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Abstract

TnSeq, or sequencing of transposon-insertion libraries, has proven to be a valuable method for 

probing the functions of genes in a wide range of bacteria. TnSeq has found many applications for 

studying genes involved in core functions (such as cell division or metabolism), stress response, 

virulence, etc., as well as to identify potential drug targets. Two of the most commonly used 

transposons in practice are Himar1, which inserts randomly at TA dinucleotides, and Tn5, which 

can insert more broadly throughout the genome. These insertions cause putative gene-function 

disruption, and clones with insertions in genes that cannot tolerate disruption (in a given condition) 

are eliminated from the population. Deep-sequencing can be used to efficiently profile the 

surviving members, with insertions in genes that can be inferred to be non-essential. Data from 

TnSeq experiments (i.e. transposon insertion counts at specific genomic locations) is inherently 

noisy, making rigorous statistical analysis (e.g. quantifying significance) challenging. In this paper, 

we describe Transit, a Python-based software package for analyzing TnSeq data that combines 

a variety of data processing tools, quality assessment methods, and analytical algorithms for 

identifying essential (or conditionally essential) genes.
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1 Introduction

TnSeq, or sequencing of transposon-insertion libraries, has proven to be a valuable method 

for probing the functions of genes in bacteria [1–3]. Libraries are generated by random 

insertion of a transposon throughout a genome, creating a pool of mutants. DNA from 

bacteria grown in a particular condition is extracted, the junctions between transposon 

and adjacent genomic region are amplified by PCR, the samples are sequenced by high-

throughput sequencing, and insertions at individual sites are counted. The pattern of 

insertion counts can be used to infer the difference between essential (ES) and non-essential 

(NE) regions; regions that tolerate insertions are generally considered non-essential, while 

regions lacking insertions are taken as evidence of essentiality. In addition to the binary 

distinction of essential vs non-essential, some genes can exhibit a partial reduction of 

insertion counts, which can be interpreted as a growth defect (GD) caused by disruption of 

the gene, and indeed quantitative changes in insertion counts in has been shown to reflect 
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changes in fitness E. coli [1]. There are several variations of sample preparation protocols 

currently in use, going by names such as TraDIS [4], HITS [5], and InSeq [6], which 

differ based on the transposon used, method of DNA fragmentation, and transposon junction 

amplification. More recently, Barseq [7] has been introduced to exploit barcoding to afford 

a very high level of multiplexing on next-gen sequencers, allowing the efficient analysis of 

hundreds of samples in parallel.

TnSeq has found many applications in many different bacteria, including E. coli, 
Mycobacteria, Pseudomonas, Vibrio, Haemophilus, Salmonella, etc., to study genes invovled 

in metabolism, stress response, virulence, etc. (see Note 1) TnSeq gives a very different 

read-out on gene function than RNA-seq (transcriptomics), as essentiality of a gene is 

orthogonal to (i.e. not necessarily correlated with) the level of expression [8]; one can 

change without the other. Gene essentiality is especially useful for drug discovery efforts, 

such as interpreting mechanisms of resistance through mutations found in resistant mutants 

and identifying vulnerable targets and pathways that are critical for survival in vivo (during 

infection) [9]. Databases of essential genes, such as DEG [10], have been assembled from 

curated collections of published results of TnSeq analyses, along with inferences of essential 

genes extended to other species by homology.

Two of the most commonly used transposons in practice are Himar1 [11, 12] and Tn5 

[4, 13]. While Himar1, a member of the mariner family, is restricted to inserting at 

TA dinucleotides [14], Tn5 can insert effectively at any site in the genome, which has 

consequences for statistical analysis. The magnitude of counts at an individual site is highly 

dependent on the library, as insertion into the chromosome is a stochastic process, which 

is a major factor contributing to variability. Although the magnitude of insertion counts can 

vary significantly between adjacent TA sites in non-essential regions, no strong sequence-

dependent bias has yet been found for insertion of various transposons. (see Note 2) Thus 

insertion counts are usually treated as a random variable, and analysis methods rely on 

averaging over multiple TA sites in a gene to make a statistical assessment of essentiality. 

Even a GC-rich organism like M. tuberculosis has 3 or more TA sites for most genes 

(median is 13 TA sites; only 2.7% of genes have less than 3 TA sites); analysis of genes 

with only 1-2 TA sites is typically not reliable (analysis of short genes becomes highly 

dependent on the degree of saturation), and of course genes with 0 TA sites are unanalyzable 

by TnSeq. However, intergenic regions and ncRNAs are often short enough to have only 

0-2 TA sites, and are difficult to anlayze using TnSeq. Many of the analytical methods for 

Himar1 can be extended to Tn5 data, provided that the saturation is high enough and the 

assuming the locations and magnitudes of insertions can effectively be treated as random 

[2]. It is important to note that essential genes, which typically lack insertions throughout the 

body of the ORF, have often been observed to tolerate insertions at the N- and C-termini, as 

1For example, TnSeq has been used to study genes required for metabolizing/utilizing specific nutrients such as cholesterol [24] or 
iron [33], tolerance of stress conditions [37, 38], genetic interactions with knocked-out genes in libraries made from null mutants 
[39–41], and virulence in animal models [4, 5, 9, 42, 43].
2For Himar1, there is an apparent non-permissiveness of TA sites with a G at flanking positions +/−2 bp, with G or C at +/−3 [44], and 
also a general preference for insertions in more bendable regions of the DNA [45]). Similarly, only a generalized sequence preference 
has been identified for Tn5, but it is insufficient to make insertion locations predictable [46].
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well as in linkers between domains, and can even contain non-essential domains, which also 

pose challenges for rigorous identification of essentials. (see Note 3)

Data from TnSeq experiments (i.e. insertion counts) is inherently noisy, making rigorous 

statistical analysis challenging. Variability can come from a variety of sources, including 

representation (abundance) in the library, stochastic differences between identically-treated 

samples (plates, cultures, amimals), and the sequencing process. Reducing raw counts to 

template counts using barcodes can help ameliorate PCR jackpotting [15]. Loss of diversity 

(especially in animal infections) and amplification of fitness differences due to differences 

in growth time (generations) can also lead to significant artifacts such as skewing of read-

count distributions [16]. Larger genes with more TA sites ease this because the impact 

of isolated deviations (e.g. missing or outlier counts) can be mitgated by averaging over 

multiple observations. Conversely, higher noise and lower saturation can make statistical 

calls for smaller genes uncertain. Hence, normalization and rigorous statistical analysis 

are critical to identifying significant genes (e.g. essential or conditionally essential) Also, 

collection of multiple replicates (2-3 replicates per sample is recommended) is important 

for increasing statistical certainty through increasing the number of observations per gene. 

(Biological replicates, i.e. samples from different plates or animals, are more important than 

technical replicates, i.e. resequencing, for giving a fair picture of stochastic variability of 

insertion counts, which is critical assessing statistical confidence in observed differences.) 

Several software packages are available for analysis of TnSeq data, each based on different 

theoretical framework: ESSENTIALS [17], TnSeq-Explorer [18], TraDIS-Toolkit [19], 

TnSeqDiff [20] fitness ratios [21], ARTIST [22], and others.

In this paper, we describe Transit [23], a Python-based software package for analyzing 

TnSeq data. Transit combines implementations of a range of previously published statistical 

analysis methods. Transit was originally designed for statistical analysis of Himar1 TnSeq 

datasets (in which insertions are assumed to be restricted to TA sites), though some of the 

methods have been adapted for Tn5 data (for which the typical lower saturation causes 

challenges). Transit has a pre-processor (TPP) for extracting insertion counts from raw 

sequence (.fastq) files that encodes best practices accumulated from experience in multiple 

labs over the years. Transit also incorporates tools for quality control (QC analysis) for 

assessing the quality of datasets. Transit has a graphical user interface (GUI) to make it 

easy for users to to perform most tasks, though this review will focus on running tasks from 

the command line. The methods are also accessible as a Python library for programmers 

to call in their own scripts (the source code can be downloaded from Github, https://

github.com/mad-lab/transit). Further details can be found in the online documentation, 

https://transit.readthedocs.io/en/latest/.

The analytical tools in Transit are oriented around addressing three types of questions:

1. identifying essential genes in a single (e.g. reference) condition

2. comparative evaluation of conditional essentiality between two conditions

3Some studies have observed large-scale chromosomal biases, where mean insertion counts exhibit a trend based on position on the 
chromosome, such as a gradation based on distance between the origin and termination of replication. Adjustments for such biases can 
be made through methods such as the LOESS correction [47], which equalizes the smoothed mean across the whole genome.

Ioerger Page 3

Methods Mol Biol. Author manuscript; available in PMC 2022 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/mad-lab/transit
https://github.com/mad-lab/transit
https://transit.readthedocs.io/en/latest/


3. analysis of genes showing variability across multiple conditions

Each of these has different use cases. (see Note 4) This paper describes how to do these 

analyses using Transit, and includes comments about the impact of (and guidelines on) data 

quality, file formats, and other practical information.

2 Materials

Transit is designed to run on Linux, Macs, and Windows machines. Transit is written in 

python3, and requires wxPython4, R, and many other packages as dependencies. Transit 

can be installed in two ways: 1) via ‘pip3 install’, which will downloaded and install the 

compiled code from the repository on PyPi along with all dependencies (so that it can be 

run directly from the command line as ‘transit’), or 2) by cloning the source code from 

GitHub, and then manually installing the required packages (see Installation Instructions 

in the online documentation, https://transit.readthedocs.io/en/latest/). The current version is 

3.1.0 as of this writing; for future changes, see the online documentation. Note that BWA 

must be installed for TPP, and some of the more advanced functions (like ZINB) require R 

to be installed, along with some specific packages.

In the sections below, we will give examples based on a study of gene requirements for 

growth of M. tuberculosis H37Rv on cholesterol compared to glycerol [24]. In this study, 

there are 5 TnSeq datasets collection, 2 for glycerol and 3 for cholestrol. For brevity, we will 

refer to these wig files as G1.wig, G2.wig, C1.wig, C2.wig, and C3.wig.

If installed from GitHub, running Transit would require command sequences like ‘python3 

$TRANSITDIR/src/transit.py …’, where $TRANSITDIR is path where Transit is 

installed. However, for simplicity, we will simply use the command ‘transit’ in the 

examples below.

Users can get help on most commands (e.g. reminders of arguments and flags) by running 

Transit without any arguments, or with ‘--help’.

Most of the analyses in Transit generate tab-separated output files as a convention, which 

can be opened as spreadsheets in Excel. Lines prefixed with ‘#’ in the output files are 

comments.

All the input and output files for the examples in this chapter can be accessed online at: 

http://orca1.tamu.edu/essentiality/transit/examples/index.html

4A common case of single-condition analysis might be assessing essential genes and pathways in a new bacterial species. A common 
case of pairwise analysis might be comparing essentiality in a stress condition, such as starvation, iron limitation, low pH, hypoxia, 
antibiotic exposure, or growth in an animal model, compared to a reference condition, such as growth on rich medium. However, 
recently, more complex TnSeq experiments are being conducted involving multiple experimental variables/treatments, such as varying 
antibiotic concentrations, varying durations (number of days or weeks in culture or in vivo), comparison of survival in different 
animal breeds/species/genotypes, or supplementation with various nutrients, making tools for task multi-condition analysis necessary 
to explore/characterize patterns of response over larger sets of experimental conditions.
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3 Methods

3.1 Pre-Processing (TPP)

Transit has a pre-processing step called TPP (Transit Pre-Processor) that maps reads from 

sequencing a Tn library (files in .fastq or .fasta format) into a genome (.fasta format) and 

tabulates insertion counts at TA sites. The counts are output in a file format called ‘.wig’ 

files, which simply have two values on each line - coordinate and insertion counts for each 

TA site. Wig files have two header lines, the second of which indicates the name of the 

genome sequence that was used as a reference (‘variableStep chrom=H37Rv’ indicating 

H37Rv.fna as the reference sequence, for example). In subsequent analyses, it is critical 

to use the annotation file corresponding to the genomes sequence used in TPP, to ensure 

consistency of the coordinate system.

TPP uses BWA [25] (which must be installed separately) to map reads into the genome. (see 

Note 5)

An example of running TPP is as follow:

> tpp -bwa /home/bwa/bwa-0.7.12/bwa -ref H37Rv.fna -reads1 G1_R1.fastq

    -reads2 G1_R2.fastq -output G1

The inputs are the sequencing data (fastq files for read 1 and 2) and the reference genome 

sequence (H37Rv.fna, nucleotide fasta). Multiple intermediate files will be generated for 

the base filename given by -output. The primary output file would be the wig file, G1.wig, 

which contains the insertion counts at TA sites.

TPP can also map reads to genome sequences containing multiple contigs (or replicons), 

such as when an organism contains multiple chromosomes and/or plasmids. Separate 

reference sequences can be provides to TPP as a comma-separated list.

Another important output file from TPP is the .tn_stats file that gets generated. It contains 

important parameters and diagnostics from the run. As a quick check, it is useful to examine 

the saturation (fraction of TA sites with insertions, ideally > 30%) and NZmean (mean over 

non-zero sites, ideally > 10). The .tn_stats files also reports the total reads, number of reads 

mapped, and related statistics which can give insight into the degree of attrition and possible 

reasons for it (for example, whether reads lacked the expected prefix, mapped predominantly 

to a single site, or matched known sequences related to the transposon vector or primers).

5Since the reads represent junctions between the transposon and chromosome, the first step is identifying reads (in read 1) with a 
prefix matching the terminus of the transposon, and the stripping this prefix off to map the genomic suffix. Many protocols introduce 
random shifts in the location of the prefix sequence within the reads, to reduce sequencing problems when all reads begin with the 
same nucleotides. By default, TPP searches for a prefix corresponding to Himar1, but other transposons can be accommodated by 
specifying the search sequence using the ‘-prefix’ flag. Illumina sequencers often provide pairs of reads, and while read 2 is not 
absolutely necessary for mapping reads (i.e. optional), Sassetti et al. have shown how to embed random nucleotide barcodes in read 
2 that can be used by TPP to reduce raw read counts at each TA site to counts of unique DNA templates, which helps reduce noise 
due to PCR jackpotting effects [15]. Because of the lengths of the prefix in read 1 and barcodes (and surrounding constant regions and 
genomic regions in read 2), it is recommended to use a read length of at least 75 bp (i.e. 75x75 bp paired-end sequencing). Various 
flags can be used to adjust the methods and parameters for mapping reads, such as number of mismatches allowed or constraints on 
location of prefix.
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3.1.1 Making Combined Wig Files—When working with a large collection of 

datasets, it can be cumbersome to have to type multiple wig filenames as inputs to 

subsequent commands. In such cases, it is convenient to make a ‘combined_wig’ file, which 

combines the counts at the same TA sites from multiple wig files on the same line (and 

appends on the ORF id and gene name from the annotation). To aid in comparing insertion 

counts between datasets, the counts are normalized using TTR normalization (by default, 

see below), though other normalization methods (including ‘nonorm’ which preserves raw 

counts) can be applied using the -n flag. The “#File:” header lines cocument the datasets that 

were combined.

> transit export combined_wig G1.wig,G2.wig,C1.wig,C2.wig,C3.wig 

H37Rv.prot_table

                   glyc_chol_combined_wig.txt  # TTR norm is implicit

> transit export combined_wig G1.wig,G2.wig,C1.wig,C2.wig,C3.wig 

H37Rv.prot_table

                   glyc_chol_combined_wig_raw.txt -n nonorm

A recommended practice is to use the combined_wig file for examining and comparing 

normalized insertion counts in a gene or locus that is indicated to be conditionally essential, 

to confirm whether the effect is genuine or perhaps influenced by a few outlier insertion 

counts.

The ‘.prot_table’ file contains the coordinates and annotations of genes in the genome (see 

Section 3.2.2 below).

It is often useful to reduce the data in each sample to the mean insertion counts for each 

gene, which can be done with the ‘export mean_counts’ command:

> transit export mean_counts G1.wig,G2.wig,C1.wig,C2.wig,C3.wig 

H37Rv.prot_table

                  glyc_chol_gene_means.txt

The output file, glyc_chol_gene_means.txt can be opened as a spreadsheet.

An individual wig file may be normalized itself using the following command,

> transit normalize <input.wig> <output.wig> -n [method]

where ‘method’ is TTR, betageom, or several others (see documentation). Normalization can 

also be applied simultaneous to multiple datasets in a combined_wig file by adding the ‘-c’ 

flag before the filename.
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3.1.2 Evaluting Quality of TnSeq Data—To summarize the statistics of multiple 

samples in a combined_wig file, one may use the ‘tnseq_stats’ command (given either a list 

of individual wig files, or a combined_wig file):

> transit tnseq_stats G1.wig G2.wig C1.wig C2.wig C3.wig -o 

glyc_chol_tnseq_stats.txt

or

> transit tnseq_stats -c glyc_chol_combined_wig_raw.txt -o 

glyc_chol_tnseq_stats.txt

The output file is a tab-separated file that can be opened as a spreadsheet. It contains 

important information, including the saturation, total counts, mean, NZmean, and max 

count, for each dataset, along with several statistics on the read-count distribution (skewness, 

etc.). While the saturation will not change, it is best to run tnseq_stats on a combined_wig 

file to which no normalization has been applied (‘-n nonorm’), since otherwise, the mean 

counts will be reflect the results of TTR normalization. If datasets with especially low 

saturation (e.g. < 15%) or low NZmean (e.g. < 1) are observed, the researcher might 

consider excluding them from further analyses.

Users can assess the quality of the TnSeq datasets by generating and examining the 

tnseq_stats table mentioned above. The primary metrics are saturation and mean insertion 

count (specifically, NZmean). While there are not rigorous criteria for defining “bad” 

datasets, rules of thumb I use for “good” datasets are: density> 30% (ideally > 50%) and 

NZmean>10 (ideally >50). In addition, I look at MaxReadCount and Skewness as indicators. 

Typically, MaxReadCount will be in the range of a few thousand to tens-of-thousands. If 

you see individual sites with counts in the range of 105 – 106, it might mean you have some 

positive selection at a site (e.g. biological (fitness advantage), or an artifiact due to things 

like PCR jackpotting), and this can have the effect of reducing counts and influencing the 

distribution at all the other sites. If MaxReadCount<100, that is also probably problematic 

(either not enough reads, or possibly skewing). Also, skewness>30 often (but not always) 

signals a problem. The reason it is not easy to boil all these down to a simple set of criteria is 

that some some of the metrics interact with each other.

A useful tool when evaluating the quality of a collection of TnSeq datasets is to make 

a correlation plot of the mean insertion counts (averaged at the gene-level). While, it is 

difficult to state how much correlation there should be between conditions (or even between 

replicates of the same condition), the corrplot can often reveal individual samples which 

stand out as being far less correlated with all the others (which subsequently might be 

excluded from analyses).

> transit corrplot glyc_chol_combined.wig.txt glyc_chol_corrplot.png

Although saturation and NZmean are the easiest to assess, a more complicated aspect of data 

quailty is the insertion-count distribution. (see Note 6)
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3.2 Analyses for Single Conditions

3.2.1 Gumbel Analysis—Analyses of individual conditions might occur when a new 

strain is being evaluated in a reference condition (rich growth medium, for example), and the 

goal is to make a preliminary catalog of essential genes. There are two principle methods in 

Transit: Gumbal analysis, and a Hidden Markov Model (HMM). Gumbel analysis focuses 

on genes with statistically significant gaps, or consecutive sequences of TA sites lacking 

insertions (empty sites, with counts of 0) [26] Since most libraries are sub-saturated, empty 

sites will occur in non-essential regions at random, but long sequences of empty sites are 

statistically unlikely, and genes containing such gaps are taken as essential. The Gumbel 

method uses the Extreme Value Distribution to quantify the certainty, and a posterior 

probability is reported in the output file (with separate thresholds for Essential and Non-

essential genes, and Uncertain genes in between). An important advantage of this gap-based 

approach is that it is tolerant of insertions which sometimes occur at the N- and C-termini 

of ORFs. A disadvantage is that it works less well with less-saturated libraries (< 40%), and 

can yield many more Uncertain calls, especially for shorter genes (with < 10 TA sites). Note 

that the magnitude of insertion counts (and hence normalization) do not matter for Gumbel 

analysis.

> transit gumbel G1.wig,G2.wig ref.prot_table gumbel_H37Rv_glycerol.txt

Gumbel can be run on multiple replicates. (see Note 7)

A typical expectation is that around 10-15% of genes will be essential for growth in vitro in 

most bacterial genomes, as has been observed across many organisms [10], though of course 

it depends on size of genome and growth condition.

6Generally speaking, the number of TA sites with low counts are most abundant, and sites with high counts are far less frequent. 
While it is not theoretically guaranteed, well-behaved datasets typically conform closer to a geometric distribution (though possibly 
with some excess dispersion, which could be modeled as a negative binomial). In contrast, lower-quality datasets often exhibit a 
significant skew away from this distribution. Skewed datasets are often more dominated by excessively high counts at a few sites, 
while the counts at the vast majority of remaining sites are quite low by comparison. This can cause problems with normalization; 
even though TTR is designed to be robust to a few outliers, it is only linear transformation and cannot correct for skew in the 
data. This can lead to an inflation of apparently differentially essential genes (artifacts) when skewed datasets are compared to other 
conditions.
The Transit GUI provides plots of the insertion-count distribution, including a QQ-plot (quantile-quantile plot) against an ideal 
geometric, to visually assess the degree of skew. The closer to a diagonal, the better. Aside from ‘skewness’ as a metric itself, the 
tnseq_stats table also report the Pickand’s tail index [48]. Anecdotal experience suggests that dataset with PTI > 1.0 (and maybe even 
PTI > 0.5) are potentially problematic.
The causes of skew are (currently) not well understood, though, anecdotally, it often seems to be associated with loss of diverity (e.g. 
in animal-passeged samples) over ‘over-selection’ of libraries. For example, culturing too long under a stress condition can amplify the 
effects of even small fitness differences.
What can be done with skewed datasets? One solution is to apply the Beta-Geometric correction (BGC) [16]. This is a non-linear 
normalization procedure that adjusts the insertion-count distribution to look more like a conventional geometric distribution. This 
can be accomplished using the ‘-n betageom’ flag to the ‘normalize’ command. BGC normalization dramatically squashes down the 
sites with the highest counts, but if it is applied uniformly to all the samples in a comparison, it often greatly reduces the number of 
(apparently) significant hits, hopefully getting rid of false positives and retaining only a few true positives where the trend of insertions 
truly supports a change in essentiality (fitness difference).

> transit normalize G1 .wig G1_BGC. wig –n betageom

7If multiple replicates are available, they can be provided to Gumbel via a comma-separated list, as shown above, and the data will 
be merged. The output file will contains values for each gene, such as number of TA sites, number of sites with insertion, longest run 
of sites without insertion, and finally a posterior probability (‘zbar’) and call (ES=essential, NE=non-ess, U=uncertain, S=too short to 
analyze). This command also has flags for explicitly trimming (ignoring) TA sites in termini of genes, etc.
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3.2.2 Prot Tables—An important input file to Gumbel, like many other methods in 

Transit, is a “prot_table,” which contains the annotation of the genome (including start and 

stop coordinates of genes). The prot_table format is derived from an old format that could 

be downloaded from GenBank years ago. It is a tab-separated file with the following fields 

for each gene: function/description, start coord, end coord, strain (‘+’ or ‘−’), gene length (in 

amino acids; unused), 3 unused fields, gene name, and ORF id. More recently, the gff (or 

gff3) format is being used for genome annotations. Transit has a method to convert a gff file 

into a prot_table. However, there is greater flexibility in the gff format (especially, varying 

use of keywords), which is difficult to anticipate, so if the Transit command does not work, 

users might have to write their own script to convert their gff file to a prot_table.

> transit convert gff_to_prot_table <ref.gff> <ref.prot_table>

See Notes on including other types of genes in prot_tables. (see Note 8)

3.2.3 Hidden Markov Model—The HMM can also be used to assess TnSeq data in 

a single condition. It works a different principle - using a probabilistic model to estimate 

the state at each TA based on the counts and consistency with adjacent sites [27]. This 

allows the HMM to smooth over individual outlier values (such as an isolated insertion in 

any otherwise empty region, or empty sites scattered among insertion in a non-essential 

region) and make a call for a region/gene that integrates information over multiple sites. 

The important difference from Gumbel analysis is that the HMM takes into account 

the magnitudes of insertion counts, which can also carry information about the growth 

requirement (or fitness effect) of a gene. This allows the HMM to make finer distinctions, 

utilizing 4 states for individual sites: ES (essental), GD (growth-defect), NE (non-essential), 

and GA (growth-advantaged). One might see a GD call for a gene whose disruption (by 

the transposon) impairs growth, so counts are suppressed (compared to the global average, 

but not all the way to 0), while a gene might be called GA if transposon insertions actually 

confer a growth advantage, resulting in inflated counts [21]. The gene-level calls are made 

based on the majority call among the TA sites within each gene. The HMM automatically 

tunes its internal parameters (e.g. transition probabilities) to the characterisitics of the 

input datasets (saturation and mean insertion counts), and can work over a broad range 

of saturation levels (as low as 20%, [27]).

> transit hmm G1.wig,G2.wig H37Rv.prot_table hmm_H37Rv_glycerol.txt

The HMM command has flags for normalization (-n) and also how to handle merging 

of replicates (-r), though defaults are usually fine. There are actually two output files 

generated by the HMM, one named on the command line, which will contain the 

analysis (e.g. state probabilities and call) at each individual TA site, and another, 

hmm_H37Rv_glycerol_genes.txt (‘genes’ added as suffix to filename), which contains the 

8Note that one can add other types of genes to a prot_table, such as tRNAs, rRNAs, and ncRNAs. All that is required it to include 
lines with the expected format, including start and end coordinates and strand. Furthermore, the same approach can be used to 
represent other types of loci, such as operons (spanning multiple genes) or intergenic regions, to be analyzed for essentiality. However, 
note that most intergenic regions and ncRNAs are relatively small compared to typical protein-coding regions, and hence they often 
have only a few (if any) TA sites, making essentiality analysis highly uncertain (except for the most highly saturated libraries [44]).
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call for each gene. There is no “probability” associated with the call for each gene. It is 

important to keep in mind that the call for a given gene can be influenced by insertions in the 

adjacent region, which is part of the design of HMMs.

The ‘-l’ flag may be used to apply a LOESS correction to adjust for large-scale variations in 

insertion counts across the genome. (see Note 9)

Because essential and growth-defect regions are close (both have suppressed counts), the 

difference in call by the HMM (ES vs GD) can be affected by noise, so we often combine 

the two categories. Typically, 15-20% of genes in a bacterial genome are called by the HMM 

as ES or GD, suggesting they are either absolutely required (ES) or contribute to fitness 

(GD) in the growth condition evaluated.

3.3 Pairwise Comparisons: Resampling

Comparisons between two conditions can be used to identify conditionally-essential genes. 

In addition to binary cases where an essential becomes non-essential or vice versa, we 

also include genes with quantitative changes in insertion counts, reflecting apparent fitness 

changes for mutants (for example, genes in which the mean insertion count decreases by 

2-fold, though not going all the way to 0). The primary tool in Transit used for pairwise 

comparisons is “resampling.” It is equivalent to a permutation test on the difference of the 

mean counts between the two conditions for each gene. Of course, because of stochasticity, 

almost every gene will exhibit some difference in mean insertion counts between any pair of 

conditions. What matters is whether the difference is statistically significant.

Resampling is a frequentist approach that compares the observed differences of mean 

insertion counts to a null distribution to determine whether the difference is larger than 

would be expected by chance (given the same counts but without knowledge of the 

condition). (see Note 10)

Normalization is critically important for resampling. If the individual datasets are not 

properly normalized, it can lead to the appearance of an artifically inflated number of 

conditional essentials (i.e. false positives, artifacts). The default normalization used in 

Transit is called TTR (Trimmed Total Read-count). (see Note 11)

9Because the HMM takes the magnitudes of insertions into account, it can be affected by large-scale varations in insertion counts 
across the genome. In the GUI, a plot of the smoothed mean insertion count can be generated. If there are noticable differences, the 
local deviations from the global mean can be subtracted out using the LOESS correction [17] (‘-l’ flag for the hmm command). While 
this is typically not necessary for Tn libraries in M. tuberculosis, chromosomal biases can be more severe in faster-replicating species, 
like Vibrio cholera [3] and E. coli [49].
10First, the normalized insertion counts are pooled over all TA sites and replicates for both conditions. Then a null distribution is 
created by repeatedly drawing random two samples (of the same size as the original number of observations) from the pooled counts 
and calculating the difference of means 10,000 times. From this a two-tailed p-value is derived for the observed difference, and the 
p-values are adjusted post-hoc for multiple testing via the Benjamini-Hochberg correction [50] to limit the overall false discovery rate 
(FDR) to 5%.
This comparative approach to identifying conditionally essential genes is preferred over simply combining the results of individual 
analyses of each condition (e.g. Gumbel) and selecting genes that are called Essential in one condition but not the other, because the 
results of that approach could be influenced by which genes fall just above or below the significance cutoff. Resampling is a direct 
comparison that looks at differences in insertion counts. The resampling procedure is designed to be (somewhat) robust to noise (e.g. 
outliers, high variance among counts), and is appropriately less sensitive for smaller genes and more sensitive with more replicates.
11For each dataset, the total insertions over all TA sites is tabulated, after removing the top and bottom 1% of sites (to reduce the 
influence of outliers). The sites are divided by this total, and then scaled-up so that the mean insertion count over the whole genome 
is 100. While the calculation is simple, it puts counts from different datasets on a comparable basis. Furthermore, it maintains a 
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Resampling can be run on 2 sets of wig files (comma-separated) as follows:

> transit resampling G1.wig,G2.wig C1.wig,C2.wig,C3.wig H37Rv.prot_table

             resampling_glyc_chol.txt -a

The full list of options for the resampling command is:

> transit resampling

usage:

transit resampling <comma-separated .wig control files> <comma-

separated .wig experimental files>

            <annotation .prot_table or GFF3> <output file> [Optional 

Arguments]

or

transit resampling -c <combined_wig> <samples_metadata> <ctrl condition 

name> <exp condition name>

              <annotation .prot_table> <output file> [Optional Arguments]

NB: The ctrl and exp condition names should match Condition names in 

samples_metadata file.

Optional Arguments:

-s <int>   := Number of samples. Default: -s 10000

-n <string> := Normalization method. (Default: -n TTR)

-h       := Output histogram of the permutations for each gene. (Default: 

Turned Off)

-a       := Perform adaptive resampling. (Default: Turned Off)

-ez      := Exclude rows with zero across conditions. (Default: Turned Off)

balance so that counts from less-saturated datasets are inflated proportionally, so that the mean insertion for most genes (averaged over 
multiple TA sites) stays about the same on average. This objective is important for the assumptions of resampling (see explanation 
in [23]). A way to verify that TTR normalization is doing the right thing is to make a scatter plot of the mean insertion counts 
for each gene between any two datasets; the data should scatter along the X=Y diagonal. Individual points can deviate from this 
line due to: experimental noise, sampling error for small genes with few TA sites, or biological differences (if the datasets represent 
distinct experimental conditions). But if there is a systematic deviation away from the X=Y line in this scatter plot (due to improper 
normalization), it would likely produce an excess of conditional essentials detected by resampling.
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-PC <float>  := Pseudocounts used in calculating LFC. (default: 1)

-l       := Perform LOESS Correction (Default: Turned Off)

-iN <int>   := Ignore TAs occuring within given percent (as int) of the N 

terminus. (Def: 0)

-iC <int>  := Ignore TAs occuring within given percent (as int) of the C 

terminus. (Def: 0)

--ctrl_lib  := String of letters representing library of control files in 

order

          e.g. ’AABB’. Default empty. Letters used must also be used in 

--exp_lib

          If non-empty, resampling will limit permutations to within-

libraries.

--exp_lib  := String of letters representing library of experimental files 

in order

where typically the experimental condition represents a treatment and the control condition 

representation the untreated or reference condition. The samples_metadata used with 

combined_wig inputs will be explained in the next section.

The input files are implicitly normalized by TTR (though this can be changed using ‘-n’).

TA sites near the termini of ORFs can be trimmed using -iC and -iN. For example, to ignore 

insertion in the first or last 5% of an ORF, use ‘-iC 5 -iN 5.’

I recommend using the ‘-a’ flag to apply the adaptive version of resampling, which is 

much faster and generally outputs p-values close to those obtained by performing all 10,000 

samples (within a factor of 2-3). It truncates the resampling early for genes when it is 

clear that they are not going to be significant. Almost all significant genes will be still be 

significant, except for possibly a few marginal differences very close to the 0.05 threshold 

on adjusted p-value.

If the -h flag is given, histograms of the null distribution from resampling for each gene, 

along with a demarcation for the observed difference in mean insertion count between the 

conditions, will be generated in a sub-directory. These images can be examined to determine 

whether the null distribution for a gene of interest looks appropriately bell-shaped (versus 

bimodal, for example).

The output file contains the various statistics on the resampling for each gene and a Padj 
column at the end. Users can open the tab-separated file as a spreadsheet and sort by Padj. 
The conditionally-essential genes are those with Padj < 0.05.
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It is difficult to say what the expectations would be for number of conditional-essentials, 

since it depends on the impact of the biological effects of the selection conditions. (see Note 

12)

The output also reports the log-fold-change (LFC, base 2) of the mean counts. It can 

be used to sort the genes to identify those showing the greatest increase or decrease in 

counts (relatively less or more essential). However, only genes with Padj < 0.05 should be 

considered significant. But these could be uncertain, and should be ignored if they have 

a Padj above 0.05. Frequently, genes with the largest-magnitude LFC are often smaller 

genes (with fewer TA sites) or genes with very low insertion counts, which are often not 

statistically significant. Of course, as with other frequentist statistical tests, genes with 

Padj above 0.05 should not be over-interpreted as evidence that they are unaffected by the 

condition.

Pseudo-counts are used in the calculation of LFCs to help reduce noise. (see Note 13)

See Notes for analyzing datasets from different libraries using resampling. (see Note 14)

3.3.1 Pathway Analysis—Typically, the significant genes do not all come from the 

same pathway, but often represent a variety of pathways in which genes experience apparent 

increases or decreases in fitness. In order to get a sense of which pathways might be 

enriched among the conditionally essential genes, the ‘pathway_enrichment’ command may 

be used:

> transit pathway_enrichment <resampling_file> <associations> <pathways>

12In some cases, the treatment (e.g. a high-stress condition) might affect the essentiality (and fitness) of hundreds of genes. In other 
cases, biologically weak selection criteria might affect only a few (or perhaps no) genes. If the experimenter feels there are too few 
hits (e.g. compared to their expectations, possibly lacking genes known to be in affected pathways), then it might help to collect 
additional replicates, which can increase the sensitivity of detection. If, subjectively, too many significant genes are output, it might be 
a sign of problems with skewing of the data. The user can follow the QC guidelines above to possibly identify lower-quality datasets to 
try excluding, or they might consider applying BGC normalization (‘-n betageom’) to the datasets.
13To dampen the appearance of high-magnitude LFCs from genes with low insertion counts (which are more susceptible to noise), 
one can increase the pseudo-counts using ‘-PC’. The LFC is calculated using the following formula, which uses PC=1 by default, to 
avoid the result being undefined for genes with means of 0 in either condition:

LFC = log2((mean in expt condition + PC)/(mean in ctrl condition + PC))

For example, a gene with a mean count of 1 in the first condition and 4 in the second would appear to have a fold-change of 4 and 
LFC of 2.0 (with PC=0). However, this is typically in the range of noise for TnSeq experiments. Considering that TTR normalization 
adjusts the mean insertion count of each sample to around 100, raising the pseudo-counts to a level of PC=5 would reduce this to 
log2(9/6) = 0.58, masking out differences below this level.
By loading the resampling output file into the GUI (bottom panel), a volcano plot can be generated (via ‘Choose Action’), showing 
a scatter plot of the P-values versus the LFC for each gene. Genes the become more essential (in the experimental condition over 
control) are on the left (negative LFC), and significant genes are above the dashed red line (p-value threshold adjusted for 5% FDR).
14If the replicates in each conditions represent samples from multiple libraries, the sensitivity of resampling can sometimes be 
increased by performing separate random draws from the counts for each library and computing the difference of the means between 
conditions summed separately for each library. This can help reduce the variance in the difference in the mean insertion count between 
conditions by effectively subtracting out variability due to differences in abundance at each TA site between libraries. The transposon 
library each sample in the two conditions can be specified symbolically using a string of characters. For example ‘--exp_lib 
AABB --ctrl_lib AB’ would indicate that the first 2 experimental samples came from library A and the second two samples 
from library B; there can be different numbers of samples in the control condition, but they should use the same codes (in this case, 
one sample each from library A and B).
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                  <output_file> [-M <FET|GSEA|ONT>] [-PC <int>]

The 〈associations〉 file lists mappings of ORF ids to pathway ids in a two-column format. 

Three example systems of funtional categories are: Sanger roles [28] (123 roles), COG 

categories (Clusters of Orthologous Genes, [29], 20 categories), and GO terms (Gene 

Ontology, http://www.geneontology.org/; there are ~4000 GO terms with at least 1 gene in 

H37Rv). The corresponding pathway associations files for genes in Mtb H37Rv are provided 

in the Transit data directory ($TRANSIT/src/pytransit/data/) are: H37Rv_sanger_roles.dat, 

H37Rv_COG_roles.dat, and H37Rv_GO_terms.txt.

There may be multiple roles/pathway associations for each gene (listed on separate lines), 

or none (e.g. for hypothetical genes not yet functionally annotated). Note that these files 

have been expanded to include associations of each gene with all parents of each GO 

term or role (since these are hierarchical systems). The 〈pathways〉 file gives the functional 

descriptions for each pathway_id/role/GO term (e.g. sanger_roles.dat, COG_roles.dat, and 

GO_term_names.dat in the data directory). These will be the same for all organisms.

There are three alternative methods used to evaluate significance of pathway enrichment:

• The first is to use Fisher’s exact test, where the p-value based on hypergeometric 

distribution of observed counts of category members among the hits compared 

the expected number based on the whole genome [30]. This is the default 

method (‘-M FET’). The output file contains a list of significant pathways, 

sorted by adjusted p-value. In addition, the enrichment for each gene is reported. 

Enrichment is defined as the ratio of observed pathway members among the 

significant genes to the expected number based on the background proportion 

of category members in the overall genome. To mitigate the impact small 

pathways with only a few genes (which might spuriously appear as enriched), 

pseudocounts of 2 are incorporated in the numerator and denominator. This can 

be modified with the ‘-PC’ flag. However, this analysis can be of limited use if 

the total number of significant (conditionally essential) genes is small (< 10).

• An alternative approach is Gene Set Enrichment Analysis (GSEA, [31]) (using 

the ‘-M GSEA’ flag). GSEA takes into account the ranking of all the genes, 

without regard to a significance cutoff. First, the genes are sorted by LFC. 

Alternatively, they can be ranked by the signed log-P-value (SLPV = sign(LFC) 

* log10(pval)), which effectively ranks the genes by significance from largest 

increase in insertion counts to largest decrease (with insignificant genes falling 

in the middle of the ranking). Then the GSEA algorithm calculates a score 

reflecting the mean rank of a given set of genes and performs a simulation to 

determine the signifance (p-value) by comparing to a null distribution of scores 

derived from random shuffling of the order. The closer the mean rank of a group 

of genes is to the top of the entire ranked list, or the closer to the bottom, the 

more significant. The potential advantage of GSEA over Fisher’s exact test is 

that all the genes in a pathway can contribute to its enrichment, even if only a 

few (or none) are above the significance cutoff, as long as there is a systematic 

trend of increased or decreased counts shared by many of them.
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• Finally, the Ontologizer method [32] has been implemented and is available 

via the ‘-M ONT’ flag. The Ontologizer method acknowledges the hierarchical 

nature of the Gene Ontology and is designed to take advantage of parent-child 

relationships among GO terms by computing a conditional version of Fisher’s 

exact test for a node conditioned on the genes in its parents. This can help focus 

the analysis on nodes in the GO hierarchy showing the most specific enrichment.

Here are some examples of using these various options.

# uses Fisher’s exact test by default (with PC=2 as pseudocounts)

> transit pathway_enrichment resampling_glyc_chol.txt $DATA/

H37Rv_sanger_roles.dat

                  $DATA/sanger_roles.dat pathways_glyc_chol_Sanger.txt

# can do this with GO terms too

> transit pathway_enrichment resampling_glyc_chol.txt $DATA/

H37Rv_GO_terms.txt

                  $DATA/GO_term_names.dat pathways_glyc_chol_GO.txt

# with COG categories

> transit pathway_enrichment resampling_glyc_chol.txt $DATA/

H37Rv_COG_roles.dat

                  $DATA/COG_roles.dat pathways_glyc_chol_COG.txt

# can also do GSEA method (on any system of functional categories)

> transit pathway_enrichment resampling_glyc_chol.txt $DATA/

H37Rv_sanger_roles.dat

                  $DATA/sanger_roles.dat pathways_Sanger_GSEA.txt -M GSEA

# Ontologizer is a specialized method for GO terms

> transit pathway_enrichment resampling_glyc_chol.txt $DATA/

H37Rv_GO_terms.txt

                  $DATA/GO_term_names.dat pathways_Ontologizer.txt -M ONT

where $DATA refers to the path to the Transit data directory noted above. In this dataset, 

2 COG and 6 Sanger categories related to secondary-metabolite/small-molecule metabolism 

and lipid metabolism are identified as significant. The most significant GO term identified 

(among 26 significant terms, though many overlap) is GO:0008202, ‘steroid metabolic 
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process’ (Padj = 0.0000089; 15 out of 75 conditionally essential genes from resampling), 

which is consistent with the experiment (growth on cholesterol versus glycerol).

3.4 Analyses of Multiple Conditions

Recently, researchers have begun conducting more complex experiments using Tn libraries 

where a library is assessed across a large number of treatment conditions. For example, 

one might evaluate responses (conditional essentiality) to treatment with a panel of different 

antibiotics, possibly at different concentrations. One might assess the library in different 

stress conditions (heat, cold, hypoxia, SDS, nutrient starvation, iron limitation, etc.), or with 

media supplemented in various ways (e.g. multiple sources of carbon, nitrogen, sulfur, or 

phosphorous). Or one might compare survival of a bacterial transposon mutants in animal 

models with different genetic backgrounds, or for different durations of infection, etc. 

Analysis of such TnSeq datasets goes well beyond simple pairwise comparisons between 

conditions and often requires customized statistical analysis to evaluate the effects of the 

experimental variables. As a first step, Transit has some tools for evaluating variability 

of insertion counts across conditions. The analysis below focus on identifying genes that 

exhibit some statistically signficant differences in insertion counts across the panel of 

conditions. This is a useful starting point to begin to assess effects of the treatments (and 

similarities among them) based on the subsets of genes that respond.

In this section, we use an example from a study of iron utilization in mycobacteria [33]. 

The data includes 2-3 replicates each of an M. tuberculosis H37Rv transposon library grown 

in in-vitro conditions involving several different vehicles for iron delivery, focusing on 

various forms of heme and mycobactin (6 conditions). The 14 wig files for this example 

have already been consolidated into a combined wig file (iron_combined_wig4.txt), and a 

samples metadata file is used to encode which samples belong to which condition.

3.4.1 Genetic Interaction Analysis—A special case of multi-condition analysis that 

occurs frequently is when TnSeq libraries in a wild-type strain and a mutant strain (e.g. 

gene-knockout) are compared between two conditions (e.g. a stress and a control). Typically, 

one is looking for genes that are conditionally essentially in the stress condition, but one 

wants to factor out those genes with a similar response in the wild-type strain and focus 

on differences unique to the mutant. There are many variations of this scheme which also 

require a comparison of 4 TnSeq datasets, arranged as 2 × 2. Transit has a specialized 

method based on Bayesian analysis [34] to identify significantly interacting genes (that 

interact with the knockout in the context of the stress). An example of how to run this 

command is as follows, which takes 4 groups of comma-separated wig files as input:

> python3 ../../transit/src/transit.py GI

  <wigs_for_strA_cond1> <wigs_for_strA_cond2> <wigs_for_strB_cond1> 

<wigs_for_strB_cond2>

  <annotation .prot_table or GFF3> <output file>
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In the output file, significant genes are categoried as ‘aggravating’, ‘alleviating’, or 

‘suppressive’ interactions, depending on whether they exhibit increased or decreased 

insertion counts in the mutant compared to the wild-type in the stress condition.

3.4.2 ANOVA—ANOVA analysis in Transit can be used to identify genes that exhibit 

significant variability of insertion counts across multiple conditions. ANOVA is a traditional 

statistical method for determining whether there are differences in observations among 

several groups. This method can be run in Transit using the following command:

> transit anova --help

Usage: python3 transit.py anova <combined wig file> <samples_metadata file>

        <annotation .prot_table> <output file> [Optional Arguments]

Optional Arguments:

-n <string> := Normalization method. Default: -n TTR

--include-conditions <cond1,…> := Comma-sep list of conds to use for analysis

--ignore-conditions <cond1,…> := Comma-sep list of conds to ignore

-iN <int> := Ignore TAs within given percentage of N terminus. Def: -iN 0

-iC <int> := Ignore TAs within given percentage of C terminus. Def: -iC 0

-PC <int> := pseudocounts to use for calculating LFC. Default: -PC 5

For example,

> transit anova iron_combined_wig4.txt iron_samples_metadata.txt

          H37Rv.prot_table anova_iron.txt

The use of a combined_wig file makes it easy to work with a large number of datasets 

in this context. The samples metadata file is a spreadsheet (in tab-separated text format) 

prepared by users that contains information about each sample/dataset/wig file. The headers 

must contain ‘Id’, ‘Filename’, and ‘Condition’, where Id is a unique name for each 

sample, Filename is the name of its wig file (incorporated in the combined_wig file) 

and Condition is a symbolic name used to represent the treatment (typically represented 

by multiple replicates). The samples metadata file can contain additional information as 

well (e.g. time points, concentrations, batches, etc.). During the ANOVA analysis, the 

(TTR-normalized) insertion counts for the TA sites in each gene will be pooled into groups 

based on the condition labels, before computing the F-statistic and p-value. P-values are 

adjusted post-hoc by the Benjamini-Hochberg method. Flags --ignore-conditions and 

--include-conditions can be used to focus on the analysis on just a subset of desired 

Ioerger Page 17

Methods Mol Biol. Author manuscript; available in PMC 2022 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



conditions (provided as a comma-separated list). For example ‘--include-conditions 

HighFeMBT,Hemin,Hemoglobin’ or ‘--ignore-conditions LowFeMBT’.

The output of ANOVA analysis is a tab-separated spreadsheet which can be sorted by 

adjusted P-value. In this data, 181 genes were found to exhibit significant variability in 

insertion counts among the 6 iron-supplementation conditions. If a gene is determined to be 

significant by ANOVA, it only means that its counts vary in some condition (at least one) 

relative to the others, but does not indicate which one. Like traditional ANOVA analysis, 

post-hoc analyses must be employed to determine which conditions a gene is responding to, 

such as Tukey’s range-test (or honestly significant difference), which is based on pairwise 

comparisons between conditions [35].

To facilitate this post-hoc analysis, the ANOVA method in Transit also prints out LFCs 

for each gene in each condition. The LFCs can be used to look for genes that respond 

to specific conditions, e.g. by sorting on these columns to look for genes with the most 

enrichment or depletion in a given condition. Note that LFCs are computed relative to the 
mean insertion count for a gene across all conditions. Thus, there will almost always be 

some condition(s) with higher counts (representing more fitness for the mutant) and other 

condition(s) with lower counts (where disruption of gene has less fitness, and hence is 

relatively more essential) than average. Pseudocounts of 5 are used in calculating the LFCs 

(which helps reduce high-magnitude LFCs for genes with low counts, which are susceptible 

to noise), though this can be changed with the -PC flag.

The LFC columns in the ANOVA output can be colored as a heatmap in the spreadsheet 

(using Excel) to make the patterns of variation among the genes more clear. In addition, the 

ANOVA output file can be used to generate a heatmap (see Figure 1, adapted from [33]) that 

simultaneously clusters the significant genes and the conditions, which is especially useful 

for shedding light on the relationships among the conditions apparent in the data:

> transit heatmap -anova anova_iron.txt heatmap_iron.png

Similarly, the anova file can be used as input the corrplot command (with the ‘-anova’ flag 

suffixed) to show the similarities among the condition.

> transit corrplot anova_iron.txt heatmap_iron.png -anova

Importantly, the heatmap and corrplot analyses are based only on the significantly varying 

genes (Padj > 0.05, typically only a few hundred) in order to enhance the patterns, since 

otherwise they would be washed out by the rest of the genes in the genome, the majority of 

which do not exhibit significant variation.

3.4.3 Zero-Inflated Negative Binomial (ZINB)—An alternative method for 

identifying genes exhibiting variability of insertion counts across conditions is Zero-Inflated 

Negative Binomial (ZINB) regression, which has recently been added to Transit [36]. One 

of the limitations of ANOVA analysis is that it assumes the data are Normally distributed. 

However, transposon insertion counts clearly violate this assumption (for several reasons). 
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The ZINB method is designed to be a better model for insertion count data by: a) 

representing the non-zero counts using a Negative Binomial distribution, and b) representing 

the saturation (TA sites with counts of 0) using a zero component in a mixture model. Thus, 

when analyzing the counts in a gene across multiple conditions, ZINB can detect variations 

in either the magnitudes in the insertion counts or the local level of saturation. This enables 

ZINB to be a little more sensitive than ANOVA, and empirical studies suggest ZINB can 

detect about 30-50% more significant genes.

The usage of the ZINB command in Transit is as follows:

> transit zing --help

Usage: transit zinb <combined wig file> <samples_metadata file> 

<annotation .prot_table>

            <output file> [Optional Arguments]

Optional Arguments:

-n <string>  := Normalization method. Default: -n TTR

--condition  := column name in samples_metadata to use. Default: “Condition”

--ignore-conditions <cond1,…> := Comma separated list of conditions to ignore

--include-conditions <cond1,…> := Comma separated list of conditions to 

include

-iN <float>  := Ignore TAs within given percentage of the N terminus. Def: 5

-iC <float>  := Ignore TAs within given percentage of the C terminus. Def: 5

-PC <N>     := Pseudocounts used in calculating LFCs in output file. 

Default: -PC 5

--covars … := Comma-sep. list of variables (columns in metadata) to use as 

covariates

--interactions … := Comma-sep. list of variables to test for interations

--gene <ORF id or gene name> := Run method for just one gene and print model 

output.

For example,

> transit zinb iron_combined_wig4.txt iron_samples_metadata.txt
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          H37Rv.prot_table zinb_iron.txt

If there are just two conditions provided, then using ZINB analysis to identify genes with 

variable insertion counts is equivalent to detecting conditional essentiality. Hence ZINB can 

be viewed as an alternative to resampling in this limiting case, and anecdotal testing suggests 

that there is a great deal of overlap. ZINB can sometimes identify additional genes as 

conditionally essential where there is a difference in either local saturation or magnitudes of 

counts alone, even if the overall mean count between conditions is not significantly different, 

and hence not detected by resampling. (see [36] for a more thorough comparison of the 

differences in significant hits between ZINB and resampling on example datasets).

In the output file for ZINB, multiple columns of information are provided on the mean 

counts in each condition, LFCs (relative to the mean across all conditions), non-zero 

mean, and saturation. For convenience, the –gene flag can be used to run the analysis 

just on a single gene, and the Transit will print out the condition-dependent and condition-

independent models, likelihoods, etc., as in this example:

> transit zinb iron_combined_wig4.txt iron_samples_metadata.txt

          H37Rv.prot_table output.txt --gene glpK

The significance (p-value) of each gene is determined by a likelihood ratio test (LRT). 

First, a condition-dependent model is generated by fitting independent parameters for each 

condition (such as mean and dispersion of insertion counts in the Negative Binomial, and 

saturation as the mixing coefficient with the zero component). Then a condition-independent 

ZINB model is generated by fitting a common set of parameters based on the counts pooled 

across all conditions. Finally, a likelihood ratio test is performed to determine whether the 

increase in likelihood of the condition-dependent model is justified, given the increased 

number of parameters. A p-value is derived for each gene using a chi-square distribution, 

and then the p-values are adjusted post-hoc by the Benjamini-Hochberg procedure to control 

the overall FDR.

One of the advantages of the ZINB model is that it is implemented in a Generalized Linear 

Model (GLM) framework, which allows incorporation of experimental variables (attributes 

of the conditions) as covariates. One application of this idea is to factor our the effect of 

an attribute that is known to affect the main condition in a way that is not of interest. For 

example, suppose we are interested in identifying genes that exhibit variable responses to 

different antibiotics. Futher, suppose the samples were each cultured for varying amounts 

of time (e.g. 0, 1, or 2 weeks). It is natural to expect that there will variation in insertion 

counts between samples at different time-points, even if they are treated with the same drug. 

To evaluate the effect of the drug, it is desirable to subtract out any systematic effects on the 

insertion counts due to time (independent of drug). If a “Time” column is included in the 

samples metadata file, and a column with the header “Drug” encodes the drug treatment for 

each sample, then this may be achieved by using the --covars flag, as in this hypothetical 

example:
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> transit zinb combined_wig.txt samples_metadata.txt H37Rv.prot_table

          ZINB_cond_drug_covar_time.txt --condition Drug --covars Time

If there are multiple covariates, they can by specified using a comma-separated list (i.e. 

corresponding to separate columns in the metadata file). The --covars flag could also 

potentially be used to correct for batch effects (where the variation in insertion counts in 

some samples appear to be determined by the batch of the experiment or data collection).

A similar approach can be used to test for interactions of variables with the main condition. 

(see Note 15)

In the resulting output file, significant genes are those the exhibit some variablility among 

the drug treatments that is dependent on carbon source.

As with ANOVA, the ZINB output file can be used to make a heatmap showing the 

clustering of the significant genes and the the conditions:

> transit heatmap -zinb zinb_iron.txt zinb_iron_heatmap.png

4 Summary

Transit is designed to be a platform for statistical analysis of TnSeq data, with a focus on 

analysis of Himar1 transposon libraries (where insertions are restricted to TA dinucleotides). 

Some of the analytical methods can be applied to other transposons, like Tn5, though 

currently, they don’t work as robustly. Although Transit has a graphical interface (GUI), 

some of the more recent tools that have been added can only be invoked at the command 

line, which has been the focus of this paper. The Transit Pre-Processor (TPP) provides a way 

of processing raw sequencing data files and reducing the raw data to TA-site insertion counts 

in the form of .wig files. The ‘tnseq_stats’ command provides important summary statistics 

on datasets which is useful for diagnositics (i.e. identifying poor-quality datasets that might 

need to be excluded or re-collected). The analytical tools can be divided into 3 major tasks. 

First, individual datasets from an organism in a single (e.g. reference) condition can be 

used to identify essential genes using methods such as Gumbel analysis (gaps) or a Hidden 

Markov Model. Second, pairs of conditions can be compared to identify conditionally 

essential genes using resampling (a permutation test on mean counts). The recently added 

ability to apply resampling on datasets mapped to different genome sequences has proven 

15For example, suppose we are interested in genes that respond differentially to a panel of drugs. Furthermore, suppose TnSeq data 
was collected for cultures grown on media containing one of several carbon sources, e.g. glycerol, glucose, or cholesterol. In order 
to test whether carbon source interacts with drug, ZINB will fit a model based on the cross-product of all combinations of the two 
variables and compare it (using an LRT) to a condition-independent model (where the counts are pooled for the main condition). 
Assuming there is a column with the header “CarbonSource” in the samples metadata, the interaction may be tested as in the following 
hypothetical example:

> transit zinb combined_wig.txt samples_metadata.txt H37Rv.prot_table

  ZINB_cond_drug_interac_carbon.txt

  --condition Drug --interactions CarbonSource
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useful for studying differences in gene essentiality between libraries made from different 

strains, such as clinical isolates. Several methods for pathway enrichment analysis have 

also been added to gain additional insight from functional similarities among conditionally 

essential genes.

However, more recent developments in Transit have focused on supplying tools for 

analyzing larger collections of datasets from experiments involving multiple conditions. 

To keep things manageble when working with large collections of datasets, many of the 

tools in Transit have been extended to use ‘combined_wig’ files and accompanying metadata 

files that encode relevant information about the different conditions. A starting point for 

analyzing such complex experiments is to identify genes exhibiting statistically significant 

variability across the conditions, using ANOVA or ZINB analysis, and then to begin to 

cluster and assess genes based on the similarity of their patterns of count variations, utilizing 

correlation plots and heatmaps. ZINB can be used to perform more sophisticated analyses 

through the exploitation of variables relating the different conditions as covariates and/or 

interactions (including capturing the trend or dependence of insertion counts on quantitative 

variables such as time or concentration). Genetic interaction (GI) analysis can be used to 

evaluate experiments where two different experimental variables are evaluated, producing a 

2x2=4-way comparison of conditions, and test for significant interactions (e.g. suppressive, 

alleviating, or aggravating), which is especially useful for identifying genes associated with 

phenotypic changes in a knock-out strain compared to a wild-type strain.

Transit continues to evolve and improve, especially through feedback and suggestions from 

users (send email to ioerger@cs.tamu.edu). In the future, we hope to add new statistical 

methods to support analysis of more complex experiments, improve integration with the 

GUI, and also extend and improve the analyses to TnSeq libraries made with other 

transposons, especially Tn5.
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Figure 1: 
a) Correlation plot among iron-supplementation conditions based on significantly varying 

genes according to ANOVA. b) Heatmap of same data showing clustering of genes and 

conditions. Blue means more insertions than average (i.e. less essential), and red means less 

insertions than average (i.e. more essential).
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