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Wearable blood pressure measurement devices and new
approaches in hypertension management: the digital era
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Out-of-office blood pressure (BP) measurement is considered an integral component of the diagnostic algorithm and management
of hypertension. In the era of digitalization, a great deal of wearable BP measuring devices has been developed. These digital blood
pressure monitors allow frequent BP measurements with minimal annoyance to the patient while they do promise radical changes
regarding the diagnostic accuracy, as the importance of making an accurate diagnosis of hypertension has become evident. By
increasing the number of BP measurements in different conditions, these monitors allow accurate identification of different clinical
phenotypes, such as masked hypertension and pathological BP variability, that seem to have a negative impact on cardiovascular
prognosis. Frequent measurements of BP and the incorporation of new features in BP variability, both enable well-rounded
interpretation of BP data in the context of real-life settings. This article is a review of all different technologies and wearable BP
monitoring devices.
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Hypertension (HTN) is the most common risk factor for
cardiovascular disease as it affects about one billion people
worldwide and its prevalence is estimated to reach 1.5 billion by
2025 [1]. Notably, recent data from Italy and China show that
cardiovascular mortality, was the leading cause of death even
during the coronavirus disease (COVID-19) pandemic [2, 3].
Adequate blood pressure (BP) control, lower than new target-

levels, is crucial towards improving cardiovascular prognosis [4].
Successful treatment is now based on protocol driven manage-
ment and requires two basic components: first of all, early
diagnosis and administration of appropriate treatment and
lifestyle recommendations by physicians, and secondly, patients’
adherence to the treatment regimen and recommendations.
However, despite the fact that many safe and effective drugs have
been developed in the recent decades, HTN, as well as smoking,
continues to be the main cause of cardiovascular morbidity and
mortality worldwide, in both developed and developing countries.
This is partly explained by frequently delayed diagnosis, but it can
be also attributed to known limitations of diagnostic and
therapeutic approaches applied to date, underscoring the
necessity of new strategies to optimize the management of HTN.
In latest years, out-of-office BP measurements have become

essential component of BP control and this is clearly demon-
strated in the recent guidelines that recommend the use of out-of-
office measurements in order to optimize the management of
hypertensive individuals [4, 5]. 24 h ambulatory BP monitoring
(ABPM) and home BP monitoring (HBPM) are both acceptable
methods of evaluating the hemodynamic burden in hypertensive
patients in out-of-office setting. However, the number of
measurements that can be recorded with these two methods is
limited. In addition, ABPM has some limitations such as restricted

availability and discomfort, particularly at night, while HBPM
carries the risk of limited reliability and reproducibility. Therefore,
wearable BP measuring device that provide office and out-of-
office measurements (Fig. 1), could overcome all above limitations
and could be really valuable in HTN management indeed,
especially in the era of digitalization.

METHODS OF MEASURING BP
In 1998, Norman Kaplan wrote in an editorial of the American
Journal of Hypertension: “The measurement of blood pressure is
likely the clinical procedure of greatest importance that is
performed in the sloppiest manner” – a statement which still is
highly relevant [6]. For the time being, non-invasive BP monitors
use the auscultatory and the oscillometric technique based on the
use of cuff. The cuff is placed on the patient’s arm, and the cuff
bladder is inflated with air until the external pressure exceeds the
intra-arterial systolic pressure and arterial flow underneath the cuff
ceases. The cuff bladder pressure is slowly released. The
auscultatory method (also known as the Riva Rocci - Korotkoff
or manual method for BP measurement) is the listening for
Korotkoff sounds in the brachial artery. The oscillometric method
is based on the principle that the point of maximal oscillations
corresponds closely to mean arterial pressure and with an
appropriate algorithm systolic and diastolic values are calculated.
However, there are significant drawbacks in these methods. More
specifically, cuff bladder monitoring devices cannot provide
continuous BP measurements, as 1–2min pause is required for
both hemodynamic recovery and minimization of measurement
errors [7]. Another limitation is that the measurement of BP
depends on the adequate inflation of the cuff and the
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compression of the arm, which is energy-consuming and not
easily tolerated by the patient. Ideally, the continuous monitoring
of BP is a crucial factor concerning the diagnosis, management,
and treatment of hemodynamic diseases such as HTN [8], but the
capability of measuring BP, in this setting, is rather currently
limited. Arterial catheterization is a common method of contin-
uous BP monitoring, but this approach is invasive, costly, and used
almost exclusively in an intensive care unit setting. Thus, a new
strategy is required in order to measure BP, both continuously and
non-invasively.
In the advanced digital healthcare information age, the

approach to achieve this goal is shifting from the traditional
methods (HBPM and ABPM) to wearable BP measuring devices.
Wearable BP monitoring devices allow frequent BP measurements
(ideally constant BP monitoring), with minimal discomfort. This
novel technology is expected to drastically alter the way and the
quality of detection and management of HTN, by providing a vast
amount of BP data in different conditions, allowing more accurate
diagnosis of phenotypes that have a negative impact on
cardiovascular prognosis, such as masked HTN and pathological
BP variability. Frequent BP measurements and the incorporation of
new characteristics regarding BP variability, such as the simulta-
neous monitoring of environmental conditions, allows the inter-
pretation and evaluation of BP data in relation to daytime activity,
sleep periods and stress, in a real-life-time setting. This new digital
approach in HTN is expected to significantly contribute in the field
of preventive medicine, which refers to strategies designed to
predict the occurrence of cardiovascular events and identify
patients at increased cardiovascular risk, based on data collected
over time, allowing interventions towards reducing this risk [9].

BP VARIABILITY
The theory of synergistic resonance suggests that all forms of BP
variability (beat-to-beat, 24 h, day-to-day, seasonal, annual) are

able to generate dynamic increases in BP, which could coincide
with BP peaks as a response to various external triggers (e.g.,
temperature, stress, sleep apnea, exercise) leading to increased
occurrence of cardiovascular events, especially in patients with
increased arterial stiffness and decreased arterial absorbance of
hemodynamic fluctuations [10]. Therefore, there is a number of
factors contributing towards a unique, tailored to each person, 24
h BP variability during daytime [11]. In addition, BP variability in
hypertensive patients seems to vary, depending on the season,
with higher peaks recorded during exercise in winter, probably
due to lower temperature in the winter as compared to summer
[12].
Many studies have demonstrated the strong association of BP

variability with cardiovascular events. Excessive morning surge of
BP has been correlated to increased risk of stroke, cerebral
hemorrhage, and different hypertension-mediated organ damage
(HMOD) [13, 14]. Moreover, both nocturnal HTN and non-dipping
phenomenon of BP during nighttime in ABPM, are associated with
higher risk of HMOD and cardiovascular events, in hypertensive
and normotensive individuals [15]. This demonstrates the need for
accurate detection of BP fluctuations in response to any external
factor, as it is crucial to reducing cardiovascular risk. Wearable
devices that can constantly record BP and evaluate all environ-
mental factors (temperature, humidity, altitude, etc.) that have an
impact on BP variability, may be profoundly effective in
individualized hypertension control worldwide.

WEARABLE BP MEASURING DEVICES
Recently, both scientific community and industry are interested in
designing small, wearable devices to measure biological para-
meters and there has been a great effort in the digital device
development process. These devices function using a variety of
different approaches and technologies to monitor BP, while some
of them have already been certified.

Fig. 1 Wearable devices used for blood pressure measurement, using various technologies.
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OSCILLOMETRIC MEASUREMENT AT THE WRIST LEVEL
The basic principle behind this method is that when the pressure
oscillations in a cuff sphygmomanometer are recorded during
gradual depressurization, the point of maximum oscillation
corresponds to the average intra -arterial pressure [16]. The
oscillations start at about the level of systolic pressure and
continue below the level of diastolic pressure, therefore the values
of systolic and diastolic pressure may be evaluated indirectly only
according to an empirical algorithm. This method has great
advantages, as there is no need to place a transducer above the
brachial artery and it is less sensitive to external noise (but not to
low-frequency mechanical vibrations). The main disadvantage is
that such recording devices do not work reliably during physical
activity, as there is usually significant movement noise. This
technique is widely implemented in the existing validated BP
measuring devices used for office, HBPM, and ABPM [17].
The new devices with wrist-cuff developed in the last years use

the same technique, but it is expected to cause less compression
of muscles and discomfort to the patient than the traditional arm-
cuff. In a recent study [18], a clock-sized wrist BP measuring device
was certified based on the protocol of the American National
Standards Institute, Inc./Association for the Advancement of
Medical Instrumentation/International Organization for Standardi-
zation (ANSI/AAMI/ISO) 81060-2:2013. The device used in the trial
was the Omron HEM‐6410 T (HeartGuide – Omron Healthcare Co.,
Ltd) which has an extremely rigid inflatable belt to make an
oscillometric BP measurement in the same way as a regular cuff
sphygmomanometer and it is available in two sizes (ZM and ZL),
depending on the size of the wrist. The small size of the device
and the clock-like display, make it suitable for everyday use,
providing multiple measurements in the daily work environment,
in stressful conditions and even during sleeping periods. It takes
on-demand measurements but can also be programmed for
specific measurements even during sleep. Depending on the use,
the battery lasts from 10 to 14 days on a single charge, which
facilitates its use by elderly patients. There is certainly, the
restriction that patients should place their wrist at the level of the
heart for accurate measurement, while the device was certified
only in sitting position and not in lying or standing position. A
recent study has shown that BP deviates by 7mmHg if the
difference between the height of the heart and the position of the
cuff is 10 cm, due to hydrostatic pressure [19]. Therefore, it is
anticipated that future large-scale trials will evaluate the accuracy
of this watch-type device under real-life conditions, during
daytime and night periods, and investigate the interpretation of
the measurements.
In a recent head-to-head study, it was for the first time that the

oscillometric BP measuring wrist device (HEM-6410T, HeartGuide –
Omron Healthcare Co., Ltd.) was compared to a 24 h ambulatory
BP measuring device [20]. After conducting continuous measure-
ments both in office and out-of-office setting in 50 patients, there
were comparable results between the two arms. The Heart Guide
device showed only minor deviations in out-of-office measure-
ments of 3.2 ± 17.0 mm Hg (p < 0.001) in systolic BP (SBP) and
−3.2 ± 11.3 mm Hg in diastolic BP (DBP) (p < 0.001), attributed
mainly to the lower position of the wrist. The percentage of
differences that were within the ± 10mm Hg range was 58.7% in
the office and 47.2% in the out-of-office measurements.

BP MEASUREMENTS USING OSCILLOMETRIC FINGER CUFFS
(METHOD OF PENAZ)
Arterial pulse in the finger is detected by a photoplethysmo-
graphic sensor, located underneath a finger cuff. The output of the
plethysmograph is used to guide a pump, which quickly
moderates the cuff pressure so that the artery is kept partially
open. The pressure oscillations of the cuff are recorded and it is
proven that they resemble the intra-arterial pressure wave

fluctuations in most individuals. This method provides an accurate
estimate of changes in systolic and diastolic pressure compared to
brachial artery pressure [21]. The cuff can be kept inflated for up to
2 h. Commercially available devices Finometer and Portapres can
record pressure oscillations and have been certified in several
studies comparing finger and intra-arterial BP monitoring [22, 23].
Furthermore, the device Portapres allows 24 h ambulatory BP
recording, though there are certain difficulties regarding the size
and the complexity of the device [24].

APPLANATION TONOMETRY METHOD
The constant and continuous BP monitoring with a device based
on arterial tonometry was first implemented in 1963 [25]. Arterial
tonometry is a method that allows noninvasively BP measurement
within a superficial artery, located in close contact with a solid
bone structure. The radial artery is the most commonly used,
because of its large diameter and accessibility. The sensor is
compressed on the artery through the pressure of a hemispherical
air-chamber. The optimum pressure is automatically applied to
flatten (but not occlude) a portion of the arterial wall and
maximize the pulse pressure measured by tension transducers
lying in contact with the artery. The endo-aortic pressure can be
measured by the transducer, as the arterial wall stress is
considered negligible since the artery is flattened. The oscillo-
metric measurement of the systolic and diastolic BP values take
place during continuous and steady decompression of the air
chamber [26].
The accuracy of the method is quite questionable, as it largely

depends on the location of the artery and the changes in the
contact force required to keep the artery in a state of partial
compression. The sensor should be well-positioned, in a fixed
state above the artery during BP measurement. Devices using this
technology are certified according to the ESH (European Society of
Hypertension) protocol and AAMI (Association for the Advance-
ment of Medical Instrumentation) standards. The Health STATS
International (Singapore) device has shown satisfactory results,
overestimating SBP by ≤1.3 mm Hg and underestimating DBP by
≤4.6 mm Hg. However, the measurements were more reliable in
the sitting and lying position rather than the standing position
[27]. This is also reflected in the reduced accuracy of ambulatory
measurements [28], especially in patients with vessels with
increased calcium load such as patients with chronic kidney
disease [29]. Another limitation is that the position relationship
between the heart and the measuring point varies, which
introduces the effect of hydrostatic pressure changes.
Devices based on the applanation tonometry method have

been used to monitor nocturnal BP and detect hypertensive
peaks, especially in patients with sleep apnea syndrome [30], and
an algorithm has been developed for the detection of patholo-
gical BP peaks (lasting seconds), based on beat-to-beat BP
measurements during nighttime [31].

PHOTOPLETHYSMOGRAPHY
Photoplethysmography (PPG) is a non-invasive technique that
appeared in 1930s, through which changes in blood flow are
detected in selected parts of the body during the cardiac cycle.
Clinical applications of this technique are found in the assessment
of BP, heart rate and blood oxygen saturation, but also in the
detection of peripheral venous diseases.
Pulse transit time (PTT), indicating the time it takes for a pulse

wave to travel along the length of the arterial tree, is an essential
part of measuring BP with this method. The pulse pressure wave
form, occurs when blood is ejected from the left ventricle and the
impulse transmitted to the arterial wall moves at greater velocity
than the blood itself. In addition to measuring BP, PTT is an index
of arterial stiffness. The PTT may be derived from calculations on
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signals from the electrocardiogram (ECG) and PPG. It is based on
strictly defined characteristics of the shape of the pulse pressure
waveforms in blood vessels.
ECG data is used as a basis for calculating time, while PPG

provides a visual evaluation of the volumetric changes of blood in
the tissues during the cardiac cycle. Optical PPG and ECG sensors
are already used in wearable devices for measuring heart rate. The
PTT measurement involves calculating the time between the R
wave on the ECG and a reference point in the pulse pressure wave
measured using PPG, providing data on the levels of BP [32].
Nevertheless, PTT-based BP estimation may not be accurate
enough as BP regulation is a multifactorial process. Studies have
shown that measuring PTT alone is not enough in terms of
measurement reliability. The integration of PPT, heart rate and one
recent conventional BP measurement in the equation could
increase the reliability of the BP evaluation [33].
Recently there were developed BP measurement devices using

multiple PPG sensors without requiring incorporation of PTT. A
wrist-size device (smartWatch, CareUp®) with two PPG sensors, has
been proved to be quite accurate compared to conventional
oscillometric devices, but without reaching AAMI certification
prerequisites [34]. This method has two main limitations. Firstly,
the stability of the PPG signal is affected by movements,
narrowing its use to only non-ambulatory setting. A second
limitation is the need for frequent calibration of the device. The
device is primary calibrated by the doctor at the office; in this
model it is considered that the heart rate does not change over
time, taken into account a mean heart rate for the calibration of
the device. However, hypertensive individuals seem to have high
heart rate variability, therefore periodic calibration of the device is
demanded.
Although many studies have investigated the use of multi-

sensor devices based on PPG in BP measurement, a systematic
review and meta-analysis demonstrated that there is still
insufficient data to evaluate these devices regarding reliable
non-invasive BP recording [35].

INTEGRATING PHOTOPLETHYSMOGRAPHY IN SMARTPHONE
APPLICATIONS
Recently conducted studies investigated the efficacy of BP
measurement using PPG signals via a smartphone camera or
integrated into a portable detector connected to a smartphone. In
a single study, 205 individuals were enrolled and data from PPG
signals were collected, using the heart rate sensor of smartphone
Samsung Galaxy S6 [36]. In addition, an algorithm was developed
based on the demographic characteristics of the patients that
improved the recording accuracy by 11.5% regarding SBP and
18% regarding DBP. Based on PPG signals and this integrated
algorithm, there were measurements achieved with accuracies of
7 mmHg mean absolute error for SBP, and 5mmHg for DBP.
In another trial, a pressure sensor was incorporated in the PPG

sensor of a smartphone [37]. In 2 of the 30 subjects of the study no
BP measurement was achieved, while 60% of the measurements
were not successful. In the analysis of the accuracy of the
measurements compared to the conventional oscillometric BP
measurement method, an average accuracy variation of 8.8 mmHg
for SBP and 7.7 mmHg for DBP was achieved.
An innovative, proof-of-concept study utilized PPG for measur-

ing BP without physical contact, by depicting blood flow from
facial videos [38]. The researchers used transdermal optical
imaging technology from a mobile phone camera to reveal blood
flow profile and calculate the levels of BP in normotensive
individuals by using a developed algorithm. BP values were
estimated with the assistance of this algorithm, with an accuracy
of 94.8% regarding SBP and 95.7% regarding DBP. There are
serious limitations on this study, since enrolled only Asian
normotensive individuals, and the trial took place in laboratoryTa
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conditions under special lighting setting. The accuracy of
measurements in clinical conditions may differ because of the
changes in environmental conditions, camera angle and distance,
skin color, and facial features.

DIRECTIONS FOR THE FUTURE
The Institute of Electrical and Electronics Engineers (IEEE) has
proposed a certification protocol for new generation measuring
BP devices, in order to overcome issues associated with the use of
certification protocols developed for cuff-based devices [39]. This
protocol requires the same reliability and accuracy with AAMI
standardization for the conventional devices. The IIEE protocol
differs from the AAMI/ESH protocols in the inclusion of measure-
ments even after evoked changes of BP in the studied subjects,
after initial calibration, to ensure the accuracy of measurements in
a broad range of BP values. In addition, the IEEE protocol includes
measurements taken over an extended period (weeks to months)
after the initial calibration to investigate the stability of long-term
calibration.
At the same time, the development of new technologies and

systems of telecommunication [40] provides doctors with access
to out-of-office BP measurements through remote BP monitoring
programs, thereby promoting a more effective patient-physician
relationship. Remote BP monitoring strategy has been shown to
be effective in reducing BP and encountering both physicians’
inertia and poor patients’ compliance; [41–44] when combined
with novel BP monitoring techniques, may radically improve
personalized management of hypertensive patients.
The development of new BP recording devices has been a highly

active field of research in improving measurement accuracy, using
a variety of technologies (Table 1). However, even if accurate and
user-friendly smartphone applications and wearable cuffless
devices will be developed in the near future, there are several
steps that should be considered prior to implementation in clinical
practice. First of all, scientific societies should introduce protocols
to validate the cuffless devices. Currently, there is no protocol for
the validation of these devices, while some of them have used the
protocol of traditional cuff bladder monitoring devices, which is
probable not appropriate for the validation of cuffless devices. The
cuffless devices needs calibration not only at initial level but in
many time frames, at several BP levels and at both static and
dynamic states. Specific validation protocols should be designed at
three levels: (a) static test, (b) test with BP change from the
calibration point, and (c) test after a certain period of time from
calibration. Moreover, if used for remote BP monitoring, there
should be a safe and efficient storage of data that respects the
personal data protection law and is accessible for health providers.
Then, large-scale prospective clinical studies should be carried out
in order to evaluate what BP values recorded by these devices
should be considered as “normal” in daily life, and what BP values –
or range of values – are associated with adverse events. Finally, the
implementation of remote BP monitoring with cuffless devices in
daily clinical HTN management, requires the appropriate financial
compensation for the involved health providers.

CONCLUSION
All available evidence suggests that the digital management of
HTN and the wearable BP monitoring devices are considered the
technology of the future. These approaches provide a realistic
prospect concerning the goal of reducing or even eliminating
cardiovascular events in hypertensive patients. The availability of
simple and affordable devices for reliable cuffless BP measure-
ment allows the diagnosis of HTN at an early stage, improves BP
control, but also significantly increases the use of remote
monitoring in the management of HTN. Despite the promising

development and preliminary encouraging results, most of the
current wearable BP measuring devices have not even been
certified and have limited use in clinical practice due to problems
concerning the essential frequent calibration and the dependence
of reliable measurements only in specific body positions. As the
field of biotechnology continues to expand, further research is
needed to improve current BP measurement technologies utilized
cuffless devices. The next important question is how we will
implement these new technologies into clinical practice in the
best way for both physicians and patients.
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