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Abstract

Background: The Prostate Imaging Reporting and Data System (PI-RADS) provides guidelines 

for risk stratification of lesions detected on multiparametric MRI (mpMRI) of the prostate but 

suffers from high intra/interreader variability.

Purpose: To develop an artificial intelligence (AI) solution for PI-RADS classification and 

compare its performance with an expert radiologist using targeted biopsy results.

Study Type: Retrospective study including data from our institution and the publicly available 

ProstateX dataset.

Population: In all, 687 patients who underwent mpMRI of the prostate and had one or more 

detectable lesions (PI-RADS score >1) according to PI-RADSv2.

*Address reprint requests to: B.T., Center for Cancer Research, Molecular Imaging Program, National Cancer Institute, NIH, Building 
10 – Room B3B85, Bethesda, MD 20892, USA. turkbeyi@mail.nih.gov. 
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Field Strength/Sequence: T2-weighted, diffusion-weighted imaging (DWI; five evenly spaced 

b values between b = 0–750 s/mm2) for apparent diffusion coefficient (ADC) mapping, high 

b-value DWI (b = 1500 or 2000 s/mm2), and dynamic contrast-enhanced T1-weighted series were 

obtained at 3.0T.

Assessment: PI-RADS lesions were segmented by a radiologist. Bounding boxes around the 

T2/ADC/high-b value segmentations were stacked and saved as JPEGs. These images were used 

to train a convolutional neural network (CNN). The PI-RADS scores obtained by the CNN were 

compared with radiologist scores. The cancer detection rate was measured from a subset of 

patients who underwent biopsy.

Statistical Tests: Agreement between the AI and the radiologist-driven PI-RADS scores was 

assessed using a kappa score, and differences between categorical variables were assessed with a 

Wald test.

Results: For the 1034 detection lesions, the kappa score for the AI system vs. the expert 

radiologist was moderate, at 0.40. However, there was no significant difference in the rates of 

detection of clinically significant cancer for any PI-RADS score in 86 patients undergoing targeted 

biopsy (P = 0.4–0.6).

Data Conclusion: We developed an AI system for assignment of a PI-RADS score on 

segmented lesions on mpMRI with moderate agreement with an expert radiologist and a similar 

ability to detect clinically significant cancer.

Level of Evidence: 4

Technical Efficacy Stage: 2204

PROSTATE CANCER is the most common non-cutaneous cancer in men, with an estimated 

175,000 new diagnoses in 2019 in the United States.1 The traditional method of diagnosis 

for prostate cancer is an ultrasound-guided template sampling of the prostate in men deemed 

at risk for prostate cancer based on elevated serum prostate-specific antigen (PSA) or 

positive digital rectal exam screening tests.2 Multiparametric magnetic resonance imaging 

(mpMRI), including diffusion-weighted imaging, dynamic contrast-enhanced MRI, of the 

prostate has allowed for enhanced visualization of lesions and improved biopsy targeting.3 

Utilizing MRI/ultrasound fusion-guided biopsy techniques, sampling of MRI-defined lesions 

suspicious for prostate cancer has been shown to improve the detection of clinically 

significant prostate cancer.4,5

The second version of the Prostate Imaging and Reporting Data System (PI-RADSv2) 

attempts to standardize the acquisition, interpretation, and reporting of mpMRI6 in order 

to improve cancer detection at prostate MRI. The PI-RADSv2 documentation provides a 

detailed description for assignment of detected lesions into categories with increasing risk 

of detection of clinically significant cancer as the score increases.7 PI-RADSv2 has been 

shown to be useful in refining the risk of detection of clinically significant prostate cancer 

on biopsy compared to clinical data alone8; very recently, PI-RADSv2 has been revised 

to its v2.1 version9 and clinical studies are under way to show its potential improvements 

in detecting clinically significant prostate cancer. However, the performance of PI-RADS 

has been hindered by poor interreader and intrareader agreement. Interreader agreement has 
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been reported as less than 50%, and intrareader agreement is reportedly in the range of 

60–74%.10 This variation results in substantial discrepancies in diagnostic performance of 

targeted biopsies, with clinically significant cancer detection rates from MR-guided biopsies 

varying by as much as 40% for PI-RADS 5 lesions.11 Therefore, in order to make PI-RADS 

categorization more uniform, we sought to develop a deep-learning artificial intelligence 

(AI) system to classify radiologist-identified lesions into PI-RADSv2 risk categories. Here 

we aim to describe this system and compare its performance with an expert radiologist using 

targeted biopsy results.

Material and Methods

Datasets

Images were acquired from three independent cohorts: the first two from our institution 

and the third from an open-source dataset. The purpose of including three distinct datasets 

was to expose the neural network to diverse data in order to reduce overfitting to one 

center or one specific patient population (ie, only those undergoing surgery). The first cohort 

(Cohort 1) included all patients undergoing mpMRI prior to radical prostatectomy between 

January 2015 and November 2018 as part of an Institutional Review Board (IRB)-approved 

protocol (Clinical Trials.gov Identifier: NCT02594202). This time period was selected 

based on the implementation of PI-RADSv2 scoring at our institution. The second cohort 

(Cohort 2) included all patients enrolled in an institutional protocol for patients undergoing 

multiparametric prostate MRI for evaluation of known or suspicious prostate cancer between 

study initiation (February 2018) and when study enrollment was halted (November 2018) 

(Clinical Trials.gov Identifier: NCT03354416). For both cohorts, per IRB requirements, 

informed consent was obtained from participants. The inclusion criterion was having a 

prostate MRI with a prospective PIRADS scoring 2 or greater. The exclusion criterion was 

having prior treatment (n = 11 patients) who had received prior androgen deprivation therapy 

and were excluded from these cohorts.

Both cohorts were scanned using a Phillips Achieva 3.0T MRI (Achieva 3.0-T-TX; 

Philips Healthcare, Best, the Netherlands) using an endorectal coil (BPX-30; Medrad, 

Pittsburgh, PA) or phased array surface coils (Philips Healthcare). A T2-weighted turbo-

spin-echo acquisition was obtained in the axial, sagittal, and coronal planes. Diffusion-

weighted imaging for production of apparent diffusion coefficient (ADC) maps using 

a monoexponential decay model and a separate high b-value (b = 1500 or b = 2000) 

sequences. Dynamic contrast-enhanced (DCE) sequences were obtained by administering 

gadoterate meglutamine (Dotarem, Bloomington, IN) through a peripheral vein at a 

dose of 0.1 mm/kg of body weight and a rate of 3 mL/s. All pulse sequence image 

acquisition parameters are detailed in Table S1 in the Supplemental Material from our 

prior publication.12 The pathologic outcome was assessed in patients who underwent an 

MRI-transrectal ultrasonography (MRI-TRUS) fusion-guided biopsy at our institution within 

a 6-month period after the acquisition of the MRI. Each lesion was biopsied twice—one was 

obtained in the axial plane and a second was obtained in the sagittal plane.

A third cohort was obtained from the publicly available PROSTATEx training dataset, which 

is described in detail on the challenge website (https://www.aapm.org/GrandChallenge/
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PROSTATEx-2/default.asp). Briefly, this dataset features multiparametric prostate MRIs 

included in two challenges for prostate cancer detection and risk stratification.13 The 

PROSTATEx dataset also had T2-weighted, diffusion-weighted series. No endorectal coil 

was utilized in this dataset. The imaging acquisition parameters are included as Table S1 in 

the Supplemental Material.

PI-RADS Classification

Lesion detection and PI-RADS scoring for all three cohorts was performed by a single 

radiologist with more than 10 years of experience in the interpretation of prostate MRIs 

(>1200 MRIs/year). All assessments of PI-RADs scores were performed prospectively as 

part of the clinical workflow prior to the beginning of this study and were not altered 

during this study. The radiologist was blinded to pathologic outcomes of all lesions during 

the labeling process. Segmentation of all detected lesions was performed by the same 

radiologist using software developed for research purposes (pseg, iCAD, Nashua, NH), and 

ground truth scoring of the lesions was performed according to PI-RADSv2 guidelines. 

PI-RADSV2.1 was not utilized for this research since it became available after the study was 

conducted. The boundaries drawn on multiple slices of the lesions were determined using 

visual inspection of all available MRI sequences and saved with reference coordinates on 

the T2-weighted axial sequence in MIPAV VOI format. In total, there were 1034 lesions 

detected in 687 patients.

Data Processing

The overall data processing scheme is demonstrated in Fig. 1. Due to differences in 

acquisition parameters and spatial resolution in T2 and diffusion sequences (ie, slice 

thickness difference between T2 and ADC), the ADC and high-b series were aligned using a 

3D affine geometric transformation and resampled to the matrix size (ie, spatial resolution) 

of T2 series (affine3D, MatLab, MathWorks, Natick, MA). Each slice was then normalized 

to a minimum of 0 and a maximum of 255. The minimum and maximum values of the 

polygon segmentations in both x and y dimensions were parsed and used to determine a 

bounding box around the lesion on each slice. The bounding boxes were then padded by 

10 voxels to ensure the immediate surrounding tissue was contained within the bounding 

box. The coordinates for the padded bounding box were used to select a patch from the 

T2-weighted image, ADC map, and high-b-value series, which were then saved as a three-

channel JPEG image.

Model Training and Implementation

The lesion-level data from the three datasets were combined into a single dataset, which 

was then split randomly using a random number generator into three datasets on the patient 

level—training (70%, N = 482), validation (20%, N = 137), and test (10%, N = 68). For the 

training dataset, if a tumor segmentation spanned more than three slices, the first and last 

slices were discarded in the training dataset to allow for training on the most representative 

part of the tumor. All images were resized to 80 × 80 prior to training. A four-class 

(PI-RADS 2–5) convolutional neural network (CNN) was trained using the fastai library 

(https://github.com/fastai). A Resnet 34 architecture14 with weights initialized from a model 

pretrained on ImageNet15 was utilized for training with only the densely connected layers 
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adjusted. The learning rate was set at 8.0 × 10−3. The batch size was 256. A label-smoothing 

loss function was utilized.16 Standard data augmentation with vertical flips, rotation up 

to 15°, warping up to 0.05, and lighting changes of 0.05 were utilized. An additional 

data augmentation strategy that inserts parts of one image into another called mixup was 

utilized.17 The model was trained on an NVIDIA Titan RTX GPU for a planned 50 epochs 

with the best model saved during the training process. The trained model was then applied 

to each slice in a lesion in the test and validation datasets and the softmax outputs for each 

PI-RADSv2 class were recorded. Softmax values were averaged across all MRI slices and 

the highest value was chosen as the per-lesion PI-RADS score.

Assessment of Interreader Agreement and Upgrading/Downgrading

In order to determine the interreader agreement from patients within this cohort, a random 

subsample of 50 patients was taken from the publicly available ProstateX dataset. A second 

body radiologist with a cumulative experience of 15 years, blinded to the purpose of the 

re-review, was shown the T2, ADC, and high b-value slices from the midpoint in the lesion 

without the lesion marked and was asked to assess the PI-RADS score of the lesion within 

the representative slice. Upgrading of the PI-RADS score was defined as an AI-generated 

PI-RADS score that was higher than the radiologist PI-RADS score. Downgrading was 

defined as an AI-generated PI-RADS score that was lower than the radiologist PI-RADS 

score. The cancer detection rate was defined as the rate of detection of any prostate cancer. 

Clinically significant cancer detection was defined as Gleason Grade 3 + 4 or higher.

Statistical Analysis

The performance of the AI PI-RADS model was assessed in two ways. First, the agreement 

of the deep-learning PI-RADS classification and the radiologist’s PI-RADS classification 

was calculated using a Cohen’s kappa and a weighted kappa score. The kappa values were 

interpreted relative to kappa scores in the literature. A total of 2000 bootstrap samples 

were then performed on the lesion level by random sampling to generate a 95% confidence 

interval. The second metric of performance was assessment of the relationship between 

radiologists-assessed PI-RADS score and the deep-learning model’s predicted PI-RADS 

scores on biopsy outcome. This was assessed using accuracy, defined as the percent of 

AI-generated PI-RADS scored that matched the radiologist-generated PI-RADS scores. We 

also assessed the percentage of the Al-generated score falling within one PI-RADS score 

of the radiologist-generated score. A Wald test was utilized to test for differences in cancer 

detection rates between radiologist-assigned PI-RADS score vs. the Al-assigned PI-RADS 

score, estimated from 2000 bootstrap samples on the lesion level with P < 0.05 considered 

statistically significant.

Code Availability

All code utilized for the development of the deep-learning model is available at https://

github.com/NIH-MIP/semiautomated_PIRADS. A downloadable demo notebook including 

the trained model is available upon request.
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Results

Cohort Characteristics

Available clinical characteristics are listed in Table 1. There were a total of 4130 slices with 

345 PI-RADS 2 slices (8%), 994 PI-RADS 3 slices (24%), 1141 PI-RADS 4 slices (28%), 

and 1650 PI-RADS 5 slices (40%). Table 2 demonstrates the breakdown of patients and 

slices stratified by PI-RADS score for the training, validation, and test set.

Model Training and Validation

On a slice-by-slice basis, the accuracy of the AI-generated PI-RADS score compared with 

the radiologist PI-RADS score in the validation set was 58%. The fully trained model was 

then applied to all slices in each lesion in the validation and test sets and a lesion-based 

assessment was rendered. The agreement between the radiologist PI-RADS score and the 

AI-based PI-RADS classification is shown in Table 3. When the test set and validation 

set results were combined, there was agreement in 58% of lesions. Agreement was lowest 

for PI-RADS 2 lesions (6%) and highest for PI-RADS 5 lesions (80%). The kappa score 

was 0.40 (0.32–0.48), P < 0.001, reflecting moderate agreement. The weighted kappa score 

was 0.43. The upgrading and downgrading rates can be seen in Table 4—there were nearly 

twice as many tumors that were upgraded (85/307, 28%) compared with tumors that were 

downgraded (45/307, 15%). This is particularly notable in the PI-RADS 3 category, where 

there was a 44% rate of upgrading compared with a 4% rate of downgrading. When the 

evaluation was performed + one PI-RADS score, the correct classification rate was achieved 

in 86%.

Interreader Agreement

Two radiologists agreed on the PI-RADS score in 25/50 cases (50%). The two readers 

agreed within 1 PI-RADS score in 38/50 cases (76%). The kappa score for agreement was 

0.340 (95% confidence interval [CI] 0.17–0.51). Of those 25 cases classified as incorrect, 

16/50 were upgraded (32%), while 9/50 were downgraded (18%).

Correlation With Pathology Results

Of the 307 lesions in the validation/test set, 188 were derived from in-house patients and 

the remainder were derived from prostateX patients. Of the lesions derived from patients 

studied at our institution, 86 lesions (46%) underwent an MRI/ultrasound fusion-guided 

biopsy within 6 months following MRI acquisition. The association between the radiologist- 

and Al-assigned PI-RADS scores and pathologic outcome of the targeted biopsies was 

determined. For the radiologist-assigned PI-RADS score, the rates of biopsy-positive 

clinically significant prostate cancer (Gleason 7 or above) was 0%, 50%, 40%, and 79% 

for PI-RADS 2, 3, 4, and 5, respectively. For the AI-derived PI-RADS scores, the rates 

of biopsy-positive clinically significant prostate cancer were 0%, 40%, 39%, and 85% for 

PI-RADS 2, 3, 4, and 5, respectively. There were no statistically significant differences 

between the AI-assigned and radiologist-assigned PI-RADS scores in the rates of clinically 

significant prostate cancer (P = 0.59 for PI-RADS 3, P = 0.36 for PI-RADS 4, and P = 0.47 

for PI-RADS 5) (Table 5).
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Discussion

Multiparametric MRI has been shown to be useful in detecting tumors within the prostate by 

combining anatomic (T2-weighted, T2W) and quantitative (diffusion-weighted and dynamic 

contrast-enhanced) sequences.18 MRI provides anatomic localization of the tumor, which 

allows for the specific targeting of lesions during prostate biopsy.4 The addition of MRI 

has increased the detection of clinically significant cancer, although the magnitude of 

this increase varies.4,5 PIRADSv2 (and now PI-RADS v2.1) serves as a unifying and 

standardized scoring system across institutions to assess the risk of clinically significant 

prostate cancer given specific lesion morphology and appearance.7 However, the assignment 

of a PI-RADS score relies on individual assessments of qualitative attributes of lesions 

such as the determination of which T2W MRI lesions are heterogeneous (PI-RADS 3) 

vs. homogenous (PI-RADS 4). The subjective nature of these assessments leaves room 

for disagreement among clinicians and prior studies19,20have demonstrated substantial 

interreader and intrareader variability in PI-RADS classification, similar to what we 

experienced in the 50-patient experiment in our current study.10 This variability results 

in difficulty with consistently mapping PI-RADS scores to the risk of prostate cancer.11 In 

a prior multicenter study, experienced radiologists were shown the same multiparametric 

prostate MRI study 1 month apart and were asked to assign a PI-RADS score to detected 

lesions. Interestingly, these radiologists disagreed with their own diagnosed 15–40% of 

cases when asked to read the same scan a month later.10 Similar findings have been reported 

in additional studies.20,21 Considering that PI-RADS scores of MRI-detected lesions are 

routinely used to determine if a biopsy is to be performed, such inconsistencies hinder 

widespread use of MRI-derived information in prostate cancer care. An AI model, properly 

trained with accurate annotation, has the potential to produce a consistent PI-RADS score, 

which should elevate the intraobserver agreement,22 improving the confidence of clinicians 

in the results of MRI.

This study describes a deep-learning-based image classification AI system that assigns a 

PI-RADS score to a lesion detected and segmented by a radiologist. This system was trained 

on a slice-by-slice basis, then applied across all slices in the validation and test sets in order 

to obtain a PI-RADS score for each lesion. The agreement of the AI system with the expert 

radiologist was only in the moderate range (kappa = 0.40); however, this is within the range 

of previously reported inter- and intrareader agreements, which have been reported as low as 

0.24 among multiple radiologists.10 The AI system performed better on PI-RADS 5 lesions 

than other PI-RADS scores. When the AI system predicted the PI-RADS score incorrectly, 

it often was within one PI-RADS score range of the expert radiologist’s PI-RADS score, 

leading to an 86% correct classification rate within 1 PI-RADS score error range.

Ultimately, the most important function of the PI-RADS score is to provide a consistent 

mapping between a lesion detected at MRI and clinically significant cancer on biopsy. 

While PI-RADS has been shown to have sensitivity (0.89) and specificity (0.73) for overall 

cancer detection,23 the rates of detection of clinically significant cancer have not been as 

impressive, specifically in lesions with a PI-RADS 4 score, indicating that a “clinically 

significant cancer is likely to be present.”24 In our study, we validated the results of 

Mehralivand et al25 on a different patient cohort, demonstrating a detection rate of clinically 
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significant cancer in the minority (22.1%) of PI-RADS 4 lesions. Although the pathologic 

outcomes included in this study were based on TRUS/MRI fusion-guided targeted biopsy, 

which may miss or undersample the lesions, a notable finding from this study was that 

the rates of detection of clinically significant cancer within each PI-RADS category was 

similar between radiologist-assigned PI-RADS scores and AI-assigned PI-RADS scores. 

The discrepancy between the lack of agreement on PI-RADS scores overall and the presence 

of agreement in biopsy outcomes is likely the result of the ability of the system to categorize 

PI-RADS close to the correct score. Because the rates of clinically significant cancer are 

within 10% between a PI-RADS 3 vs. 4,24 this type of misclassification may not make a 

difference in relation to biopsy outcome. Providing a consistent method of classifying MRI 

findings to predict clinically significant cancer may allow treating physicians to have more 

confidence in making biopsy and treatment decisions using the PI-RADS scoring system. 

Provided an AI algorithm has been properly validated, the reproducible nature of AI-based 

PIRADS prediction may provide consistent correlation with pathological outcome.

Limitations

Our study has limitations. First, this AI system requires manual lesion segmentation, which 

makes the assumption that the lesion can be both accurately detected and delineated. 

Second, this study relied on a retrospective cohort of patients from two different institutions, 

and, therefore, patient selection was subject to unknown biases. The AI system has a 

possible tendency to upgrade PI-RADS categories of some lesions, which could potentially 

alter the need for biopsy. Additionally, we utilized PIRADSv2 in our study instead of 

PIRADSv2.1, which was just released while our study was still being conducted at the 

training and validation phases. Finally, the available pathologic outcomes of this study 

were based on targeted biopsy, not whole-mount pathology. Half of the patients in the 

validation/test sets did not undergo a prostate biopsy after the MRI, introducing a potential 

source of bias in the determination of biopsy outcomes. Including a cohort where all 

patients underwent radical prostatectomy may potentially bias the lesion population towards 

a relatively higher Gleason grade cohort.

Conclusion

We described an AI model that can assign a PI-RADS score to a lesion that is identified 

and segmented on a multiparametric prostate MRI. The AI system’s agreement with an 

expert radiologist was similar to intra- and interreader agreement in prior studies. There was 

no difference in detection of clinically significant prostate cancer within PI-RADS scores 

between the AI and radiologist PI-RADS classifications. An AI-based classification system 

may improve consistency in the PI-RADS classification system.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1: 
Workflow for data processing, model training, and per-lesion model application. The lesion 

was segmented on the T2-weighted axial series while viewing the corresponding ADC 

map and the high-b-value images. All three series were aligned so they were in the same 

physical space. The lesion segmentation was used to determine the maximum and minimum 

x and y values, then a bounding box was drawn around the lesion with 10-voxel padding. 

These cropped images from each series were placed into a three-channel array and saved as 

JPEGs. All images were resized to 80 × 80. The lesions were then split into 70/20/10 train/

validation/test sets and slices were extracted from the training and validation datasets for 

model training. A Resnet 34 convolutional neural network (CNN) was trained using these 

slices. The fully trained model was then applied on a slice-by-slice basis for each lesion in 

the validation and test datasets and the predictions were averaged. The largest average score 

was then considered the PI-RADS score.
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