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Animal evidence suggests that regular exposure to phthalates may
increase the risk of several disorders, including nonalcoholic fatty
liver disease (NAFLD), which is the liver manifestation of meta-
bolic syndrome.1 In particular, di(2-ethylhexyl) phthalate (DEHP),
themost commonly used of these chemicals,2 is understood to con-
tribute to NAFLD by disrupting normal lipid metabolism.3,4 Many
studies of DEHP in liver tissue have focused on hepatocytes, the
organ’s major functional cells.5 However, a new study in
Environmental Health Perspectives highlights the role of a second
cell type: hepatic macrophages, the most abundant type of liver
immune cell.6

The authors of the new paper suggest that transcription factors
called peroxisome proliferator–activated receptors (PPARs) may
regulate the joint response of macrophages and hepatocytes to
DEHP. PPARs are nuclear receptors with three distinct subtypes:
PPARa, PPARc, and PPARd. Activated upon binding dietary fatty
acids and other compounds, they help control the expression of
genes involved in glucose and lipidmetabolism.7,8

PPARs play an important role in several diseases, including
NAFLD; PPARa is highly expressed in hepatocytes, and PPARc
is highly expressed in adipose tissue and nonhepatocyte liver
cells.8 Recent in vitro studies reported that PPARc may modulate
the activity of mouse and human macrophages9 and may interact

with mono(2-ethylhexyl) phthalate (MEHP), the main DEHP
metabolite, in mouse adipocytes.10

The goal of the new study was to test whether and how the cell
type–specific presence of PPARs may influence the effect of
DEHP on fatty liver development. “In our in silico analysis, we
found that MEHP binds most strongly to PPARc, less strongly to
PPARa, and not at all to PPARd,” says Hui Yang, an associate pro-
fessor at China’s National Center for Food Safety Risk Assessment
and one of the study’s senior authors. Because PPARc is highly
expressed in nonhepatocyte cells in liver tissue, the authors’ in vivo
analyses focused on this receptor subtype, addsYang.

The researchers orally administered DEHP for 28 days to three
groups of mice: wild type (WT) mice with normal hepatocytes and
macrophages, hepatocyte-PPARc knockout mice (Hep-KO), and
macrophage-PPARc knockoutmice (Mac-KO). The teamusedRNA
sequencing and lipid metabolomic analysis to compare the liver’s
response to DEHP in each group. Although the DEHP dose was
higher than typical human exposure levels, the measured plasma lev-
els ofMEHPwere similar to those observed in human studies.11,12

The researchers found that DEHP exposure resulted in increased
lipid accumulation in the liver of WT mice and of Hep-KO mice.
Relative to these two groups, Mac-KO mice had less lipid accumu-
lation. This finding suggests that PPARc in macrophages, rather
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than in hepatocytes, is potentially involved in fatty liver
development.

The biological function of mammalian macrophages ranges
from proinflammatory (M1) to restorative (M2) activities.13 In
their M1 stage, macrophages release cytokines to recruit other
types of immune cells to the site of tissue infection or inflamma-
tion. After the other immune cells have completed tissue repair
activities, macrophages switch to their M2 stage to remove cellu-
lar debris and promote healing.13

In the new study, Mac-KO mice exposed to DEHP had signifi-
cantly more hepatic macrophages in the restorative M2 stage,
compared with similarly exposed WT mice. This finding suggests
that the binding of DEHP to PPARc in the macrophages of WT
mice may have prolonged the inflammatory M1 stage. In the ab-
sence of PPARc, however, more hepatic macrophages switched to
the restorativeM2 stage.

To further explore the potential mechanism behind their
in vivo observations, the researchers exposed mouse- and
human-derived macrophages to either DEHP, MEHP, or both
compounds combined. They found that both DEHP and MEHP
suppressed the switch to the restorative M2 stage in both types of
PPARc-containing macrophages. This in vitro finding provided
further evidence that DEHPmay promote inflammation and lipid
buildup by prolonging the inflammatoryM1 stage.

The researchers combined their data with existing knowledge14

about PPARa to propose a newmodel for fatty liver development in
mice, in which MEHP activates both PPARa and PPARc in a cell
type–specific manner. This activation may promote inflammation
and lipid accumulation by disrupting normalmacrophage function.

For Kari Neier, a postdoctoral fellow at the University of
California, Davis, who was not involved in the project, the study
is a significant advance in the field. “We may have underesti-
mated the importance of PPARc activation in macrophages for
DEHP-induced fatty liver development,” says Neier. “This novel
finding highlights a critical role of the immune system in meta-
bolic diseases like NAFLD.”

Jose Cordoba-Chacon, an assistant professor of endocrinology
at the University of Illinois at Chicago, who also was not
involved in the project, agrees that the study adds to the growing
evidence for a contribution of macrophages to fatty liver develop-
ment.15 He notes, however, that the proposed model for NAFLD
has not yet been tested in obese mice.

“An effect of DEHP on macrophage-specific processes is
plausible, but the role of PPARc may be different in obese mice
whose livers are much more prone to lipid accumulation,” says
Cordoba-Chacon. “More research is warranted to understand
how PPARs interact with DEHP in different cell types and what
this means for human NAFLD.”

Silke Schmidt, PhD, writes about science, health, and the environment from
Madison, Wisconsin.
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