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Abstract

Cluster randomized trials, where clusters (for example, schools or clinics) are randomized to 

comparison arms but measurements are taken on individuals, are commonly used to evaluate 

interventions in public health, education, and the social sciences. Analysis is often conducted on 

individual-level outcomes, and such analysis methods must consider that outcomes for members 

of the same cluster tend to be more similar than outcomes for members of other clusters. A 

popular individual-level analysis technique is generalized estimating equations (GEE). However, 

it is common to randomize a small number of clusters (for example, 30 or fewer), and in this 

case, the GEE standard errors obtained from the sandwich variance estimator will be biased, 

leading to inflated type I errors. Some bias-corrected standard errors have been proposed and 

studied to account for this finite-sample bias, but none has yet been implemented in Stata. In 

this article, we describe several popular bias corrections to the robust sandwich variance. We then 

introduce our newly created command, xtgeebcv, which will allow Stata users to easily apply 

finite-sample corrections to standard errors obtained from GEE models. We then provide examples 

to demonstrate the use of xtgeebcv. Finally, we discuss suggestions about which finite-sample 

corrections to use in which situations and consider areas of future research that may improve 

xtgeebcv.
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1 Introduction

The cluster randomized trial (CRT) is a study design used in many fields of research. In 

a CRT, randomization to intervention arms is carried out at the cluster level (for example, 

schools or clinics) and outcomes are assessed for each member of each cluster. The cluster 

randomization design is typically chosen when there is a high chance of treatment spillover 

across study arms, when the intervention is group based, or when individual randomization 

is not feasible (Turner et al. 2017a). For example, a recent trial in Ghana is evaluating 

an intervention designed to assist mothers with children that are under two years old to 

become more resilient and more effectively manage daily stress (Baumgartner 2018). The 

trial adopts a cluster randomized design because the intervention is designed to be delivered 

to groups of women. As another example, in the Thinking Healthy Program Peer-Delivered 

Plus study, the researchers recruited depressed women in their third trimester of pregnancy 

from 40 villages in Pakistan, with each village then being randomized to receive either 

the intervention or enhanced usual care (Sikander et al. 2015; Turner et al. 2016). Because 

this was a public health intervention delivered by community health workers, the risk of 

contamination (that is, the intervention being transmitted to women in the control group) 

would be too high if individual women were randomized, given that many of the women 

within each village live relatively close to one another.

Randomizing clusters instead of individuals poses unique challenges to the data analyses 

because the outcomes for members of the same cluster tend to be more similar than those 

for members of different clusters. The intraclass correlation coefficient (ICC) is a quantity 

that measures the degree of similarity for within-cluster observations and plays a central role 

in the design and analysis of CRTs (Murray 1998). Appropriate statistical methods used for 

trial analyses should properly reflect the within-cluster correlation and mainly include two 

classes of regression models: the cluster-specific (conditional) model and the population-

averaged (marginal) model (Fitzmaurice, Laird, and Ware 2011). Although each modeling 

strategy has its own advantages, an important distinction between them is the difference in 

interpretation of the regression parameters (Preisser et al. 2003). A conditional model, such 

as the generalized linear mixed model, induces the within-cluster correlation through the 

latent random effects. Thus, the interpretation of the treatment effect is the average change 

in outcomes from control to intervention, conditional on the unobserved random effect. By 

contrast, marginal models separately specify a mean structure and a “working” correlation 

structure, and the interpretation of the corresponding treatment effect is the average change 

in outcomes due to intervention among the population defined by all participating clusters. 

Because CRTs are often conducted to evaluate public health intervention and inform policy 

decision, the marginal model carries a straightforward population-averaged interpretation 

and may be preferred (Li, Turner, and Preisser 2018). Furthermore, the estimation and 

inference of marginal models are often conducted through generalized estimating equations 
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(GEE) (Liang and Zeger 1986), a multivariate extension of the quasilikelihood inference 

(Wedderburn 1974).

In addition to straightforward interpretation of estimated model parameters, GEE maintains 

a robustness property in that the treatment-effects estimates are consistent even if the 

working correlation model deviates from the true correlation model. In this case, the 

sandwich variance estimator (Liang and Zeger 1986) remains consistent to the true variance. 

However, the approximate unbiasedness of the sandwich variance holds only when there 

are many clusters (a rule of thumb is ≥ 30, although this rule is sometimes given as ≥ 

40 or even ≥ 50), whereas a frequent practical limitation of CRTs is that few clusters are 

available, because of resource constraints. In fact, a recent review by Fiero et al. (2016) 

found that, of the 86 studies included, about 50% randomized 24 or fewer clusters. In CRTs 

related to cancer published between 2002 and 2006, Murray et al. (2008) found similar 

results, with about 50% randomizing 24 or fewer clusters. Additionally, in their review of 

300 CRTs published between 2000 and 2008, Ivers et al. (2011) found that, of the 285 

studies reporting the number of clusters randomized, at least 50% randomized 21 or fewer 

clusters. Often, randomizing such few clusters is done because every cluster included in 

the study adds strain to limited financial and human resources. For example, in a study 

examining an intervention targeted at early childhood development among HIV-exposed 

children in Cameroon, only 10 total clusters were randomized because of resource and 

practical limitations (Baumgartner 2017).

When fewer than 30 to 40 clusters are randomized, the GEE sandwich variance estimator 

tends to be biased toward zero, leading to inflated type I error rates when testing for the 

intervention effect (Hayes and Moulton 2009). Proper analyses of CRTs should account 

for such finite-sample bias in variance estimation and adopt the bias-corrected variance 

estimator (Turner et al. 2017b). Several proposals for correcting such finite-sample bias 

have appeared in the statistical literature; see, for example, Mancl and DeRouen (2001); 

Kauermann and Carroll (2001); Fay and Graubard (2001) among others. These proposals 

have existed for over 15 years, but to our knowledge none has yet been implemented in 

Stata. Introducing the bias-corrected variance estimators to Stata has significant practical 

implications because Stata is a popular software tool for CRT analysts. The availability of 

this routine will help promote better statistical practice by allowing future analysts to report 

appropriate p-values and confidence intervals.

The remainder of this article is organized into four sections. In section 2, we introduce the 

theory of bias-corrected sandwich variance estimators for GEE analyses of CRTs. In section 

3, we present our newly created command, xtgeebcv, which computes parameter estimates 

and bias-corrected variance in GEE models. In section 4, we present two examples of its 

use. We conclude in section 5 with recommendations to xtgeebcv users and ideas for future 

additions to the functionality of the program.
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2 Statistical methods

2.1 GEE

We consider a parallel-arm CRT consisting of n clusters allocated into two intervention 

arms and note that the methods are generalizable to CRTs with more than two intervention 

arms. The outcome of each participant is typically measured at the end of the study and 

represented by Yij (i = 1, …, n, j = 1, …, mi), where mi is the number of individuals 

in cluster i. We denote the p × 1 design vector by Xij, which includes 1 (intercept), 

the cluster-level binary indicator for treatment assignment, and possibly additional p − 

2 baseline covariates. Note that, for CRTs with more than two arms, one could include 

additional dummy variables in the design vector Xij, and the following discussions remain 

unchanged. The marginal model parameterizes the marginal mean through a generalized 

linear model, E Y ij ∣ Xij = μij = g−1 Xij′ β , where g is the link function and β is the p-vector 

of coefficients. The intervention effect is the component of β that corresponds to the 

treatment indicator. To characterize the similarity between individual responses within each 

cluster, we often employ the exchangeable working correlation so that corr(Yij, Yij′) = α 
for j ≠ j′. The parameter α is interpreted as the ICC, a quantity that is vitally important for 

both the design and analysis of CRTs (Murray 1998). The exchangeable correlation structure 

is assumed for observations within the same cluster, while the observations from different 

clusters are assumed to be uncorrelated.

Let Y i = Y i1, …, Y imi ′ and μi = μi1, …, μimi ′ be the mi × 1 vector of outcomes and marginal 

means for cluster i, respectively, where mi is the ith cluster size. The GEE method is 

used to estimate the parameter β from the marginal mean model with a specified working 

correlation matrix (Liang and Zeger 1986). We define Di = ∂μi/∂β′ and let V i = Ai
1/2RiAi

1/2

be a working covariance matrix for Yi, where Ai is the mi-dimensional diagonal matrix 

with elements ϕν(μij), ϕ is the dispersion parameter, and ν is the variance function; Ri(α) 

is a working correlation matrix whose dimension may vary across clusters but is specified 

by the common parameter α. With the exchangeable working correlation structure, we can 

succinctly write Ri(α) = (1 − α)Imi + αJmi, where Imi is the mi × mi identity matrix and Jmi is 

an mi × mi matrix of ones. From the results given in Li, Turner, and Preisser (2018) and Li 

et al. (2019), Ri(α) has two distinct eigenvalues, λ1 = 1 − α and λi2 = 1+(mi − 1)α. Valid 

values of α guarantee a positive definite correlation matrix and can be easily determined 

from the set of linear constraints given by min{λ1, λ12, …, λn2} > 0. In other words, the 

plausible range of ICC is provided by − maxi = 1
n mi − 1 −1 < α < 1 ∀ mi ≥ 2.

The GEE estimators β, α, and ϕ are jointly obtained by solving the set of estimating 

equations

∑
i = 1

n
Di′V i−1 Y i − μi = 0
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with a Newton-type algorithm implemented in the xtgee command. Furthermore, when 

the number of clusters is sufficiently large (n ≥ 30), the variance–covariance of β can be 

consistently estimated by

Σ = Ω ∑
i = 1

n
Di′V i

−1riri′V i
−1Di Ω (1)

where Ω = ∑i = 1
n Di′V i

−1Di
−1

 is the model-based variance (what Stata terms the 

“conventional” variance) and ri = Y i − μi is the residual vector of cluster i. Equation (1) 

is referred to as the robust sandwich variance. Under mild regularity conditions, the 

sandwich variance estimator is consistent even if the correlation structure is misspecified 

(Liang and Zeger 1986). In practice, the sandwich variance is often preferred over the 

model-based variance (whose consistency is dictated by the correct specification of the 

working correlation) because of this robustness property.

2.2 Bias-corrected sandwich variance estimators

A practical limitation of CRTs is that fewer than 30 to 40 clusters are often randomized, 

mainly because of availability or resource constraints (Ivers et al. 2011; Fiero et al. 2016). 

When the number of clusters is small, it is known that the residuals, ri, tend to be too 

small, and therefore the sandwich variance tends to underestimate the true variability of 

β (Mancl and DeRouen 2001). One simple correction is known as the degrees-of-freedom 

(DF) correction, defined as ΣDF = KΣ/(K − p), where K is the number of clusters and 

p is the number of parameters. Such an ad hoc correction lacks theoretical motivation 

and does not provide satisfactory performance in empirical simulation studies designed 

to reflect characteristics expected in cluster randomized designs (Li and Redden 2015).1 

To improve finite-sample variance estimation, we consider four additional bias-corrected 

sandwich variance estimators that facilitate the implementation of the state-of-the-art 

recommendations for the analysis of CRTs (Li and Redden 2015; Ford and Westgate 2017).

Define the cluster leverage to be Hi = DiΩDi′V i
−1 (Preisser and Qaqish 1996). Kauermann 

and Carroll (2001) used the cluster-leverage-adjusted residuals to estimate the sandwich 

variance given by

ΣKC = Ω ∑
i = 1

n
Di′V i

−1 Imi − Hi
−1/2riri′ Imi − Hi′

−1/2V i
−1Di Ω (2)

Because elements of Hi are between zero and one, ΣKC is expected to inflate the uncorrected 

sandwich variance Σ. In practice, because the calculation of (I − Hi)−1/2 tends to be unstable 

compared with (I − Hi)−1, we approximate the summation within the curly brackets of (2) by

1.We note that Stata allows a somewhat similar correction in xtgee but only for Gaussian distributions (that is, when the 
family(gaussian) option is specified) through the use of the rgf option. However, this correction multiplies the robust standard error 
by (n − 1)/(n − p), where n is the number of individual observations rather than the number of clusters. So this “correction” does not 
match the DF correction as defined by Li and Redden (2015), or as implemented in our newly created command.

Gallis et al. Page 5

Stata J. Author manuscript; available in PMC 2022 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



∑
i = 1

n
Di′V i−1 Imi − Hi

−1riri′V i−1Di + ∑
i = 1

n
Di′V i−1riri′ Imi − Hi′

−1V i−1Di /2

Mancl and DeRouen (2001) devised a similar bias correction by using

ΣMD = Ω ∑
i = 1

n
Di′V i

−1 Imi − Hi
−1riri′ Imi − Hi′

−1V i
−1Di Ω (3)

Because elements of the cluster leverage Hi are less than one, ΣMD further inflates ΣKC. Fay 

and Graubard (2001) corrected the finite-sample bias in variance estimation by scaling the 

contribution from each cluster to the empirical variance

ΣFG = Ω ∑
i = 1

n
CiDi′V i

−1riri′V i
−1DiCi Ω (4)

where Ci = diag([1−min{r,(Qi)jj}]−1/2) and Qi = Di′V i
−1DiΩ. The bound parameter r < 1 can 

be specified by the user but usually takes the default value 0.75 to avoid overcorrection 

of the bias. Finally, we implement the bias correction proposed by Morel, Bokossa, and 

Neerchal (2003). Their bias-corrected variance is given by

ΣMBN = (N − 1)n
(N − p)(n − 1)Ω ∑

i = 1

n
Di′V i

−1riri′V i
−1Di Ω + δnφΩ (5)

where N = ∑i = 1
n mi is the total sample size, δn = min{0.5,p/(n − p)} is the correction factor 

that converges to zero as n increases to infinity, and

φ = max 1, tr ∑
i = 1

n
Di′V i−1riri′V i−1Di Ω /p

quantifies the design effect (Morel 1989). Of note, the additive bias correction (5) ensures 

a positive-definite covariance matrix, while the multiplicative bias corrections (2), (3), and 

(4) do not guarantee the positive definiteness of the estimated covariance (Morel, Bokossa, 

and Neerchal 2003), which was argued to be an additional benefit of (5). Once the variance 

estimator for the intervention effect is obtained using one of these bias-corrected variance 

formulas, we could conduct a test of no intervention effect by using the standard Wald z test 

or the Wald t test with DF n − p.

2.3 Computations with large cluster sizes

When the cluster sizes mi become large (greater than 1,000), calculation of the bias-

corrected variance estimators may become computationally inefficient because of numerical 

inversion of large matrices. To alleviate such a concern, we first note that a closed-form 
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expression is available for the inverse of the exchangeable correlation structure (Li, Turner, 

and Preisser 2018; Li et al. 2019) and is given by

R−1(α) = 1
1 − αImi − α

(1 − α) 1 + mi − 1 α Jmi

Furthermore, Preisser, Qaqish, and Perin (2008) noted that inverting the asymmetric matrix 

Imi − Hi is computationally demanding with large cluster sizes. Instead, they recommend 

working with its equivalent form V i − DiΩDi′ V i
−1 and efficiently calculate the inverse of 

the symmetric matrix V i − DiΩDi′ by iteratively applying the Sherman–Morrison–Woodbury 

formula (Sherman and Morrison 1950; Henderson and Searle 1981). Preisser, Qaqish, 

and Perin (2008) demonstrated huge computational advantage of their algorithm over 

standard numeric inversions, and therefore we implement their algorithm in obtaining the 

multiplicative bias-correction factor Imi − Hi
−1 for ΣKC and ΣMD. See Preisser, Qaqish, 

and Perin (2008) for additional computational details.

3 The xtgeebcv command

The xtgeebcv command was created to provide easy computation of finite-sample bias-

corrected variances (hence the “bcv” in xtgeebcv) in Stata. In this section, we explain the 

available options in detail and examine the inner workings of the command.

The user should first specify a variable list (varlist) with an outcome (dependent) variable 

followed by predictor (independent) variables, just as one would do with the xtgee 

command. The user must tell xtgeebcv what the outcome variable and cluster indicator 

variable are by using the options outcome() and cluster(), respectively. Options are 

also available to specify the distribution family, link function, and type of finite-sample 

correction, as described in section 3.2.

Inside the command, the user-supplied data are passed to the xtgee command, with the 

command running xtset on the variable provided in the cluster() option before running xtgee. 

The xtgee command is specified with the option nmp. The nmp option tells xtgee to divide 

the scale parameter by n − p, where n is the number of clusters and p is the number of 

coefficients estimated. Although without the nmp option, Stata defaults to dividing only by 

n, n − p is the form of the divisor used in Liang and Zeger (1986), so we use this option 

by default for the first set of output produced by xtgee, which reports the conventional 

(model-based) standard errors.

xtgeebcv allows use of either the independence or exchangeable working correlation 

matrices using the corr() option. Exchangeable is usually the most appropriate correlation 

structure to characterize the similarity between individual responses within each cluster in a 

cluster randomized design.

The design matrix, coefficient estimates, and variance–covariance matrix of the parameters 

output by the xtgee command are then passed to a mata command, which is used to compute 
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and output the desired finite-sample corrected standard errors of the parameter estimates. 

As described below, the option stderr() is used to specify which of five finite-sample 

bias-corrected standard errors (ΣDF, ΣMD, ΣFG, ΣKC, or ΣMBN) to use for the output of 

standard errors, confidence intervals, and p-values.

3.1 Syntax

xtgeebcv varlist, outcome(varname) cluster(varname) [family(string) 

link(string) stderr(string) statistic(string) corr(string) xtgee options]

varlist contains the regression specification: the dependent variable (outcome) followed by 

independent variables (predictors). Note that all categorical variables with more than two 

levels will need to be dummy coded by the user before supplying them to the command.

3.2 Options

outcome(varname) specifies the name of the outcome variable. outcome() is required.

cluster(varname) specifies the name of the cluster indicator variable. cluster() is required.

family(string) specifies the distributional family. The default is family(binomial).

link(string) specifies the link function. The following table gives more information on the 

available family() and link() combinations. The default depends on the specification of 

family(). The default for Gaussian, binomial, and Poisson are link(identity), link(logit), and 

link(log), respectively.

family() link()

inomial logit

binomial log

binomial identity

poisson log

poisson identity

gaussian identity

stderr(string) gives the standard error to compute; the default is Kauermann–Carroll 

(stderr(kc)). The table below gives a complete list of specifications. Note that the robust 

standard errors provided by xtgeebcv will differ from Stata’s default robust standard errors 

by a factor of (K − 1)/K, where K is the number of clusters. This is because Stata 

automatically applies a correction of K/(K − 1) to the robust standard errors produced by 

xtgee when using the vce(robust) option. We do not follow this Stata-specific convention of 

applying this correction in this command, because 1) the robust sandwich variance of Liang 

and Zeger (1986) does not involve this correction; 2) this robust variance of Liang and Zeger 

(1986) is the one upon which the literature on bias-corrected sandwich variances is built 

(Mancl and DeRouen 2001; Kauermann and Carroll 2001; Fay and Graubard 2001); and 3) 
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other statistical software programs do not apply this K/(K − 1) correction to their robust 

standard errors. Thus, all the bias-corrected standard errors we implement in this command 

are based on the robust standard error without the K/(K − 1) correction.

string Description

rb Robust (sandwich) standard errors

df DF correction

md Mancl and DeRouen (2001) correction

fg Fay and Graubard (2001) correction

kc Kauermann and Carroll (2001) correction

mbn Morel, Bokossa, and Neerchal (2003) correction

statistic(string) specifies the test. Specifying statistic(t) requests the Wald t test (the default). 

Alternatively, the user may specify statistic(z) to report the Wald z test instead of the Wald t 
test.

corr(string) specifies the type for the working correlation. The default is corr(exch) (the 

exchangeable correlation). The user may instead specify ind (the independent correlation 

matrix).

xtgee_options are any of the options documented in [XT] xtgee. For example, the option 

eform will provide exponentiated coefficients. Note that invoking the Stata command 

xtset (used to declare the clustering variable) is not necessary, because the command will 

automatically run xtset based on the variable supplied to the cluster() option.

4 Illustrative examples

In this section, we illustrate the use of xtgeebcv with two example datasets that are available 

to download along with the command. In the first example, we analyze synthetic data 

simulated from a CRT with clusters of equal size; in the second example, we analyze a real 

CRT evaluating the effect of a sexual health intervention on outcomes related to HIV.

4.1 Equal-sized clusters

First, we simulated correlated binary data using the method of Lunn and Davies (1998). We 

created a dataset with 80 clusters, 2 treatment arms (treatment and control), and exactly 14 

individuals per cluster. The data were simulated so that the probability of outcome in the 

treatment group would be approximately 65%, while the probability in the control group 

would be 45%. This corresponds to a risk ratio of 1.44 or an odds ratio of 2.08, comparing 

treatment with control. After this, 20 clusters were randomly sampled from the dataset, 10 

in treatment and 10 in control, to mimic a CRT with few clusters. To obtain an estimate 

of the risk ratio with Mancl–DeRouen finite-sample correction to the standard error, we 

use a log-binomial regression model by specifying a binomial distribution with a log-link 

function.
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. use dat_sim

. xtgeebcv yij t, family(binomial) link(log) outcome(yij) cluster(cluster) > 

stderr(md) statistic(z) eform nolog

Note: Family is binomial and link is log

Using exchangeable working correlation

with scale parameter divided by K - p

GEE population-averaged model Number of obs = 280

Group variable: cluster Number of groups = 20

Link: log Obs per group:

Family: binomial min = 14

Correlation: exchangeable avg = 14.0

max = 14

Wald chi2(1) = 4.62

Scale parameter: 1 Prob > chi2 = 0.0316

yij exp(b) Std. Err. z P>|z| [95% Conf. Interval]

treatment 1.460317 .257182 2.15 0.032 1.034044 2.062318

_cons .45 .0663456 −5.42 0.000 .3370667 .6007713

Mancl-DeRouen bias-corrected standard errors

exp(b) Std. Err. z P>|z| [95% Conf. Interval]

treatment 1.460317 .3027435 1.83 0.068 .9727063 2.192365

_cons .45 .0840296 −4.28 0.000 .3120797 .6488726

The first set of estimates comes from the GEE model with the scale parameter estimated 

using the n − p DF, as discussed in section 3, and uses the conventional (model-based) 

standard errors. The second table gives the parameter estimates and Mancl–DeRouen 

corrected standard errors. We chose this bias correction because Lu et al. (2007) suggested 

that it performs adequately along with a z test if the number of clusters is in the range of 10 

to 20.

The variance–covariance matrix of the parameter estimates for the chosen finite-sample 

correction is stored in e(V). All other variance–covariance matrices are stored in e(varname), 

where name is the name of the correction. Names of matrices can be retrieved using ereturn 

list.

. matrix list e(V)
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symmetric e(V)[2,2]

           treatment     _cons

treatment  .04297887

    _cons   −.034869   .034869

. matrix list e(varfg)

symmetric e(varfg)[2,2]

c1 c2

r1 .04054132

r2 −.03236501 .03148758

. matrix list e(varkc)

symmetric e(varkc)[2,2]

c1 c2

r1 .03868099

r2 −.0313821 .0313821

Below, we also output the robust standard errors not multiplied by K/(K − 1), where K is 

the number of clusters.2 Because the bias corrections are applied to this robust (sandwich) 

variance, we want to compare the standard-error estimates of the Mancl–DeRouen finite-

sample correction with this robust variance, rather than with the conventional (model-based) 

standard-error estimates output from xtgee by default.

. xtgeebcv yij t, family(binomial) link(log) outcome(yij) cluster(cluster) > 

stderr(rb) statistic(z) eform nolog

(output omitted)

Robust standard errors not multiplied by K/(K−1)

exp(b) Std. Err. z P>|z| [95% Conf. Interval]

treatment 1.460317 .2724691 2.03 0.042 1.013044 2.105069

_cons .45 .0756266 −4.75 0.000 .3237131 .6255539

In this instance, if the researchers were using a strict 0.05 cutoff for significance, their 

conclusion about the statistical significance of the treatment effect would change if using the 

bias-corrected standard errors compared with the robust standard-error estimates.

2.Multiplying by K/(K − 1) is the default in Stata when requesting robust standard errors in xtgee through the vce(robust) option. 
Please see the discussion of this point in section 3.2.
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4.2 Unequal-sized clusters

In this section, we use data from the MEME kwa Vijana (MKV) CRT in Tanzania, which is 

described in Hayes and Moulton (2009, 23) and is also published in Ross et al. (2007). The 

data are publicly available online (Hayes and Moulton 2016). In brief, the goal of the trial 

was to evaluate the impact of a sexual health intervention on various HIV-related outcomes. 

The publicly available dataset includes data from male participants at follow-up, with the 

main outcome provided being “good knowledge of HIV acquisition”, a binary variable. In 

this dataset, there are 20 communities that were randomized to receive either intervention 

or “standard activities”. The number of participants per community ranges from 169 to 257, 

with a mean of 205 and a standard deviation of 26.3. The coefficient of variation of cluster 

sizes is 0.128. In this dataset, 65.3% of the intervention group has good knowledge of HIV 

acquisition at follow-up versus 44.9% in control, corresponding to an (unadjusted) odds ratio 

of 2.32 and risk ratio of 1.46.

The goal of the analysis is to estimate the odds ratio comparing intervention with control, 

while demonstrating the use of the Kauermann–Carroll finite-sample correction. In addition 

to including intervention group (arm) in the statistical model, we adjust for strata defined 

based on community HIV risk (three levels: high, medium, and low) on which the 

randomization was stratified (stratum, a community-level covariate with three levels, which 

is dummy coded before being included in the list of variables) and ethnic group (ethnicgp, a 

binary individual-level covariate).

. use mkvtrial, clear

. quietly tabulate stratum, generate(stratum)

. xtgeebcv know arm stratum2 stratum3 ethnicgp, family(binomial) link(logit) 

> outcome(know) cluster(community) stderr(kc) eform nolog

Note: Family is binomial and link is logit

Using exchangeable working correlation

with scale parameter divided by K - p

GEE population-averaged model Number of obs = 4,100

Group variable: community Number of groups = 20

Link: logit Obs per group:

Family: binomial min = 169

Correlation: exchangeable avg = 205.0

max = 257

Wald chi2(4) = 43.75

Scale parameter: 1 Prob > chi2 = 0.0000

know Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

arm 2.286608 .338949 5.58 0.000 1.710079 3.057506
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know Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

stratum2 1.051687 .1885727 0.28 0.779 .7400511 1.494552

stratum3 1.133454 .2181231 0.65 0.515 .7773161 1.652761

ethnicgp .737854 .0648754 −3.46 0.001 .6210536 .8766209

_cons .9892138 .1624665 −0.07 0.947 .7169527 1.364865

Note: _cons estimates baseline odds (conditional on zero random effects).

Kauermann-Carroll bias-corrected standard errors

t-statistic with K - p degrees of freedom

exp(b) Std. Err. t P>|t| [95% Conf. Interval]

arm 2.286608 .3808982 4.97 0.000 1.603225 3.261287

stratum2 1.051687 .2259479 0.23 0.818 .6652899 1.662501

stratum3 1.133454 .2373591 0.60 0.559 .7253637 1.771136

ethnicgp .737854 .0759666 −2.95 0.010 .5924699 .9189134

_cons .9892138 .1957989 −0.05 0.957 .6487352 1.508387

. xtgeebcv know arm stratum2 stratum3 ethnicgp, family(binomial) link(logit) 

> outcome(know) cluster(community) stderr(rb) eform nolog

(output omitted)

Robust standard errors not multiplied by K/(K−1)

t-statistic with K - p degrees of freedom

exp(b) Std. Err. t P>|t| [95% Conf. Interval]

arm 2.286608 .3406765 5.55 0.000 1.664475 3.141277

stratum2 1.051687 .2018406 0.26 0.796 .6986018 1.583227

stratum3 1.133454 .2094824 0.68 0.508 .7644029 1.680681

ethnicgp .737854 .0728592 −3.08 0.008 .5978122 .9107016

_cons .9892138 .1760339 −0.06 0.952 .6769598 1.445498

In this case, with 20 clusters and many participants per cluster, although the finite-sample 

correction inflates the standard error by about 12% above the robust standard errors, any 

conclusion about significance of the effect based on the p-value would not change.

To see the potential impact of finite-sample corrections, suppose the researchers are 

interested in the intervention effect only in stratum 2. To this end, we subset the dataset 

to the 8 communities in stratum 2. This dataset has cluster sizes ranging from 187 to 243, 

with a mean of 214 and standard deviation of 21.1, which gives a coefficient of variation of 

cluster sizes of 0.099. In this dataset, 63.2% of the intervention group has good knowledge 
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of HIV acquisition at follow-up versus 45.7% in control. Because we have subset on the 

stratum, we no longer adjust for this variable.

. keep if stratum == 2

(2,388 observations deleted)

. xtgeebcv know arm ethnicgp, family(binomial) link(logit) outcome(know) > 

cluster(community) stderr(kc) eform nolog

Note: Family is binomial and link is logit

Using exchangeable working correlation

with scale parameter divided by K - p

GEE population-averaged model Number of obs = 1,712

Group variable: community Number of groups = 8

Link: logit Obs per group:

Family: binomial min = 187

Correlation: exchangeable avg = 214.0

max = 243

Wald chi2(2) = 18.07

Scale parameter: 1 Prob > chi2 = 0.0001

know Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

arm 1.870034 .4094975 2.86 0.004 1.217459 2.872397

ethnicgp .6190309 .0988164 −3.00 0.003 .4527249 .8464285

_cons 1.337813 .2828975 1.38 0.169 .8838899 2.02485

Note: _cons estimates baseline odds (conditional on zero random effects).

Kauermann-Carroll bias-corrected standard errors

t-statistic with K - p degrees of freedom

exp(b) Std. Err. t P>|t| [95% Conf. Interval]

arm 1.870034 .4815623 2.43 0.059 .964633 3.625241

ethnicgp .6190309 .1072287 −2.77 0.039 .3965803 .9662591

_cons 1.337813 .4277156 0.91 0.404 .588128 3.043121

. xtgeebcv know arm ethnicgp, family(binomial) link(logit) outcome(know) > 

cluster(community) stderr(rb) eform nolog

(output omitted)
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Robust standard errors not multiplied by K/(K−1)

t-statistic with K - p degrees of freedom

exp(b) Std. Err. t P>|t| [95% Conf. Interval]

arm 1.870034 .4214707 2.78 0.039 1.047698 3.337819

ethnicgp .6190309 .0959661 −3.09 0.027 .4155684 .9221089

_cons 1.337813 .3798498 1.03 0.352 .6447855 2.77572

From the GEE model with robust standard errors, we estimate an adjusted odds ratio of 1.87 

(95% confidence interval [1.05, 3.34]). This estimate is significant at the 0.05 level. After 

we apply the Kauermann–Carroll bias correction to the robust standard errors, inflating the 

standard error of the intervention effect by 14.3%, the 95% confidence interval widens to 

[0.96,3.63]. The Kauermann–Carroll correction and the t-test statistic were chosen in this 

case given that Li and Redden (2015) suggested that they maintain close to the nominal 

type I error rate when the coefficient of variation of cluster sizes is less than 0.6. Compared 

with the p-value associated with the robust standard errors (p = 0.039), this estimate is not 

significant at the 0.05 level (p = 0.059).

5 Discussion

Many CRTs randomize fewer than 40 clusters, and cluster size is often highly variable. 

Many researchers use Stata to analyze their CRTs. Current GEE routines in Stata may not 

properly account for the small-sample bias in the robust standard errors and so may risk an 

inflated type I error rate when used in the analysis of small CRTs. We have introduced the 

xtgeebcv command to facilitate the analysis of CRTs with few clusters. This command is 

simple to use and does not require advanced programming skills, making it accessible to 

many researchers.

Although we have enabled the implementation of bias-corrected sandwich variance 

estimators in Stata, we have not attempted to make specific recommendations as to which 

correction works best in small CRTs. Several suggestions have been put forward in the 

statistical literature. For example, Li et al. (2017) found that the Wald t test with ΣKC carries 

the nominal type I error rate under both simple and constrained randomization designs with 

binary outcomes and equal cluster sizes. Lu et al. (2007) showed in a simulation study that 

the 95% Wald z confidence interval with ΣMD provides close to the nominal coverage when 

cluster sizes are balanced and the number of clusters is small to moderate (for example, 

10 to 20). Li and Redden (2015) found that a Wald t test with ΣKC maintains the correct 

test size (that is, a type I error rate) when the coefficient of variation of cluster sizes is 

below 0.6, while a Wald t test with ΣFG maintains the nominal test size otherwise in small 

CRTs with binary outcomes. Ford and Westgate (2017) further demonstrated that the t 
test based on the average of ΣMD and ΣKC achieves the nominal test size in CRTs with 

both continuous and binary outcomes. These specific recommendations may be informative 

for analyzing small CRTs. In any case, as the bias-corrected sandwich variance becomes 

closer to the uncorrected variance with increasing numbers of clusters, it should preferably 
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always be reported along with the uncorrected sandwich variance as a sensitivity check. The 

investigation of finite-sample corrections in various small CRT settings is currently an area 

of active research, and our programs may also facilitate future simulation studies to generate 

recommendations specific to a research study.

There are some limitations to xtgeebcv. We have specifically designed xtgeebcv to 

accommodate the exchangeable working correlation structure most commonly used in 

parallel CRTs while also allowing for the simpler independent working correlation matrix. 

In more complex cluster randomization designs with multiple levels of clustering, nested 

exchangeable working correlation structures may be more appropriate (Li, Turner, and 

Preisser 2018; Li et al. 2019; Teerenstra et al. 2010), and we may extend our command 

accordingly as a next step. In terms of variance estimation in small CRTs, these authors 

have found that a z test with ΣMD or a t test with ΣKC carries a correct type I error rate 

in CRTs, although the former generally requires many clusters (at least 20) to work well. 

On the other hand, the extension requires additional efforts because estimating more than 

one correlation parameter requires an additional set of estimating equations (Prentice 1988; 

Preisser, Qaqish, and Perin 2008) and is not accommodated by standard xtgee routines. 

Another future extension of our command is to incorporate the first-order autoregressive 

correlation structure to enable the appropriate analysis of longitudinal studies with a limited 

number of subjects. The GEE analysis of longitudinal data is generally similar to the 

analysis of CRTs, although the cluster size (defined as the number of repeated measurements 

per individual) is frequently much smaller than that in CRTs, and finite-sample corrections 

may require additional considerations. Recent empirical studies (Ford and Westgate 2018; 

Wang et al. 2016) have already found that bias-corrected variance works reasonably well in 

this setting, so such an extension is an important avenue for future research.
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