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Abstract

Computational drug design relies on the calculation of binding strength between two biological 

counterparts especially a chemical compound, i.e. a ligand, and a protein. Predicting the affinity 

of protein-ligand binding with reasonable accuracy is crucial for drug discovery, and enables the 

optimization of compounds to achieve better interaction with their target protein. In this paper, 

we propose a data-driven framework named DeepAtom to accurately predict the protein-ligand 

binding affinity. With 3D Convolutional Neural Network (3D-CNN) architecture, DeepAtom 

could automatically extract binding related atomic interaction patterns from the voxelized 

complex structure. Compared with the other CNN based approaches, our light-weight model 

design effectively improves the model representational capacity, even with the limited available 

training data. We carried out validation experiments on the PDBbind v.2016 benchmark and 

the independent Astex Diverse Set. We demonstrate that the less feature engineering dependent 

DeepAtom approach consistently outperforms the other baseline scoring methods. We also 

compile and propose a new benchmark dataset to further improve the model performances. With 

the new dataset as training input, DeepAtom achieves Pearson’s R=0.83 and RMSE=1.23 pK units 

on the PDBbind v.2016 core set. The promising results demonstrate that DeepAtom models can be 

potentially adopted in computational drug development protocols such as molecular docking and 

virtual screening.
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I. INTRODUCTION

Binding of a molecule to a protein may start a biological process. This includes the 

activation or inhibition of an enzyme’s activity, and a drug molecule affecting its target 
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protein. The binding is quantified by how strong the chemical compound, a.k.a. a ligand, 

binds to its counterpart protein; this quantity is called binding affinity. Modeling of 

biological processes and computational drug design heavily rely on calculating this binding 

strength. As a practical example, we may have a target protein whose relevance to a 

disease has been experimentally confirmed. We would like to rank the different poses 

of a single ligand or a library of ligands when binding to this target protein. Molecular 

docking and Virtual Screening (VS) take advantage of the binding affinity score to achieve 

this discrimination. In other words, VS assigns a score to each binding ligand, indicating 

how strong it binds to the target protein. To get the overall picture of how binding 

affinity prediction enables VS, the reader is referred to [8], [16], [55]. In the past, VS 

has successfully assisted the design of drugs to treat a wide range of diseases, such as type 2 

diabetes, malaria, and hepatitis B [38], [40], [41].

Current approaches for quantifying the binding affinity can be categorized as physics-based, 

empirical, knowledge-based and descriptor-based scoring functions [34]. In spite of their 

merits, the conventional techniques assume a predetermined functional form which is 

additive. Furthermore, they need domain knowledge to extract features and formulate 

the scoring functions. For example, the semi-empirical force field in AutoDock [39] and 

empirical scoring function in X-Score [53] belong to this category. As instance, X-Score 

takes average of three scoring functions HPScore, HMScore, and HSScore, differing by the 

terms which describe the hydrophobic interactions. Each of these scoring functions comes 

in the form of a linear combination of the terms [52]. These conventional techniques rely 

on experts’ insight on which phenomena and interactions make substantial contribution to 

binding affinity.

Only in the past decade the machine learning algorithms have been used to score the 

protein-ligand binding strength in a data-driven manner. Das et al. encoded molecular 

shapes and property distributions on protein and ligand surfaces as the input signatures 

to Support Vector Machine (SVM) models [11]. Ballester and coworkers gathered data about 

the frequency of occurrence of each possible protein-ligand atom pair up to a distance 

threshold. By binning these counts, they trained their Random Forest model implicitly on 

short-range, middle-range, and long-range interactions. The RF-Score model is still among 

the top performer models in this field [2], [3], [29], [30], [56]. Durrant and McCammon 

developed a series of neural network-based methods for binding affinity prediction. The 

input features were a combination of the count of short-range ligand-protein atom pairs, 

electrostatics sum over these atom pairs, different ligand atom types, and a ligand’s number 

of rotatable bonds [13]–[15]. The de Azevedo group implemented Taba, a tool to analyze 

the binding affinity based on representing a protein-ligand complex as a massspring system. 

Their program calculates average distances for different pairs of ligand-protein atom pairs up 

to different distance cutoff values. Taba then takes advantage of supervised machine learning 

to compute the weights for contribution of these interaction types. They report improved 

results compared to AutoDock 4 and Vina [4], [10]. The same research group also developed 

SAnDReS, a computational tool for statistical analysis of docking results and development 

of scoring functions [5], [6], [57]. Despite their merits, most classical machine learning 

models described above heavily rely on biological feature engineering to extract descriptors 

or fingerprints; it is still based on expert knowledge and therefore biased.
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Deep learning models, which belong to descriptor-based category, aim to minimize the bias 

due to domain knowledge. To describe the interactions between a protein and its ligand, 

atom-centered and grid-based methods are the most widely used techniques. Schietgat 

et al. developed a 3D neighborhood kernel, which took the atom spatial distances into 

consideration, to describe the structure of proteins and ligands [45]. More recently Gomes 

and coworkers [17] represented the structures of proteins and ligands as a combination 

of neighbor lists and atom types, to later be used in a deep network. In their case, they 

described the whole protein and ligand structures using their atom-centered scheme.

By contrast, grid-based approach usually limits the representation of protein and ligand 

interactions to a grid box defined around a protein’s binding site, and different atom 

information is encoded in different channels of the 3D grid. This representation puts the 

voxels, not the atoms, at the center of focus, and calculates the contribution of adjacent 

atoms to the center of each voxel. Research has been carried out for both classification 

and regression applications based on protein-ligand binding affinity. Wallach et al. [50] and 

Ragoza et al. [42] developed CNN scoring functions to classify compound poses as binders 

or non-binders. Jiménez et al. [25] and Marta et al. [48] designed similar deep learning 

models to predict the binding affinity, based on the rasterized protein-ligand input structures.

In addition to modeling approach, data reliability is a major issue for binding affinity 

prediction. Although a few thousands of labeled protein-ligand complexes are available, 

their binding affinity are reported as different experimental measures, including Kd 

(dissociation constant, which defines how strong a ligand binds to a protein), Ka (association 

constant, which is the reciprocal of Kd), Ki (inhibitor constant, a measure of binding strength 

when an inhibitor binds to its target), and IC50 (half-maximal inhibitory concentration), 

in decreasing order of reliability for the purpose of binding affinity prediction. A relevant 

thermodynamic property is the Gibbs free energy of binding for protein-ligand complexes. 

It is related to the dissociation constant as ΔG = RT lnKd where R is the gas constant and 

T is temperature in Kelvin. The Gibbs free energy of binding can be used to estimate the 

binding of ligands to the binding sites of proteins [7], [12]. It should be noted that if we 

indiscriminately feed all data with different types of binding affinity to a machine learning 

model during training phase, it will potentially introduce label noise or even incorrect 

labels different from ground truth. The machine learning model may then suffer from the 

inaccurate supervision.

The model performance is limited by the training data. The impact of including low quality 

data on model’s prediction power has been under debate. One the one hand, it has been 

reported that the Random Forest (RF) model can get a boost from being trained on an 

expanded dataset which also includes low quality data; the authors then recommended not 

to limit training on a relatively small set of high quality samples [31]. On the other hand, 

another group of researchers reported that expanding the training set made no significant 

change in their model performance [25]. We previously showed that including low quality 

samples improved the generalization power of our models [43].

More recently, deep learning models have exhibited their powerful superiority in a broad 

range of bioinformatics tasks, such as gene mutations impact prediction [49], protein folding 
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[32] and drug discovery [46]. By stacking many well-designed neural network layers, the 

final model is capable of extracting useful features from raw data form and approximating 

highly complex functions [28]. Many advanced deep learning algorithms are developed 

based on convolutional neural networks (CNNs). The impressive performance of CNNs 

is mainly because they can effectively take advantage of spatially-local correlation in the 

data. Similarly, protein-ligand 3D structure naturally has such characteristics; biochemical 

interactions between atoms occur locally. CNNs hopefully can hierarchically compose such 

local spatial interactions into abstract high-dimensional global features contributing to the 

binding score.

Our goal in this paper is twofold. First, we aim to develop an end-to-end solution for 

accurate prediction of binding affinity which 1) gets as input the 3D structural data for the 

complex form of a protein and ligand, 2) requires minimum feature engineering, and 3) 

achieves state-of-the-art prediction performance. Second, we aim to systematically analyze 

the publicly available protein-ligand binding affinity data and propose a new benchmark for 

more reliable model learning.

Herein, we propose the framework DeepAtom to accurately predict the protein-ligand 

binding affinity. The 3D structure of a protein-ligand complex is first rasterized into a 

3D grid box, which is centralized on the ligand center in the protein binding site. Each 

voxel has several input channels, embedding the different raw information of atoms located 

around the voxel. Thus each voxel aggregates the information from its surrounding atoms 

to the corresponding channels, using the algorithm first described in [24], which we call 

PCMax algorithm throughout the text. A light-weight 3D-CNN model is then developed 

to hierarchically extract useful atom interaction features supervised by the binding affinity 

labels. As a data-driven approach, it effectively avoids a priori functional form assumptions. 

More importantly, our efficient architecture design significantly improves the model 

representational and generalization capacity even trained with the limited available data of 

protein-ligand complex structures, in this case a few thousand complexes. It also effectively 

reduces the amount of both computation and memory cost introduced by 3D convolution 

operations and speeds up the training process.

We present comprehensive experiments on the standard benchmark test set, called PDBbind 

v.2016 core set [51] and an additional test set, called Astex Diverse Set [18]. Randomly 

initialized and evaluated for 5 times, DeepAtom consistently outperforms the baseline state-

of-the-art models studied here. In order to further improve the model performance, we also 

critically study the publicly available complex data and propose a new benchmark dataset. It 

further improves the DeepAtom performance, with potential benefits to the future research 

in the binding affinity scoring field. It has the capacity to be plugged into computational 

drug development protocols such as molecular docking and virtual screening. With this aim, 

we provide the benchmark dataset in the supplement.
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II. MATERIALS AND METHODS

A. Input Featurization and Processing

1) Protein-ligand Complex: The standard datasets, such as PDBbind and Binding 

MOAD, include the structures of protein and ligand in their bound form, a.k.a. their 

complex, deposited in a single PDB file. The strength of ligand binding to protein has been 

determined for each structure using experimental techniques such as isothermal titration 

calorimetry (ITC) and spectroscopic shift assays [27]. This binding affinity data is used as 

the ground truth labels for these protein-ligand complexes.

2) Grid Size & Resolution: We calculate the distribution of end-to-end distances for all 

ligands in the PDBbind v.2016 refined and core datasets. This gives us clues to define a box 

size of 32 Å, which is the same as the end-to-end distance for the longest ligand in these two 

datasets, so there is no need to filter out any. If the dimension of the grid box was defined 

smaller than the length of a ligand, the terminal sides of the ligand might fall outside the 

box and the model would lose data relevant to those moieties. Even if the initial orientation 

of such a ligand allowed it to fit inside the grid box, later data augmentation would most 

certainly generate input structures with data loss. The distribution of ligand lengths in the 

PDBbind v.2016 refined and core subsets is illustrated in Fig. 3a.

The van der Waals radius of the 9 major heavy atoms (C, N, O, P, S, F, Cl, Br, I) used in 

our study is greater than 1.4 Å. As a simplified view, an atom’s rvdw can be assumed as a 

measure of its size; it is defined as half of the internuclear separation of two non-bonded 

atoms of the same element on their closest possible approach. A grid resolution larger 

than 2 × rvdw cannot differentiate two atoms from each other. On the other hand, a finer 

resolution brings about much higher computational cost. As a trade-off between accuracy 

and efficiency, we set the grid resolution as 1.0 Å.

3) Features / Atom Types: A difference between deep learning in computer vision 

and structural biology applications is the use of RGB channels as a standard in the former 

where the model can directly consume them. However, in our case, there is no consensus 

on the channels for representing protein and ligand structures. We used 11 Arpeggio atom 

types, based on the potential interactions each atom may get involved in [26]; they include 

features such as Hydrogen bond acceptor and donor, positive or negative, hydrophobic, and 

aromatic atom types. These properties are similar to pharmacophoric features in medicinal 

chemistry [54]. The protein and ligand atoms are described by 11 Arpeggio atom types 

and an excluded volume feature, where discrimination is made between protein and ligand 

atoms. This resulted in (11 + 1) × 2 = 24 features.

4) Occupancy Type: This hyper-parameter defines how each atom impacts its 

surrounding environment. In our work, each atom can affect its neighbor voxels up to 

double of its van der Waals radius rvdw through a pair correlation potential. We use the 

Atom-to-voxel PCMax algorithm, described in [24], where each atom makes a continuous 

contribution n(r) to its neighbor voxels as defined by Eq. 1. At the center of a voxel, only the 

maximum effect from contributing atoms is kept.
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n(r) = 1 − exp(−(rvdw
r )

12
) (1)

B. Network Architecture

To extract the atomic interaction information from the voxelized protein-ligand complex 

data, a straightforward approach is to extend 2D-CNNs to 3D by using 3D convolution 

kernels. One channel of the output feature map at the location (i, j, k) is computed by the 

standard convolution as follows:

Conv(W , ℎ)(i, j, k) = ∑
s, t, r, m

S, T , R, M
W (s, t, r, m) ⋅ ℎ(i + s, j + t, k + r, m) (2)

where h represents the input with M channels, W (s, t, r, m) ∈ ℝS × T × R × M represents one 

filter weight, and S, T, R are side length of the filter. However, 3D convolution itself 

will massively inflate the amount of trainable network parameters, due to the increase in 

the input and kernel dimensions. Specifically, if N is the number of output channels, one 

standard convolution layer will introduce S · T · R · M · N parameters. More importantly, 

in order to improve the learning ability and achieve higher prediction accuracy, a general 

trend has been to make the model deeper and more complicated [47], [19], [23]. This in turn 

necessitates a higher requirement for a large scale high-quality training dataset. By contrast, 

for the affinity prediction problem, only a few thousands of protein-ligand complexes with 

experimentally determined binding affinity data are available. This issue discourages the 

use of network architectures with too many trainable parameters, because overfitting is 

likely to occur when the network has high complexity whereas a relatively small data set 

is available for training. Indeed, another 3D CNN-based affinity prediction work [42] also 

encountered the overfitting issue. After empirically optimizing the model depth and width, 

they ultimately reduced the network to only three convolutional layers. Similarly, Pafnucy 

[48] was developed as a 3D CNN model with three convolutional and three dense layers.

Our model is inspired by the light-weight network architectures, and aims to achieve the 

best trade-off between the prediction accuracy and the model complexity in terms of 

learnable parameters. A series of related network structures have been recently proposed, 

such as Xception [9], MobileNet v1 [20] and v2 [44], ShuffleNet v1 [58] and v2 [35], and 

CondenseNet [22]. Based on the practical guidelines for efficient CNN architecture design 

and the corresponding ShuffleNet units described in [35], we propose a novel light-weight 

3D CNN model, which can be effectively trained with deeper layers by the limited training 

samples. It improves the prediction performance by a large margin, but does not significantly 

increase model complexity.

Specifically, as shown in Fig. 2 our model consists of three building blocks, namely atom 

information integration block, stacked feature extraction block, and global affinity regression 

block.
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In the atom information integration block, a pointwise (PW, 1 × 1 × 1) convolution layer 

defined in Eq. 3 with non-linear activation function is first utilized to fuse the atom 

information across different channels.

PWConv(W , ℎ)(i, j, k) = ∑
m

M
W m ⋅ ℎ(i, j, k, m) (3)

This cascaded cross-channel parametric pooling structure brings about an improvement 

compared to the empirical scoring functions. For instance, AutoDock software’s scoring 

function is composed of a linear combination of interaction types, such as Hydrogen 

bonding and electrostatic interactions [39]. The pointwise convolution layer in our model 

is followed by a 3D max pooling layer to increase the translational invariance of the network 

and reduce the input dimension. The output of this block has the grid size of 16 × 16 × 16.

The feature extraction block consists of multiple consecutive 3D shuffle units, and according 

to the number of channels in their outputs, they are categorized into three groups. At the 

beginning of the unit, a channel split operator equally splits the input of feature channels 

into two branches. Data in one branch is sequentially processed by a pointwise convolution, 

a 3 × 3 × 3 depthwise (DW) convolution and an additional pointwise convolution. All three 

layers have the same number of input and output channels N. Depthwise convolutional layer 

performs the spatial convolution independently over every channel of an input:

DWConv(W , ℎ)(i, j, k) = ∑
s, t, r

S, T , R
W (s, t, r) ⊙ ℎ(i + s, j + t, k + r) (4)

where ⊙ denotes the element-wise product. Although depthwise convolution does not 

combine different input channels, the two neighbor regular pointwise convolutions 

effectively fuse the information across the channels. The other branch is kept as identity 

until it is concatenated with the output from the first branch. This identity branch can be 

regarded as an effective feature reuse design, which strengthens feature propagation and 

reduces the number of parameters. This strategy is inspired by ResNet model where the 

shortcut connections enable the model circumvent the vanishing/exploding gradient problem 

[19]. Within a basic unit, the depthwise and pointwise convolutions respectively introduce 

S ⋅ T ⋅ R ⋅ N
2  and N

2 ⋅ N
2  parameters. Therefore, using a basic unit to replace the standard 

convolution, we obtain the parameter reduction as follows:

S ⋅ T ⋅ R ⋅ N
2 + 2 ⋅ N

2 ⋅ N
2

S ⋅ T ⋅ R ⋅ N ⋅ N = 1
2( 1

N + 1
S ⋅ T ⋅ R) (5)

DeepAtom uses 3 × 3 × 3 depthwise convolutions and the number of channels are set as 244, 

488, and 976. Therefore, with the efficient model design, we can easily obtain more than 

20 times parameters reduction, which enable us to stack deeper layers to improve the model 

learning capacity.
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At the end of the units, the channel shuffle operation is applied to enable the information 

flow across the two branches. Particularly, the channel shuffle operation first divides the 

feature map in each branch into several subgroups, then mixes the branches with different 

subgroups, as inspired by [58]. When the spatial down sampling is applied, the channel split 

operator in the shuffle unit is removed, and the number of output channels is doubled. In 

each group, only the first shuffle unit has the down sampling layer, and the remaining units 

keep the input dimension.

After stacking three shuffle groups, the original 3D input data is down sampled to a 1024 

× 2 × 2 × 2 4D tensor (3 grids along x, y, z axes and 1024 channels). The global affinity 

regression block first slices the tensor into 2×2×2 = 8 vectors with dimension 1024. Based 

on the prior shuffle groups, the receptive field of each vector covers the entire raw volume, 

so we set up the affinity prediction task for each vector. A shared weights fully connected 

(FC) layer consumes each vector to construct regression loss, and it enables us to train the 

top layers more thoroughly and further avoid overfitting. In testing phase, outputs from the 

multiple hidden vectors are averaged right before the FC layer to stabilize the prediction.

In the architecture, we adopt the leaky rectified linear unit as the activation function. A batch 

normalization layer is appended after each convolution operation to speed up the training. 

The mean squared error is set as our affinity regression loss for model learning.

1) Training: The model is updated by Adam algorithm with default parameters for 

momentum scheduling (β1 = 0.9, β2=0.999). Training the model from scratch, we set the 

initial learning rate as 0.001 and the weight decay to 4 × 10−5. Our model is implemented 

using PyTorch (version 0.4). With batch size of 256, the model is trained for around 60 

epochs on 2 Nvidia P40 GPU cards.

2) Data Augmentation: The publicly available biological datasets contain only 

thousands of complexes with reliable experimental binding affinity value. Directly training 

on these insufficient samples easily makes the deep learning model suffer from the 

overfitting problem. Data augmentation is proved as an effective approach to enhance 

the deep learning model performance. In our experiments, each of the original samples 

gets randomly translated and rotated. To ensure the ligands stay inside the grid box, the 

center of grid box is limited to move up to 0.5 Å in an arbitrary direction. Enabling such 

transformations significantly improves the training and model capacity. In order to reduce 

the variance, the augmented samples of each protein-ligand complex are averaged during the 

prediction phase.

C. Dataset Preparation

1) PDBbind Dataset: PDBbind is the standard dataset for developing models to predict 

the binding affinity of protein-ligand complexes [51]; it has three subsets, namely core, 

refined, and general. The general subset includes complexes with relatively lower quality; 

it contains lower resolution structures, and the experimental affinities for some structures 

are reported as IC50 values. The refined dataset is a higher quality subset of the general 
dataset. It includes complex structures with better resolution and excludes any complex with 

IC50 data only; IC50 is a less preferred experimental measure of binding affinity due to its 
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dependence on the concentration of both protein and ligand. More specifically, the refined 
subset excludes NMR-resolved structures; it contains complexes with resolution better than 

2.5 Å and R-factor values lower than 0.250. It also filters out complexes where the ligand 

has any missing fragments or the protein binding site has any missing backbone or side 

chain fragments. In addition, it rejects complexes with extreme binding affinity values (Kd or 

Ki > 10 mM; Kd or Ki < 1 pM). To avoid complicated cases, the ternary complexes are also 

removed, such as when a substrate binds in vicinity of a cofactor [33]. In total, PDBbind 

v.2016 refined dataset includes 4057 complexes. The core dataset is a subset of refined 
data, clustered with a threshold of 90% sequence similarity; five representative complexes 

are picked for each of the 58 protein family clusters in order to cover the affinity range 

better. This results in 290 complexes in the core subset, which serves as the standard test 

set to evaluate the scoring approaches. We further split the rest of 3767 non-overlapping 

complexes between the refined and core into two disjoint subsets: (i) 10% of complexes 

(377) are randomly selected and used as the validation set, (ii) the rest (3390 complexes) are 

used for training, which is named as “training set-1”.

2) Proposed Benchmark Training Set: In order to compile an improved benchmark 

dataset, we use PDBbind data as well as a complementary source of protein-ligand binding 

affinity data, namely Binding MOAD [1], [21]. In order to incorporate the recently updated 

complexes, we start from PDBbind v.2018 dataset, and extract all complexes with either 

Kd, Ka, or Ki data from general and refined subsets. It is worth noting that we exclude 

the complexes shared with the core subset to prevent the data leakage. We follow the same 

steps with Binding MOAD data. A few filtration steps are also necessary: first if a complex 

has reported Kd/Ka data in one database and Ki in the other, we keep the Kd/Ka data 

only. Second, complexes with a peptide as their ligand are discarded. We do not filter the 

complexes based on their structure resolution nor perform any clustering on them in terms 

of protein sequence or structure; clustering is typically done to later reduce the dataset into 

representative samples. The limited availability of the experimental affinity data discourages 

further removal of samples, although the dataset is biased towards some structures, e.g. the 

congeneric series. These are the 3D structures in Protein Data Bank where they share the 

same protein, complexed with different ligands.

In total, the final benchmark dataset contains 10 383 complexes. Please note that in 

contrast to NMR structures which contain multiple 3D models, a PDB file from X-ray 

crystallography contains a single 3D structure only. Our proposed benchmark dataset 

includes almost exclusively X-ray structures, with only one structure existing in each PDB 

file. Merely 63 complexes come from NMR experiments. We get only the first model from 

these PDB files.

As mentioned earlier, there is a debate over how the inclusion of lower quality data in 

training affects the model performance. Different groups have reported controversial results 

[25], [31]. Our previous work demonstrated an improvement in model performance when we 

did not try to limit the dataset based on its quality [43]. Therefore, we do not filter based on 

the structure resolution nor complexes with Ki data. Also, we do not perform any clustering 

on the proposed benchmark dataset in terms of protein sequence or structure.
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Compared with the refined subset of PDBbind, this dataset almost doubles the number of 

samples with Kd/Ka/Ki data and is expected to improve the performance of binding affinity 

scoring techniques. The full list of the proposed benchmark dataset for model training is 

provided in the Supplementary Table1. The pKd/pKa/pKi value for each complex is reported 

to make it easier for other researchers to use the proposed dataset. The binding score of the 

complexes in this dataset ranges from −0.15 to 15.22 in pk units, and the score distribution is 

shown in Supplementary Fig. S1.

To train the scoring approaches, we split the proposed benchmark dataset into two subsets: 

(i) we randomly select 1000 samples from non-overlapping complexes between PDBbind 

v.2016 refined and core sets. (ii) the rest (9383 complexes) are for training, named as 

“training set-2”.

3) Astex Diverse Set: This dataset was developed in 2007. It includes 85 protein-

ligand complexes filtered to be of interest specifically to pharmaceutical and agrochemical 

industries [18]. Among these 85 complexes, 64 of them include binding affinity data. To 

avoid data leakage, we remove 19 complexes which are shared between Astex and our 

training set-2.

D. Other Methods for Comparison

In Section III, we compare DeepAtom with three state-of-the-art and open-source scoring 

approaches: Pafnucy model [48], RF-Score [3], and X-Score [53]. For Pafnucy and RF-

Score, we use the open-source codes provided by the authors, and use their suggested 

hyper-parameters to re-train models on the same datasets as DeepAtom. For X-Score, we 

take the results from paper [25], where the authors used the publicly available binaries to 

make predictions on the same PDBbind v.2016 core set.

III. RESULTS & DISCUSSION

In this section, we describe the training and benchmarking protein-ligand complex data for 

DeepAtom. The evaluation details are presented along with discussion of the results.

A. Evaluation Metrics

To comprehensively evaluate the model performance, we use Root Mean Square Error 

(RMSE) and Mean Absolute Error (MAE) to measure the prediction error, and use Pearson 

correlation coefficient (R) and standard deviation (SD) in regression to measure the linear 

correlation between prediction and the experimental value. The SD is defined in Eq. 6.

SD =
∑i

n yi − a + bxi
2

n − 1
(6)

where xi and yi respectively represent the predicted and experimental values of binding 

affinity for the ith complex; a and b are the intercept and the slope of the regression line, 

respectively.

1 https://github.com/YanjunLi-CS/DeepAtom_SupplementaryMaterials 
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B. Model Comparison with “Training Set-1”

We first train DeepAtom, RF-Score and Pafnucy on the “training set-1” with 3390 

complexes described in Section II-C1, and evaluate them on the PDBbind v.2016 core 
set, which is unseen to the model during its training and validation. Each approach is 

randomly initialized and evaluated for 5 times. The mean and the standard deviation (in 

the parentheses) of the four evaluation metrics are presented in Table I for testing, and 

Supplemental Table S1 for validation. Learning with the very limited samples, DeepAtom 

outperforms the similar 3D CNN-based Pafnucy by a large margin, which demonstrates 

that our light-weight architecture design enables effective training with the deep layers and 

significantly improves its learning and generalization capacity. Our improved results are also 

likely to come from using a moderate level of chemical details in the features. As shown by 

Ballester et al. in their paper [3], the incorporation of sophisticated features such as Sybyl 
atom types indeed reduces the model performance, compared to moderate elements atom 

types. Our previous research confirms this too [43]. In addition to their atom types, Pafnucy 

adds more complicated features such as atomic partial charges and atom hybridization, 

somewhat similar to Sybyl atom types. The charge contributions might be inferred in our 

model from the Arpeggio atom types where the features also indicate the potential type of 

electrostatic interactions. We believe the inclusion of more sophisticated features might have 

indeed lowered the performance of Pafnucy model.

On the other hand, DeepAtom achieves the comparable performance with the conventional 

machine learning method RF-Score, although as a practical guideline, training a supervised 

deep learning model generally requires larger datasets. It suggested that our model has 

greater potential to provide more accurate prediction, given enough training data.

C. Model Comparison with “Training Set-2”

Next, we use our proposed “training set-2” to re-train DeepAtom, RF-Score and Pafnucy 

models, as well as the NNScore 2.0 model [13]–[15]. Then we evaluate them on the 

PDBbind v.2016 core set. Similarly, 5 different runs are conducted for the first three scoring 

methods to stabilize the results. For NNScore 2.0 model, 20 neural networks are trained on 

the input complexes and the final prediction takes average over all outputs. Fig. 4 shows 

the comparison of results in terms of mean value of the R and RMSE, also including the 

X-Score prediction results. Table II presents the detailed results of the mentioned methods. 

As shown, DeepAtom outperforms all the other approaches across all four measurements by 

a large margin. It achieves the best Pearson correlation coefficient of 0.83 and RMSE of 1.23 

in pK units, compared with RF-Score results: R = 0.80 and RMSE = 1.42, Pafnucy results: 

R = 0.76 and RMSE = 1.44, and NNScore results: R = 0.65 and RMSE = 1.69. To the best 

of our knowledge, DeepAtom achieves the state-of-the-art performance on this well-known 

benchmark. The corresponding validation results are shown in the Supplementary Table S2.

Fig. 3d shows the correlation between the prediction results of one DeepAtom model and the 

experimental binding affinity data. DeepAtom gives the highly correlated prediction on the 

PDBbind v.2016 core set. To further investigate the model performance on different ranges 

of the binding data, we visualize the binding affinity distribution of the training set (Fig. 

3b) in the proposed benchmark, PDBbind v.2016 core set (Fig. 3c) and the corresponding 
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DeepAtom RMSE value within each pK unit range (Fig. 3e). From Fig. 3b and 3c, we 

observe that the binding scores of our training samples are intensively located in the middle 

range (from 3 to 9 pK units) which is highly similar to the core set. Fig. 3e shows that 

DeepAtom obtains better prediction results with lower MAE values in this middle range, 

compared to the less frequent binding scores. For a data-driven approach, the distribution 

of training data plays a crucial role in its performance. Because the number of training 

samples falling in the middle range is much larger than the samples with marginal affinity 

values, DeepAtom naturally performs better for the complexes in the middle range during 

the testing stage. It also suggests that diversifying the training samples is promising for 

DeepAtom to provide more accurate and reliable predictions. Furthermore because the 

compounds of interest during computational drug design and lead optimization usually lie in 

this middle range, these graphs give us more confidence in model predictions in real-world 

applications.

We also compare DeepAtom with the RF-Score, Pafnucy, and NNScore models on 

the independent Astex Diverse Set. Table III shows that DeepAtom again significantly 

outperforms the others over all the measurements. The prediction results averaged over 7 

DeepAtom models are illustrated in Fig. 3f.

D. Evaluation of the Proposed Benchmark Dataset

Comparison of Tables I and II reveals that training on our proposed benchmark dataset 

results in a significant improvement of the model performances, especially for the deep 

leaning based approaches. For example, DeepAtom increases the R from 0.81 to 0.83 and 

decreases the RMSE from 1.32 to 1.23. The difference between the two tables confirms the 

effectiveness of our proposed new benchmark dataset, where the model trained on our new 

dataset provides more accurate predictions. Although the dataset contains some complexes 

with low resolution structure, such low-quality data does not introduce obvious label noise. 

On the contrary, this extended dataset provides more reliable complex data which can 

effectively improve the generalization power of binding affinity prediction algorithms.

It is worth noting that our proposed benchmark dataset extends the standard refined set by 

including the complexes from PDBbind general subset and Binding MOAD database only 

when the experimental affinity data is either Kd, Ka, or Ki. While Kd and Ki as equilibrium 

constants may be compared if derived from multiple binding assays, dependence of IC50 

values on experimental settings discourages its comparison across different assays [33].

E. Hyper-parameter Optimization

Although DeepAtom is an end-to-end data-driven approach for binding affinity prediction, 

some hyper-parameters are inevitably introduced especially in the input featurization 

process. To finalize the optimal data representation of protein-ligand complex for DeepAtom 

prediction, we implement systematic optimization experiments over the related hyper-

parameters. In all of following comparison experiments, our deep learning models are 

trained on the “training set-1” with 3390 complexes, and evaluated on the corresponding 

validation set with 377 complexes; the prediction performance is measured by Pearson’s R 

and RMSE.
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1) Feature/Atom Types: We consider three different descriptors with 11, 24, and 60 

features. The first descriptor characterizes both the protein and ligand atoms with the same 

11 Arpeoggio atom types. The second descriptor is described in Section II-A3. The third 

descriptor includes 40 ANOLEA atom types to describe protein atoms and 9 heavy-atom 

element types to describe ligand atoms, in addition to the 11 Arpeggio atom types. The 

ANOLEA atom types describe each protein atom based on its bond connectivity, chemical 

nature, and whether it belongs to side-chain or backbone of the amino acid [36] [37]. 

This provides a fine grained representation of protein atoms with more information about 

the local bonded neighbors of each atom than pharmacophoric features. For the rest of 

controlled variables, we use the simple binary scheme to represent the occupancy types, and 

set the resolution of 3D grid box as 1.0 Å. From Table IV, we can see that when both protein 

and ligand atoms are treated the same (the first descriptor), a lower performance is obtained; 

training the models on PDBbind dataset needs extracting the structures of free protein and 

free ligand from the complex, assuming that the conformational change upon ligand binding 

is negligible. Therefore, binding affinity prediction relies on the inter-molecular interactions 

between protein and ligand atoms, while the intra-molecular energies are cancelled out. In 

this case, ignoring the distinction between protein and ligand atoms makes it difficult for the 

network to recognize these crucial protein-ligand inter-molecular interactions.

2) Resolution: High-resolution rasterized data can adequately capture the fine-grained 

features and changes in the local spatial regions. However, it will cause excessive memory 

usage and heavy computational cost. Thus, there exists a trade-off between prediction 

performance and computational efficiency. Based on our analysis, we pick the resolution as 

1.0 Å and 0.5 Å, both of which are less than the smallest 2 × rvdw value of 1.4 Å for the 9 

major heavy atoms. Table V shows that with an increase in resolution, DeepAtom prediction 

performance improves. However, this slight improvement comes with a large increase in 

the computational cost, especially when the more demanding occupancy strategy such as 

PCMax is utilized later; therefore we select 1.0 Å as the optimal resolution value.

3) Occupancy Type: Occupancy type describes how each atom impacts its surrounding 

environment. Several different strategies have been proposed, such as binary, Gaussian [42] 

and PCMax [24]. The binary occupancy discretizes an atom’s impact over the voxel. For 

example, if the distance between an atom and a voxel center is shorter than the atom’s 

van der Waals radius, the corresponding voxel channel will be activated as 1, otherwise 

deactivated as 0. In contrast, the Gaussian and PCMax approaches can represent an atom’s 

impact by a continuous numerical value, which can contain richer information. The impact 

can also decay smoothly when the distance increases. We compare the binary and PCMax 

occupancy types, on the basis of the optimal 24 feature/atom types and 1.0 Å grid resolution, 

where the cutoff distance for binary and PCMax strategies is set to rvdw and 2×rvdw, 

respectively. Table VI shows that DeepAtom with PCMax occupancy type achieves better 

performance. Considering the similarity between Gaussian and PCMax algorithms, we 

expect them yield comparable results.

4) Averaging at the Testing Time: As an effective strategy, data augmentation is also 

used to improve the DeepAtom performance. In addition to augmenting data for training, 
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we also run the trained model on multiple augmented versions of test data and average the 

results to reduce the prediction variance. We evaluate multiple test data versions, including 

1, 12 and 24, where the value 1 means only the original test set is used without the averaging 

operation. We observe that increasing the test set versions can favorably reduce the variance 

of predictions and further improve the performance.

IV. CONCLUSION

In this paper, we proposed the framework DeepAtom to accurately predict the protein-ligand 

binding affinity. An efficient 3D-CNN architecture is proposed to effectively improve the 

model learning capacity with limited available complexes data for training. In a purely data-

driven manner without a priori functional form assumptions, DeepAtom outperforms the 

studied baseline state-of-the-art deep learning, machine learning and conventional scoring 

techniques. We also proposed a new benchmark dataset to further improve the model 

performance. The promising results on independent challenging datasets demonstrated 

DeepAtom can be potentially adopted in computational drug development protocols such 

as molecular docking and virtual screening.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: Local box featurization (3D data representation).
The grid box encompasses the area around the binding site, centered on the ligand. Each 

channel includes only a specific feature, e.g. from left to right, the three channels shown 

are the excluded volume channel for the ligand as well as the hydrophobic and aromatic 

channels for protein. Each sample is described in terms of 24 channels in total.
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Fig. 2: Network architecture.
Each Conv layer is specified by its number of channels, kernel size and stride. The 3D 

MaxPool layer has kernel size 3 and stride 2. For the 3D Shuffle Groups, the numbers in 

parentheses denote the number of output channels and repeat time of the unit. Only the first 

unit has down sampling layer, where the DWConv layer has kernel size 3 and stride 2. In the 

remaining units, DWConv with kernel size 3 and stride 1, as well as PWConv with kernel 

size 1 and stride 1 are utilized. Eight losses are calculated based on the shared weights FC 

layer output. Two dropout layers are appended before the last 3D Pointwise Conv and FC 

layers respectively.
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Fig. 3: 
a. Ligand length distribution in the PDBbind v.2016 refined and core sets. b. Binding data 

distribution of the training set in our proposed benchmark. c. Binding data distribution 

of the core set. d. DeepAtom prediction results for the core set. e. The distribution of 

MAE between DeepAtom prediction and target complexes with different binding ranges. f. 
DeepAtom prediction results for the Astex Diverse Set.

Rezaei et al. Page 22

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2023 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4: 
Comparison of scoring methods on PDBbind v.2016 core set.
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TABLE I:

Results on PDBbind v.2016 core set with “training set-1”. In each table cell, mean value over five runs is 

reported as well as the standard deviation in parentheses.

RMSE MAE SD R

DeepAtom 1.318 (0.212) 1.039 (0.016) 1.286 (0.015) 0.807 (0.005)

RF-Score 1.403 (0.002) 1.134 (0.003) 1.293 (0.002) 0.803 (0.001)

Pafnucy 1.553 (0.031) 1.261 (0.027) 1.521 (0.037) 0.722 (0.017)
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TABLE II:

Results on PDBbind v.2016 core with “training set-2”.

RMSE MAE SD R

DeepAtom 1.232 (0.011) 0.904 (0.019) 1.222 (0.011) 0.831 (0.003)

RF-Score 1.419 (0.002) 1.124 (0.001) 1.304 (0.002) 0.801 (0.000)

Pafnucy 1.443 (0.021) 1.164 (0.019) 1.424 (0.022) 0.761 (0.008)

NNScore 2.0 1.692 1.323 1.656 0.648
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TABLE III:

Results on Astex Diverse Set with “training set-2”.

RMSE MAE SD R

DeepAtom 1.199 (0.061) 0.913 (0.047) 1.152 (0.037) 0.651 (0.028)

RF-Score 1.228 (0.007) 0.946 (0.011) 1.218 (0.007) 0.598 (0.006)

Pafnucy 1.368 (0.120) 1.095 (0.117) 1.300 (0.074) 0.509 (0.081)

NNScore 2.0 1.509 1.142 1.310 0.510
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TABLE IV:

Validation performance with various feature/atom types.

Num of Features Resolution Occupancy RMSE R

11 1.485 0.706

24 1.0 Binary 1.360 0.737

60 1.359 0.737
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TABLE V:

Validation performance with different resolutions.

Num of Features Resolution Occupancy RMSE R

24
0.5

Binary
1.357 0.739

1.0 1.360 0.737

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2023 February 03.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rezaei et al. Page 29

TABLE VI:

Validation performance with different occupancy types.

Num of Features Resolution Occupancy RMSE Pearson’s R

24 1.0
Binary 1.360 0.737

PCMax 1.348 0.741
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