a manner consistent with
a species-isolating function [85].

In addition to the effect of sympatry versus allopatry, the
predictions based on phylogenetic signal also depend upon
the pattern of evolutionary change. If evolutionary change
in recognition traits is gradual and proportional to time,
then continuous stabilizing selection from closed preference
functions would favour slower evolution and higher phylo-
genetic signal—the opposite of my predictions and of the
empirical findings. This apparent contradiction is resolved,
however, if recognition traits evolve via a punctuated rather
than a gradual model of evolution (i.e. with rapid and revers-
ible changes during speciation followed by relative stasis).
Similarly, if attractive quality indicating traits have con-
dition-dependent expression, then phenotypic selection on
the signal traits primarily results in genetic changes in ‘con-
dition’ rather than change in the traits themselves [86] (i.e.
attractive traits with condition-dependent expression may
evolve slowly, despite constant directional selection, leading
to higher phylogenetic signal).

How generalizable are results from crickets? Crickets may
be the ideal test case for the order-of-operations model in that
themale long-distance calling song is restricted to a single sen-
sory modality, and female reception of that signal has detailed
neurobiological evidence of serial processing. Multi-modal
mating signals seem much more likely to be processed in
parallel simply because each sensory input starts with
different types of receptors. Serial processing of multi-modal
signals could still occur, however, if there is temporal separ-
ation between modalities. For example male Chinavia
stinkbugs initiate pair formation via release of species-specific
pheromones which attract receptive conspecific females to the
male’s plant; females then emit species-specific vibratory
signals via the plant substrate to which males respond with
species-specific substrate-borne vibrations andmate searching
[87]; once the pair meets, antennation and physical court-
ship may proceed to mating [88]. Thus, in these stinkbugs,
mating involves (at least) three sensory modalities with
serial progression from species-specific chemical, to species-
specific vibrational, to non-species-specific tactile assessment.
Nonetheless, some of the iconic examples of complex sexual
signalling systems involve simultaneous multi-modal signal-
ling. For example, lek displays of manakins (Aves: Pipridae)
often involve dynamic complex dances and visual feather
ornamentation combined with vocal and mechanically pro-
duced sounds [89,90]. Such a complex multi-modal display
does not preclude serial processing however: femalemanakins
evaluate potential mates at leks of conspecific males, not at
beehives, fig trees or waterfalls; evaluation of a pool of poten-
tial mates at leks suggests prior evaluation of an appropriate
time and place to select among generally compatible potential
mates. In various taxa, leks are often advertised by broadcast
calls (hummingbirds [91]; flycatchers [92]; peafowl [93]; man-
akins [94,95]; frogs [96,97]; birds-of-paradise [98]). Therefore,
even lek mating systems might be interpreted as following
order-of-operations in mate choice, with the elaborate multi-
modal on-lek displays constituting only the second step of dis-
crimination. It is worth noting that in manakins more complex
display elements show greater phylogenetic signal ([89],
p. 223), potentially consistent with the ideas presented here.

The potential generality of the order-of-operationsmodel is
extended even further by considering serial processing to
encompass the priority of information in addition to a linear
temporal series of processing steps. Perhaps because I study
crickets, I developed my thoughts more narrowly, but during
the review of this paper, the reviewers and editor persuaded
me that organisms with more complex nervous systems
could also prioritize information processing in a manner
consistent with an order-of-operations. This is harder to
demonstrate empirically, and I am not aware of any examples
with detailed neurobiological support, but neural gating [10]
is a plausible mechanism by which an ‘attractiveness’ circuit
is inhibited unless a ‘recognition’ circuit actively disinhibits
it. Such a mechanism could apply to either unimodal or
multi-modal signal integration.

In a broad sense, whether or not ‘sexual selection’ and
‘species recognition’ are distinct processes or part of a single uni-
fied process [7] may well be semantic. The order-of-operations
model suggests a single continuum of mate discrimination,
but that continuum for most species will involve two ordered
steps: recognition of generally compatible mates followed
by selection among them. That will typically require multi-com-
ponent mating signals with different properties (i.e. relatively
stereotyped ‘static’ species-specific signals evaluated first by
band pass closed preference functions, followed by relatively
dynamic, perhaps condition-dependent, signals evaluated
second by high pass open preference functions). It makes little
fitness sense for organisms to be overwhelmed by ‘sexiness’
prior to establishing general compatibility; if they were, more
would end up like the unfortunate Julodimorpha bakewelli
beetles copulating with beer bottles [13]. If signal recognition
is typically tightly coupled with species identity, then signal
recognition will usually lead to conspecific mating oppor-
tunities. Nonetheless, ‘signal recognition’ and ‘species
recognition’ are not functionally equivalent, and Mendelson &
Shaw [9] are correct to caution against ‘species recognition’
terminology, for example juveniles and non-breeding individ-
uals do not produce mating signals, so despite being
conspecific, they attract no special interest. The idea of signal
recognition followed by mate choice among recognized poten-
tial mates does represent a single unified process of mate
discrimination, but one that is ordered in accordance with the
greatest marginal fitness gains associated with incremental
investment in mate discrimination.
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