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Temporal control of the integrated stress response by 
a stochastic molecular switch
Philipp Klein1†, Stefan M. Kallenberger2,3,4†, Hanna Roth1, Karsten Roth1‡,  
Thi Bach Nga Ly-Hartig5,6, Vera Magg1, Janez Aleš7§, Soheil Rastgou Talemi8, Yu Qiang9, 
Steffen Wolf7||, Olga Oleksiuk1¶, Roma Kurilov2#, Barbara Di Ventura2**, Ralf Bartenschlager1,10, 
Roland Eils2,3, Karl Rohr9, Fred A. Hamprecht7, Thomas Höfer8, Oliver T. Fackler11, 
Georg Stoecklin5,6, Alessia Ruggieri1*

Stress granules (SGs) are formed in the cytosol as an acute response to environmental cues and activation of the 
integrated stress response (ISR), a central signaling pathway controlling protein synthesis. Using chronic virus 
infection as stress model, we previously uncovered a unique temporal control of the ISR resulting in recurrent 
phases of SG assembly and disassembly. Here, we elucidate the molecular network generating this fluctuating 
stress response by integrating quantitative experiments with mathematical modeling and find that the ISR 
operates as a stochastic switch. Key elements controlling this switch are the cooperative activation of the 
stress-sensing kinase PKR, the ultrasensitive response of SG formation to the phosphorylation of the translation 
initiation factor eIF2, and negative feedback via GADD34, a stress-induced subunit of protein phosphatase 1. 
We identify GADD34 messenger RNA levels as the molecular memory of the ISR that plays a central role in cell 
adaptation to acute and chronic stress.

INTRODUCTION
Mammalian cells maintain cellular homeostasis and promote sur-
vival by integrating a multitude of extrinsic and intrinsic signals 
into a spatially and temporally regulated response. Adverse condi-
tions, such as oxidative stress, endoplasmic reticulum (ER) stress, 
and virus infections, are detected by four specialized cytosolic sentinels 
that belong to the eukaryotic translation initiation factor 2-alpha 
(eIF2) kinase family of serine/threonine kinases. They initiate the 
integrated stress response (ISR) by immediately phosphorylating 
eIF2 (1), interfering with formation of the eIF2–guanosine 
triphosphate–tRNAiMet ternary complex and thus inhibiting transla-
tion initiation (2). As a consequence, polysomes disassemble and 

nontranslating messenger RNAs (mRNAs) phase separate together 
with RNA binding proteins into membraneless biomolecular con-
densates called stress granules (SGs) (3). Among the eIF2 kinases, 
protein kinase R (PKR) is an interferon (IFN)–induced kinase (4) 
that mediates translation suppression in response to replication of 
many RNA viruses. PKR activation was initially described to result 
from binding to double-stranded (ds) RNA of diverse viral origin 
such as viral replication intermediates or transcripts containing stem 
loop structures generated during infection. However, other sources 
of cellular dsRNAs, including mitochondrial dsRNA, circular RNAs, 
and small nucleolar RNAs, also control its activation (5). PKR di-
merization, which is required for its activation, leads to autophos-
phorylation of the PKR kinase domain, most notably at threonine-446, 
and to structural rearrangements that facilitate binding to eIF2 (6–9).

Translation shutdown feeds back into the regulation of eIF2 
phosphorylation by up-regulating growth arrest and DNA damage–
inducible 34 (GADD34), a stress-induced regulatory subunit of 
protein phosphatase 1 (PP1) (10) that acts as an antagonist of the 
eIF2 kinases and mediates eIF2 dephosphorylation. This system 
allows the cell to integrate different cues and adjust the degree of 
translational suppression during the course of stress responses. We 
previously found an extreme case of such temporal control, whereby 
hepatitis C virus (HCV), a major human pathogen causing chronic 
liver infection, induces a sustained cellular stress response charac-
terized by recurrent alternating translational Off and On states that 
are, respectively, accompanied by the assembly and disassembly of 
SGs. Notably, the duration of Off and On states was highly variable 
in individual cells and not synchronous between cells. At the molec-
ular level, the fluctuating SG response was dependent on PKR and 
GADD34 and strongly enhanced by treatment of HCV-infected cells 
with IFN- (11). However, the molecular mechanisms underlying 
the apparently oscillatory nature of this response have not been 
elucidated.

Oscillations are observed in numerous biological systems, in-
cluding the circadian clock, metabolism, signaling, cell division, and 
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development (12, 13). Oscillating systems are characterized by signal 
amplitude and periodicity covering a large range of time scales from 
seconds, in the case of calcium signaling, to hours, e.g., for bursts of 
tumor suppressor p53 expression upon DNA damage or for the cir-
cadian clock (14). However, not every dynamic biochemical system 
characterized by recurring bursts in signals necessarily constitutes 
an oscillator. Biochemical processes are subjected to biological 
noise that affects the kinetics of cellular reactions, particularly in-
volving factors of low abundance, and influences the behavior of the 
response, thus generating cell-to-cell variability (15–18).

Here, we set out to model the recurrent alternating stress re-
sponse, using HCV infection as a model for chronic stress response, 
with the aim to understand the molecular mechanisms that govern 
its establishment and maintenance over long periods of time. To 
this end, we developed a quantitative deterministic mathematical 
model that describes the components and reactions involved in the 
ISR to oxidative stress, ER stress, and, more specifically, the dsRNA-
induced SG response. To approximate our cell system as closely as 
possible, we experimentally determined a large set of key species 
concentration ranges using bulk and single-cell methods. While our 
observations first suggested that the ISR signaling network shares 
common features of an oscillator, we found that HCV-induced SG 
fluctuations result from repetitive stochastic transitions between 
On and Off states that are regulated by cell-to-cell variability in PKR 
and dsRNA concentrations. Our results identified GADD34 mRNA 
levels as the molecular memory of the ISR, which plays a crucial role 
in adaptation to acute and chronic stress.

RESULTS
The fluctuating SG response to HCV infection exhibits 
a stochastic switch behavior with memory
To accurately characterize the dynamics of the cellular stress re-
sponse to HCV infection, we monitored SG formation using long-
term live-cell microscopy with high time resolution. Human 
hepatocarcinoma-derived Huh7 cells stably expressing the SG pro-
tein T cell–restricted intracellular antigen-1 (TIA-1) fused to the 
yellow fluorescent protein (YFP) were infected with HCV-like parti-
cles [HCV trans-complemented particles (HCVTCP)], which encode 
the fluorescent protein mCherry fused to the viral nonstructural 
protein NS5A and Renilla luciferase for the measurement of viral 
replication (fig. S1A). As replication reached its maximum, i.e., 
48 hours after infection (fig. S1B), SG response dynamics was mon-
itored for 72 hours in infected cells that were either left untreated or 
treated with IFN- (fig. S1C). Images were acquired with 15-min 
intervals to ensure the detection of short SG phases while limiting 
phototoxicity (Fig. 1A and movies S1 and S2). Automated single-cell 
tracking in such long-term time lapses is challenging because of 
the relatively long interval between acquisition frames, cell division 
events, and the increasing cell density toward the end of the acquisi-
tion period (19). We therefore developed a semiautomated image 
processing pipeline primarily based on the machine-learning toolkit 
ilastik (20) and analyzed the appearance and disappearance of SGs 
(here defined as SG-On and SG-Off phases, respectively) in single 
cells over time (Fig.  1,  B  and  C, and fig. S1D). As previously ob-
served (11), SGs were extremely rare in uninfected cells (fig. S2A). 
In HCV-infected cells that were not exposed to IFN-, most cells 
displayed 0.5 to 1.5 SG-On phases per day (Fig. 1D, left graph, and 
fig. S2A). This number increased upon addition of IFN-, with most 

cells having 1 to 2.5 SG-On phases per day (Fig. 1D, right graph). SG 
phases did not exhaust over time (Fig. 1C). The comparative analy-
sis of SG properties and infection level—as measured by mCherry-
NS5A fluorescence intensity—revealed a slight positive correlation 
between the infection level and the total number of SGs as well as 
the number of SG phases, and a negative correlation with the SG 
integral (total duration of SG presence) and duration (mean phase 
duration) (fig. S2B), suggesting a possible role of SGs in host defense 
as reported for other viral infections (5).

SG fluctuations could result from an oscillator mechanism, 
which has a fixed period possibly disturbed by noise effects, or from 
the random switching between SG-On and SG-Off states, a so-
called random telegraph process, which has no fixed period because 
the moments in which cells switch from one state to the other are 
not influenced by the time already elapsed. To get more insight into 
the quality of the SG fluctuations, we simulated these models com-
putationally and compared the results to experimental single-cell 
SG response time series (Fig. 1E and section S1). We analyzed the 
degree of SG phase periodicity from each time series using the fre-
quency spectrum (obtained via the Fourier transform) and the 
autocovariance function. In contrast to a simulated oscillator dis-
tinguished by distinct peaks in the frequency spectrum and an auto-
covariance function alternating between positive and negative 
values (Fig. 1E, top), SG response time series revealed the absence of 
a defined frequency, both in the presence and in the absence of 
IFN- (Fig. 1F). The autocovariance function showed a continuous 
decline similar to that of the telegraph process (Fig.  1E, middle). 
However, unlike the telegraph process, it even reached slightly neg-
ative values, particularly for untreated cells (Fig. 1G), suggesting a 
negative correlation between SG-On and SG-Off phase length. The 
analysis of the experimental SG phase length distribution in HCV-
infected cells indicated preferred phase lengths and validated this 
correlation. Observations were well described by two joint gamma 
distributions (fig. S2C). Simulations of such a gamma-distributed 
two-state process (Fig.  1E, bottom) reliably recapitulated the fre-
quency spectra and autocovariance functions of the experimental 
observations (Fig. 1, F and G). In addition, calculated autocovariance 
exponential decay times were reduced upon IFN- treatment (from 
4 to 2 hours; fig. S2D), reflecting the occurrence of shorter SG-On 
and SG-Off phases under this condition. Together, our results sug-
gest that SG fluctuations are described neither by an oscillator nor 
by a simple telegraph process but rather by a stochastic switching 
process with memory. Specifically, the moment at which cells 
switch SG phase is negatively correlated with the duration of the 
preceding SG phase.

Network topology of the eIF2-mediated signaling pathway
We previously uncovered that SG fluctuations during chronic HCV 
infection result from antagonistic activities of PKR and GADD34-
PP1 on eIF2 phosphorylation (11). To understand how these main 
regulators shape this peculiar SG response dynamics in single cells, 
we developed a deterministic mathematical model based on ordinary 
differential equations (ODEs) that describes the eIF2-dependent 
signaling pathway in response to stress, particularly to dsRNA, 
assuming a homogeneous and synchronized cell population. The 
model was structured into three independent but connected modules 
(Fig. 2A). The upper stress-sensing module describes the activation 
of the stress kinases, specifically PKR by dsRNA, but also heme-
regulated inhibitor (HRI) and PKR-like (ER) kinase (PERK) by 
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different mechanisms [e.g., treatment with sodium arsenite and 
thapsigargin, respectively (21)], which all resulted in different dy-
namics of eIF2 phosphorylation. The decision module shared between 
the three stress kinases is composed of eIF2, whose phosphoryl
ation leads to translation repression and SG formation. The shared 
downstream recovery module describes the transcriptional and 

translational activation of GADD34, which represents a negative 
feedback loop that promotes return to homeostasis through eIF2 
dephosphorylation, SG disassembly, and translation reinitiation.

To constrain the mathematical model for making quantitative 
predictions, we first measured the mean abundance per cell of the 
key proteins, i.e., PKR, eIF2, and GADD34. Protein amounts were 
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measured by quantitative Western blot analysis using standard di-
lutions of recombinant glutathione S-transferase (GST)–tagged eIF2 
and PKR as reference (Fig. 2B and fig. S3A). As expected for a con-
stitutively expressed protein, the levels of eIF2 did not vary upon 
addition of IFN-. However, the levels of PKR increased threefold 
(Fig. 2C). By measuring the mean volume of Huh7 cells (fig. S3B), 
we deduced the corresponding mean concentrations of approxi-
mately 2.24 mM for eIF2, 25.24 nM for PKR in untreated cells, and 
75.48 nM for PKR in IFN-–treated cells. As no basal expression of 
GADD34 was detected in unstressed cells, we measured the amount 
of GADD34 that could be induced upon treatment with thapsigargin, 
a chemical inducer of ER stress. Since endogenous, overexpressed, 
and even recombinant GADD34 are extremely sensitive to degrada-
tion (fig. S3C), we used an indirect approach and first quantified 
GADD34 levels in Huh7 cells stably expressing GADD34–enhanced 
green fluorescent protein (eGFP) using a titration of recombinant 
eGFP. These calibrated lysates served as reference for GADD34 
measurements in Huh7 cells treated with thapsigargin. Thereby, we 
estimated that the mean concentration of stress-induced GADD34 
typically reaches 8 × 103 molecules per cell (equivalent to 2 nM) 
(fig. S3D).

Last, degradation rates of species involved in feedback loops are 
linked to time delays and thereby facilitate oscillations (22). We 
hence determined protein turnover by cycloheximide (CHX) chase 
experiments using the short-lived protein cyclin D as a control. 

PKR and eIF2 were found to be long-lived proteins (Fig. 2D and 
fig. S3E), whose degradation rates are therefore negligible for the 
model. In turn, stably overexpressed GADD34 was labile (Fig. 2E) 
in agreement with previous reports (23). Comparison of two possi-
ble degradation models, Michaelis-Menten kinetics and exponen-
tial decay, indicated that GADD34 degradation is described more 
accurately by exponential decay—implying that GADD34 degradation 
was not saturated—with an estimated half-life of approximately 
37 min (section S3).

Together, this first set of quantitative measurements yielded 
mean concentrations of the main model species that will serve as 
boundary conditions of the deterministic mathematical model. In 
addition, we found PKR and eIF2 turnover to be negligible parameters 
for the model, whereas GADD34 is short-lived, a feature that might 
facilitate the generation of oscillations.

Dose-response analyses reveal the switch-like behavior 
of SG formation
Following the quantification of these key parameters, we sought to 
characterize the central decision module of the model and determined 
the level of phosphorylated eIF2 (p-eIF2) at which cells transi-
tion from an SG-Off to an SG-On phase. To this end, we performed 
dose-response analyses and measured the percentage of SG-positive 
cells at the population level as a function of dsRNA concentration. 
Since the precise nature and length of dsRNA intermediates produced 
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during HCV infection are unknown, we synthesized in vitro dsRNAs 
of variable lengths [100, 200, and 400 base pairs (bp); fig. S4A] and 
compared their potential to activate PKR upon transfection into cells 
(fig. S4B). PKR activity was assessed by measuring (i) eIF2 and PKR 
phosphorylation levels using Western blot analysis (Fig. 3, A and B, 
and fig. S4C), (ii) the percentage of p-eIF2 relative to total eIF2 
using Phos-tag gel analysis (Fig. 3, A and B), and (iii) the percentage 
of SG-positive cells by immunofluorescence analysis (Fig. 3C). Of 
note, although 400-bp dsRNA triggered the highest levels of PKR 
activation, it formed additional secondary structures under nonre-
ducing conditions (fig. S4A). We thus chose 200-bp dsRNA for the 
following dose-response experiments. At best, dsRNA transfection 
induced 25% eIF2 phosphorylation (Fig. 3B) and 40% SG-positive 
cells (Fig. 3C). PKR activation followed a bell-shaped curve as re-
flected by a significant decrease in the levels of phosphorylated PKR 
(p-PKR), p-eIF2, and in the number of SG-positive cells, at higher 
dsRNA concentrations. This is consistent with earlier reports (24) 
and suggests inhibition of PKR at high levels of dsRNA.

These results combined with the possibility that the transfection 
approach does not homogeneously deliver dsRNA to all cells repre-
sented a significant technical limitation to determine the half-maximal 
dose of p-eIF2 causing SG formation. Therefore, we turned to 
chemical stress inducers and determined p-eIF2 thresholds upon 

treatment with sodium arsenite (Fig. 3, D and E, and fig. S4D) and 
thapsigargin (fig. S4, E to J), which trigger HRI-dependent oxidative 
stress and PERK-dependent ER stress, respectively (21), and syn-
chronously induced SG formation in all cells at higher concentra-
tions (Fig. 3F and fig. S4H). When the percentage of SG-positive 
cells was plotted against the percentage of p-eIF2 (Fig. 3G), we 
observed an ultrasensitive sigmoidal SG response curve with a steep 
transition over a narrow range of chemical stress inducer concen-
trations. The half-maximal SG response occurred when approxi-
mately 38.5 and 30.6% eIF2 was phosphorylated upon arsenite 
and thapsigargin treatment, respectively, defining the level at which 
cells switched from an SG-Off to an SG-On phase. The steepness of 
the sigmoidal curve estimated by the Hill function revealed notably 
high coefficients of 14.8 and 18 for arsenite and thapsigargin treat-
ment, respectively, indicating a high degree of cooperativity.

Together, the characterization of the core decision module iden-
tified a threshold level of p-eIF2 at which cells transition from an 
SG-Off to an SG-On phase. The steep SG response curve revealed 
the “switch-like” behavior of SG formation when cells were exposed 
to different chemical stress inducers, with different thresholds 
for each of the eIF2 kinases. Of these, PKR emerged as the only 
eIF2 kinase whose activation is dampened at higher dsRNA 
concentrations.
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PKR activation results from its cooperative 
recruitment to dsRNA
We next focused on characterizing the parameters and reactions in-
volved in the stress-sensing module upstream of eIF2. To understand 
PKR activation in more detail, we established an in vitro kinase as-
say using recombinant full-length His-tagged PKR and His-tagged 
eIF2 and quantitatively assessed the impact of increasing dsRNA 
length and molarity on PKR activation. Addition of both 100- and 
200-bp dsRNAs led to a bell-shaped activation of PKR, which 
reached its maximum at 10 nM dsRNA, irrespective of the dsRNA 
length (Fig. 4A and fig. S5A). Under these experimental conditions, 
i.e., in the absence of phosphatase, full eIF2 phosphorylation was 
reached at slightly lower dsRNA concentrations (fig. S5B). In con-
trast to 100- and 200-bp dsRNAs, 40-bp dsRNA was much less po-
tent in activating PKR, leading to a maximum of only 25% of eIF2 
being phosphorylated (fig. S5, B and C).

Since the individual steps of PKR activation are not fully under-
stood, we developed mathematical models consisting of coupled 
ODEs and tested which model variant could optimally explain our 
experimental dataset (section S2 and table S1). Starting with a sim-
ple model describing PKR dimerization upon binding to dsRNA 
(figs. S6A and S7, variant 1), several models with stepwise increas-
ing complexity were developed and calibrated with the experimen-
tal datasets obtained in cell transfection and in vitro kinase assays 
(figs. S6A and S7 and table S1). We sequentially tested whether the 
following aspects had to be included in the model (Fig. 4B): (i) de-
pendency of the PKR affinity to dsRNA on fragment length, (ii) de-
pendency of the number of PKR binding sites on fragment length, 
(iii) formation of PKR oligomers (n = 2…6), (iv) cooperative bind-
ing of PKR to dsRNA resembling formation of high oligomers of 
active PKR, and (v) cis (intramolecular) and trans (intermolecular) 
phosphorylation of/between active PKR molecules. Models were 
fitted at steady state, assuming that binding and phosphorylation 
reactions were fast. The corrected Akaike information criterion was 
used for model selection (section S2 and fig. S6, B and C). Testing 
the contribution of previously described PKR cis or trans interac-
tions (7, 25, 26) did not substantially improve model fits (Fig. 4C 
and fig. S7, variants 4 to 5.1). In the optimal model variant, co-
operative PKR recruitment to dsRNA was described by sigmoidal 
kinetics reflected by a Hill equation, whereas other reactions were 
described by mass-action kinetics. Together, the model that most 
closely recapitulated the experimental results (Fig. 4, D and E, and 
fig. S7, variant 3) revealed three important features of PKR activa-
tion: (i) different affinities for PKR to dsRNA of varying lengths, 
(ii) dependency of PKR-binding site numbers on dsRNA fragment 
lengths, and (iii) the cooperative recruitment to dsRNA and oligo-
merization of PKR, which would be consistent with higher-order 
oligomerization of active PKR.

Quantitative characterization of the GADD34 negative 
feedback loop
We next explored the parameters involved in the recovery module 
(Fig. 2A) consisting of the GADD34 negative feedback loop (27). 
Stress and phosphorylation of eIF2 trigger the translation of the 
activating transcription factor 4 (ATF4) (28). In turn, ATF4 acti-
vates the CCAAT/enhancer binding protein homologous protein 
(CHOP) and, ultimately, in complex with CHOP, the promoter 
of the ppp1r15a gene encoding GADD34 (28, 29). However, in 
IFN-competent cells, GADD34 transcription is additionally regulated 

by the IFN regulatory factor (IRF) 3 and IRF7, downstream of the 
RNA sensing innate immune pathway (30, 31). We used fluores-
cence in situ hybridization (FISH) to investigate GADD34 tran-
scriptional regulation in HCV-infected Huh7 cells in the absence 
and presence of IFN- treatment (Fig. 5A). This single-cell approach 
accounted for the low number of infected cells and avoided under-
estimation in case of bulk measurement. In addition, cells were 
costained with specific fluorescent probes hybridizing to HCV 
positive-sense single-stranded [(+)ss] RNA genome and polyadenylated 
(polyA) mRNA, whereby GADD34 mRNA and HCV infection levels 
could be directly correlated in SG-negative and SG-positive cells 
(Fig. 5A and fig. S8, A and B). Fluorescent probes directed against 
Bacillus subtilis dihydrodipicolinate reductase (dapB), a noneukaryotic 
transcript, served as control for unspecific binding (neg. ctrl). To 
assess the contribution of the IRF3/IRF7 pathway in GADD34 tran-
scriptional activation, we circumvented activation of the p-eIF2-
ATF4-CHOP pathway by using Huh7 PKR knockout (PKRKO) cells. 
As expected, the absence of PKR abolished SG formation in response 
to HCV infection. Since neither infection nor treatment with IFN- 
elicited GADD34 transcription in PKRKO cells (fig. S8, C and D), we 
concluded that IRF3/IRF7-dependent GADD34 activation is negli-
gible in Huh7 cells. This allowed us to develop a mathematical model 
that specifically describes the stress-induced GADD34 negative 
feedback loop without taking into account innate immune signaling 
(Fig. 2A). In naïve Huh7 cells, stress induced by HCV infection in 
the presence of IFN- resulted in a 2.5-fold increase in the mean 
number of GADD34 transcripts in SG-positive cells. However, the 
cell-to-cell variability was more substantial, almost 20-fold (Fig. 5A). 
Of note, this cell-to-cell variability was notably smaller for tran-
scriptional induction of PKR by IFN- (fig. S9, A and B). In addi-
tion, GADD34 transcript levels only weakly correlated with the 
number of HCV genome copies per cell (fig. S9C). This quantitative 
information was then used to assess the SG response at the popula-
tion level in a dose-response manner based on GADD34 mRNA 
levels (section S4.7 and fig. S10A).

Time delay is an important parameter of negative feedback loops 
that exist in numerous mammalian signaling pathways in response 
to external stimuli (32) and may result in network oscillations (33). 
For GADD34, this time delay (depicted as a clock in Fig. 2A) in-
cludes the time required for ppp1r15a promoter activation and 
upstream open reading frame (uORF)–mediated translation of 
GADD34 (34). We therefore analyzed p-eIF2 and GADD34 in-
duction kinetics in cells treated with 2 M thapsigargin, a dose at which 
all cells formed SGs. Levels of p-eIF2 rapidly increased, reached 
a maximum after 1 hour, and returned to basal levels about 4 hours 
after treatment. GADD34 started to visibly increase at 1.5 hours af-
ter treatment and reached a maximum at 5 hours (fig. S11, A and B).

Last, we sought to determine the levels at which GADD34 antag-
onizes the activity of eIF2 kinases, thereby allowing cells to resume 
translation and switch from an SG-On to an SG-Off phase. To this 
end, we ectopically expressed increasing levels of GADD34 using 
lentiviral transduction and challenged cells with thapsigargin for 
1 hour. At this time point, endogenous GADD34 was not yet detect-
able (see fig. S11, A and B), and all cells transduced with a control 
lentivirus formed SGs (fig. S11C). GADD34 expression reduced the 
level of p-eIF2 and SG formation already at the lowest concentra-
tion. We found about 11.6 nM GADD34 protein per cell to antago-
nize SG formation in 50% of the cells, and about fourfold more was 
required to antagonize SG formation in all cells (fig. S11D).
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Together, these results identified Huh7 cells as a unique cell sys-
tem that allows studying GADD34 stress–induced transcriptional 
regulation independently of the induced innate immunity pathway. 
The GADD34 negative feedback loop presents several features that 
can act as sources of oscillations, e.g., a time delay caused by the 
need to transcribe and translate GADD34 mRNA, and nonlinear 
degradation of GADD34. In addition, FISH experiments pointed to 
an important stochasticity in the expression of GADD34  in this 
cell system.

Behavior of the ISR components upon stresses of 
varying intensities
Subsequently, we developed an integrative ODE model describing 
the ISR in which we combined our findings regarding kinases acti-
vation, SG formation, and the negative feedback from GADD34 to 
characterize the ISR functional properties. According to our exper-
imental datasets, eight model parts describing the ISR depending on 

either PKR, PERK, or HRI were formulated. Model parts contained 
individual parameters for stress kinases and shared kinetic parame-
ters for eIF2 (de)phosphorylation, GADD34 promoter activation, 
transcription, and translation. For parameter estimation, model parts 
were constrained to measured concentrations of eIF2, PKR, GADD34 
protein, and mRNA, and simultaneously fitted to all datasets (Fig. 5B; 
fig. S10 A to H; and section S4). Since the direct measurement of 
HCV dsRNA concentrations in infected cells was technically not 
possible, we extracted starting values from the live-cell imaging ex-
periments assuming that these are proportional to the mean signal 
intensity of NS5A-mCherry (fig. S10I). Model equations, definitions 
of observables, parameter estimates, and parameter confidence in-
tervals determined by profile likelihood estimation are provided in 
tables S2 to S4.

Using this parameterized ISR model, we studied the behavior of 
the system over a broad range of stress intensities. To this end, we 
predicted steady-state levels of the key species in response to a 
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1-hour stress pulse of different intensities, here reflected by differ-
ent eIF2-kinase activity levels. We defined a kinase activation level 
at which 50% of cells form SGs (intermediate stress) as arbitrary 
reference and analyzed the response to a range of activation levels, 
from 100-fold lower (mild stress) to 100-fold higher (acute stress) 
than the reference. As shown in Fig. 5C, the simulations recapitulated 
the ultrasensitive switch-like behavior of SG formation and GADD34 
protein expression within a narrow range of kinase activity around 
the reference, reaching maximum levels for a twofold increase of 
kinase activity. In contrast, GADD34 mRNA levels were predicted 

to increase steadily with the kinase activity. p-eIF2 followed a 
biphasic dose-response curve with a largely hyposensitive phase at 
mild and moderate stress, during which levels increased only 
moderately because of the GADD34 negative feedback (between 
100-fold less and 2-fold more than the reference), and a hypersensitive 
phase at higher stress levels (between 2- and 10-fold more than the 
reference) because of insufficient GADD34. At mild to moderate 
stress levels, the observed shift between the GADD34 mRNA and 
GADD34 protein dose-response curves suggested that the accumu-
lation of mRNA allows for rapid GADD34 translation in response 
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to moderate p-eIF2 increases, which could be regarded as the 
“memory” of the previous ISR activation, possibly conferring tran-
sient adaptation to stress.

GADD34 negative feedback loop determines cell adaptation 
to acute and chronic stress
Adaptation in biological processes refers to the ability of a system to 
return to or overshoot its initial state after a transient response to 
environmental changes (35, 36). To investigate this possibility, we 
simulated the levels of all components involved in the GADD34 
negative feedback loop over time following a 1-hour stress pulse 
that leads to a maximal stress response. The promoter activity of 
ppp1r15a and the levels of GADD34 mRNA and protein all returned 
to basal levels upon stress release, yet with different kinetics (Fig. 5D). 
Because GADD34 translation is regulated by a uORF-dependent 
initiation step highly sensitive to p-eIF2 levels and its determined 
turnover was below 1 hour, GADD34 protein levels declined first, 
followed by ppp1r15a promoter activity, and, finally, GADD34 
mRNA. We experimentally confirmed this prediction by measuring 
GADD34 premature mRNA levels, as a proxy for promoter activity, 
and GADD34 mature mRNA levels in cells treated with thapsigargin 
over 12 hours. GADD34 pre-mRNA peaked at 3 hours and returned 
to basal levels at 6 hours, while mature mRNA remained elevated 
for up to 12 hours (Fig. 5E). On the basis of this result, we delineated 
three time windows after stress release during which cell respon-
siveness to a second stress pulse increases over time according to the 
sequential decay of the different GADD34 species (Fig. 5F, phases I, II, 
and III), with phase I corresponding to a short refractory state in 
which responsiveness to stress is weak owing to the remaining GADD34 
protein, and full responsiveness recovered after 20 hours.

To address the hypothesis of stress adaptation, we simulated 
consecutive acute stress pulses of varying intensity interspaced by a 
5-hour recovery period. Since the duration of the kinase activity is 
known to influence cellular response outcome (37), we modeled 
different half-lives of kinase activity lasting up to 4 hours (Fig. 6A 
and fig. S12). In all scenarios, the second stress pulse resulted in 
highly attenuated p-eIF2 and SG responses because of the lasting 
ppp1r15a promoter activity and continued presence of high GADD34 
mRNA levels (Fig. 6A). This suggests that GADD34 can be directly 
translated after restimulation, leading to rapid dephosphorylation 
of eIF2 and SG disassembly. To experimentally test this hypothesis, 
we subjected cells to consecutive stress pulses. Because of its rapidly 
reversible nature, we chose to heat shock cells for 1 hour at 42°C 
and allowed them to recover for 5 hours at 37°C before challenging 
them with a second heat pulse. As shown in Fig. 6B, the first heat 
pulse resulted in about 50% of p-eIF2. Mirroring the appearance 
of GADD34 protein, the percentage of p-eIF2 decreased over the 
next 5 hours of recovery, however, without reaching its basal level. 
As predicted, the second heat shock did not increase p-eIF2 levels, 
confirming the lack of cell responsiveness to a second acute stress in 
this short time window. Together, using the calibrated model, we 
predicted and experimentally validated that the sustained presence 
of GADD34 mRNA and GADD34 protein limits or prevents the 
response to the second stress.

Different from arsenite, thapsigargin, or heat shock, stress induced 
by chronic HCV infection is continuous and probably of milder inten-
sity. In addition, by the time cells are treated with IFN- (48 hours 
after infection), viral replication has reached a steady state (fig. S1A). 
We thus predicted the behavior of the SG response under continuous 

stress of different intensities over a period of 24 hours (Fig.  6C). 
Moderate to intermediate stress resulted in a single burst of eIF2 
phosphorylation and SG assembly, and the response declined as a 
function of GADD34 mRNA and protein induction. In the follow-
ing, the GADD34 mRNA levels showed a slight decrease after 8 to 
10 hours for the milder stress but remained at a higher plateau com-
pared to the initial level in all cases. This was similar for the level of 
p-eIF2 and the fraction of SG-positive cells in the population. These 
predictions explain our previous results, where we observed that the 
percentage of HCV-infected cells displaying SGs reached a plateau 
of 30 to 40% within 12 hours of IFN- treatment, accompanied by 
the expression of high GADD34 mRNA levels when measured in 
bulk (11). Together, this result strongly suggests that under infection-
induced stress conditions, sustained levels of GADD34 mRNA and 
protein promote long-term cell adaptation to stress.

To test more accurately whether such an adaptation scenario oc-
curs during HCV infection, we simulated the levels of p-eIF2 and 
SG-positive cells at 1, 3, and 12 hours after stress using the range of 
PKR activities determined experimentally in untreated and IFN-–
treated Huh7 cells (Fig. 6D). At the low to moderate levels of PKR 
activation achieved in untreated HCV-infected cells, cells were pre-
dicted to rapidly adapt within 3 hours of the onset of stress, going 
from 100% SG-positive cells within 1 hour to less than 25% within 
3 hours, an amount that did not change after 12 hours. In contrast, 
at intermediate levels of PKR activation in the presence of IFN-, 
adaptation was expected to be slower, with approximately 75% of 
SG-positive cells after 3 hours and 50% after 12 hours before reach-
ing a steady state. The analysis of experimental single-cell SG re-
sponse time series supported this hypothesis and revealed the rapid 
appearance of SGs in most cells after IFN- addition. This first SG-
On phase was long (approximately 12 hours), followed by shorter 
phases (see Fig. 1C). This suggested that, in our system, HCV infec-
tion can be considered as a first stressor, amplified by the addition 
of IFN- that up-regulates PKR, after which cells slowly adapt to 
stress and exhibit shorter SG phases.

In conclusion, our quantitative deterministic model comprehen-
sively describes the main components of the cellular ISR and tempo-
ral behavior of the SG response at steady state. Moreover, our results 
revealed an unexpected function of GADD34 mRNA levels as a 
molecular memory of the system, which promotes adaptation of cells 
under mild stress conditions after an acute stress.

A fine-tuned balance between PKR and dsRNA levels 
determines SG response dynamics
Although the ISR signaling network could theoretically support 
sustained oscillations because of the existence of a time delay resulting 
from GADD34 transcriptional and translational activation (12, 22, 27), 
the deterministic approach described above was not sufficient to 
explain the experimentally observed SG response dynamics with 
recurrent cycles of SG formation. This implied that additional sto-
chastic processes regulate HCV-induced SG response dynamics. We 
hypothesized that the heterogeneity observed in the SG time series 
could be influenced by additional aspects, including (i) the inherent 
stochasticity in GADD34 and PKR expression whose initial protein 
abundance is low (17, 38, 39); (ii) the inherent stochasticity of the 
infection process, as the number of particles entering a cell depends 
on a probabilistic process (40); and (iii) the presence of IFN-, 
which induces antiviral proteins, including PKR, and represses HCV 
replication over time (see fig. S1B). To assess these possibilities, we 
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translated the calibrated ODEs into a corresponding stochastic 
model describing reactions downstream of PKR activation. To this 
end, kinetic parameters were transformed into reaction propensities. 
First, to account for the heterogeneity of our cell system as closely as 
possible, we analyzed the cell-to-cell variability of eIF2 and PKR by 
single-cell Western blot analysis (fig. S13, A to D) (41). Individual 
Huh7 cells were loaded into the microwells of array slides patterned 
in a photoactive polyacrylamide gel. After chemical lysis, electro-
phoresis, and ultraviolet (UV) fixation, proteins were stained with 
primary and fluorescently labeled secondary antibodies. The presence 
of cells in wells was confirmed by staining with glyceraldehyde-3-
phosphate dehydrogenase (GAPDH). For PKR detection, Huh7 
PKRKO cells were used as background control. Within the popula-
tion of Huh7 cells, signal intensities varied by more than fivefold for 
eIF2 (fig. S13, A and B), threefold for PKR, and by more than six-
fold for PKR in cells treated with IFN- (fig. S13, C and D). We 
combined these results with the previously determined mean con-
centrations and thereby determined the log-normal distribution of 
PKR and eIF2 initial values to be implemented in the model (sec-
tion S5). In addition, parameters for the log-normal distribution of 
NS5A-mCherry intensity were calculated from the live-cell imaging 
data (fig. S13E and section S5).

To simulate the ISR in a heterogeneous cell population, concen-
trations of PKR, eIF2, and infection levels were sampled and used 
as initial conditions for stochastic simulations of single-cell SG re-
sponse time series (Fig. 7A). The time series as well as the distribu-
tion in SG phase number (Fig. 7B) and stress duration (integral of 
stress) per day (Fig. 7C) closely reflected the experimental results 
obtained in live-cell imaging, especially for IFN-–treated cells.

Next, we used the stochastic model to systematically characterize 
the behavior of the system over a broad range of PKR and dsRNA 
concentrations. The dsRNA concentration, serving as input for sto-
chastic simulations, was scaled relative to the level analyzed experi-
mentally in HCV-infected cells in the absence of IFN- treatment, 
corresponding to maximum HCV levels. Color plots in Fig. 7 indicate 
the number of SG phases and stress duration per day (Fig. 7, D and E), 
as well as the levels of active PKR (Fig. 7F) obtained from simula-
tions of 500 SG response time series per condition. Results revealed 
that highly fluctuating SG responses occurred only in a narrow 
range of dsRNA concentrations of about one-third of the reference 
level (Fig. 7D), consistent with the concentration experimentally 
determined in HCV-infected cells treated with IFN- (Fig. 7D, pink 
dot and surrounding area). This prediction also postulated a critical 
PKR concentration of approximately 25 nM as a threshold below 
which PKR is not activated in Huh7 cells, regardless of the dsRNA 
concentration. In agreement with this, we experimentally observed 
that about half of the Huh7 cells in the population had PKR concen-
trations below this level, thus accounting for the reduced respon-
siveness of the population and reduced number of SG phases per 
day observed in HCV-infected cells. The PKR concentration increases 
upon treatment with IFN-, bringing the cells into a state that 
allows for dynamic SG responses. Furthermore, the simulations re-
vealed that concentrations of dsRNA threefold higher than the refer-
ence would result in a loss of SG response dynamics, as reflected by 
the decrease of the number of SG phases per day and an increase in 
the stress duration, suggesting that SG-On phases would become longer 
up to reaching a plateau of permanent stress response (Fig. 7E).

Last, we decided to perturb the system and predict the impact of 
higher PKR levels on SG response dynamics in HCV-infected cells. 

Key SG component concentrations in Huh7 cells stably overexpressing 
PKR (PKROE) (11) were experimentally determined as previously 
done for naïve Huh7 cells (fig. S14, A and B). Huh7 PKROE cells 
expressed mean PKR levels approximately 8.3-fold higher than 
Huh7 cells and 2.7-fold higher than Huh7 cells treated with IFN-. 
Ectopic PKR expression did not affect eIF2 expression levels. In 
addition, cell-to-cell variability was determined by single-cell West-
ern blot (fig. S14, C and D). Last, cell-to-cell variability in GADD34 
transcripts was analyzed by FISH (fig. S14E). These experimentally 
determined distributions were used as input for the stochastic model 
to simulate the SG response when PKR is overexpressed. The result-
ing time series predicted distinct SG response dynamics with longer 
SG-On phases that were only rarely interspersed with SG-Off 
phases (Fig. 7A, model simulations HCV + PKROE). To experimen-
tally test this prediction, Huh7 PKROE cells were infected with HCVTCP 
for 48 hours, and SG formation was monitored using live-cell imag-
ing for an additional 72 hours (Fig. 7A, Exp. HCV + PKROE, and 
movie S3). The analysis of the experimental single-cell SG response 
time series showed that, as predicted by the model, cells displayed 
on average longer SG-On phases and a higher stress duration per 
day (Fig. 7, C and E, HCV + PKROE). Consistently, this was paral-
leled by a reduced number of SG phases per day (Fig. 7, B and D, 
HCV + PKROE).

Collectively, our results revealed that the dynamic SG response 
to HCV infection and, generally, to dsRNA consists of repetitive 
stochastic transitions between On and Off states that are regulated 
by PKR and dsRNA concentrations in individual cells. The stochas-
tic version of the deterministic model that was calibrated using an 
extensive experimental dataset could successfully predict character-
istics of single-cell SG responses in heterogeneous cell populations 
and was independently validated for the case of PKR overexpression. 
In addition, our modeling approach points toward elevated GADD34 
mRNA expression levels that act as a memory of previous ISR acti-
vation and enable long-term adaptation of chronically infected cells 
to the continuous presence of virus.

DISCUSSION
The ISR is a pivotal process that allows cells to adapt to environ-
mental changes by rapidly repressing host cell translation, thereby 
preventing damage to nascent polypeptides and reallocating re-
sources to restore homeostasis. Its regulation has been the subject of 
many studies involving mathematical modeling (31, 42–47). How-
ever, these studies have mainly focused on the unfolded protein re-
sponse (UPR) network via PERK-eIF2 signaling. Possible periodic 
oscillations of the stress response components were predicted in only 
two of the studies under certain parameter conditions that were not 
determined quantitatively (31,  47). While these studies provided 
valuable information on the possible behavior of the stress response 
over time, they could not explain the peculiar SG fluctuations ob-
served in response to chronic HCV infection.

By combining long-term live-cell imaging, population and single-
cell analyses, and ODE modeling, we here provide a detailed quan-
titative insight into the individual regulatory steps of the ISR, 
including SG formation. In particular, we captured the dynamics 
and role of the different components of the stress response to HCV 
infection. In the quantitative model we developed, eIF2 is the cen-
tral reaction component of the system whose phosphorylation me-
diated by the different eIF2 kinases can be reversed by PP1  in 
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complex with GADD34 in a negative feedback manner. Although 
the topology of this stress-kinase-eIF2-GADD34 signaling network 
displays the hallmarks of a biological oscillator (12), and despite our 
previous intuitive description of HCV-induced SG-On and -Off 
phases as “oscillations,” the Fourier transform analysis of hundreds 

of single-cell SG response time series suggested that the observed 
SG phases are rather bursts controlled by a stochastic process with 
memory. While our mathematical analysis focused on finding dis-
tinct oscillation frequencies in a heterogeneous cell population, we 
cannot exclude the existence of individual cells whose parameters 
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may lie in the range that permits oscillation. An algorithm developed 
by Phillips and colleagues represents an attractive alternative that 
allows finding single oscillators of varying frequencies in a cell 
population, thereby differentiating between signal fluctuations and 
noise (48). However, the binary SG response time series generated 
by our analysis pipeline are not suitable for this type of analysis, 
which requires a continuous signal as well as a signal amplitude as 
input information.

Dose-response experiments with arsenite and thapsigargin treat-
ments provided evidence for the remarkable switch-like behavior of 
SG formation. This was reflected by a steep sigmoidal response 
curve and high Hill coefficients and suggested that SG assembly is a 
highly cooperative process, consistent with current knowledge about 
SG assembly by liquid-liquid phase separation (49). Thus, we determined 
a threshold level of p-eIF2 of 38% (arsenite) and 30% (thapsigargin), 
which is critical for Huh7 cells to switch to an SG-On phase. These 
values depend on the concentration of the respective kinase and are 
in the range of what other studies described (50–52).

Some aspects of the mechanism of PKR activation are still unclear, 
including how monomers are recruited to dsRNA. By combining 
the quantitative information on the stoichiometry of PKR activa-
tion obtained in vitro and mathematical modeling, we observed co-
operative binding of PKR molecules to 100- and 200-bp dsRNA, 
unlike what others have seen to shorter dsRNAs (8). Regardless 
of dsRNA length, maximal PKR activation and eIF2 phosphoryla-
tion were achieved at 10 nM dsRNA, a concentration lower than 
previously reported (8, 53), which might be explained by lower con-
centrations of PKR and salt in our assay. Unlike what is observed at 
higher concentrations (54), our results did not provide evidence 
that at the physiological level, PKR can be activated in the absence 
of dsRNA. Because of the absence of time-resolved measurements, 
the previously hypothesized contribution of cis (intramolecular) 
and trans (intermolecular) interactions in PKR activation was not 
evident from our dataset (25, 26, 54–56). In the context of virus-
infected cells, PKR activation remains enigmatic. The fact that HCV, 
like many RNA viruses (57), replicates in specialized compartments 
derived from ER membranes, presumably to protect its genome 
from cytosolic innate immune sensors, raises the question of the 
accessibility of PKR to dsRNA replication intermediates.

An important finding of our deterministic model was that the 
ISR allows different levels of adaptation. Adaptive responses have 
been reported for various biological systems, e.g., during osmotic 
shock in yeast (58), perturbations of calcium homeostasis in mam-
malian cells (59), and chemotaxis in Escherichia coli (60). Adapta-
tion is defined, from a biochemical point of view, as the ability of a 
system to respond to a stimulus and return to the prestimulus state 
or to a different steady state. In this manner, cells can maintain 
homeostasis, especially in the presence of persistent perturbations 
(61). The topology of our ISR model exhibits strong similarity with 
other theoretical minimal networks, e.g., the negative feedback loop 
with a buffer node (35), previously described to allow biochemical 
adaptation. Although theoretically possible, our deterministic mod-
el of the ISR revealed the absence of oscillations (for p-eIF2 level 
and SG response) within the experimentally determined range of 
the different parameters. Using repeated heat pulses, we confirmed 
that after a first acute stress, long-lasting GADD34 mRNA levels 
protect cells from responding to a second stress pulse. For a contin-
uous stress of intermediate intensity, as triggered by HCV infection 
in the presence of IFN-, our analyses confirmed that adaptation 

occurs within 12 hours, with GADD34 mRNA levels remaining at a 
high steady-state level over time (11). On the basis of this result, we 
propose that GADD34 transcriptional activation and mRNA serve 
as a memory of the system, allowing for rapid GADD34 translation 
and limiting the SG phase duration in the case of both acute and 
continuous stress. Our results are in agreement with several studies 
that have either addressed the impact of repeated stress pulses 
theoretically (42, 43) or explored the response of chronic chemical 
stress experimentally (44, 46, 62). It is therefore tempting to specu-
late that a strong activation of the ISR, resulting in high steady-state 
levels of GADD34, might be beneficial to acute viruses.

Last, our work highlights the importance of cell-to-cell variabil-
ity and stochasticity in shaping cellular responses to stress. Trans-
lating the calibrated model into a corresponding stochastic model, 
by taking into account random bursts of transcription and cell-to-
cell variability, allowed us to faithfully model HCV-induced SG re-
sponse fluctuations observed in long-term live-cell time lapses. To 
our surprise, the results indicated that recurrent SG phases occur 
only in a relative narrow range of PKR and dsRNA concentrations. 
By combining the information obtained from the calibrated deter-
ministic and stochastic models, we propose a scenario in which the 
stress response to HCV infection, in the presence of IFN-, reaches 
a steady-state level within 12 hours, determined by the concentra-
tion of active PKR and dsRNA at the single-cell level, allowing for 
an adaptation to this type of viral chronic stress. In this system, re-
curring SG-On and SG-Off phases are caused by stochastic events 
that perturb the steady-state level of eIF2 phosphorylation and 
evoke bursts of GADD34 transcription.

In our quantitative hybrid model of the ISR, the fact that the 
eIF2 kinases share a common downstream signaling pathway opens 
up several possibilities for future investigations. For instance, it will 
be interesting to investigate the impact of sustained ISR activation 
by other chronic treatments with low doses of chemical stress induc-
ers or, conversely, by acute viruses, and thus include information on 
cell survival. Likewise, it would be interesting to consider in the model 
that viruses often interfere simultaneously with other branches of 
the UPR (5). This may influence the return of cells to homeostasis 
and the decision between adaptation, survival, or cell death programs. 
Last, expanding the model to quantitative datasets from IFN-
competent cell types and other RNA viruses would further shed light 
on the role of the IFN-mediated regulation of GADD34 expression 
in the ISR to virus infection. Together, the hybrid model developed 
here will help to further understand the detailed mechanisms and 
kinetics underlying cellular adaptation to stress and stress recovery.

MATERIALS AND METHODS
Cell lines and media
All cell lines were cultured in Dulbeccos’s modified Eagle’s medium 
(DMEM) supplemented with 2 mM L-glutamine, 1× nonessential 
amino acids, penicillin (100 U/ml), streptomycin (100 g/ml) (GIBCO), 
and 10% fetal calf serum (FCS) (Capricorn), hereafter referred to as 
DMEM complete. Human embryonic kidney (HEK) 293T cells 
were used for lentivirus particle production. Huh7 PKRKO clones 
were described elsewhere (63). Huh7 YFP-TIA1 Neo cells (11) were 
supplemented with G418 (1 mg/ml; Life Technologies). Huh7 YFP-
TIA1 Neo PKR Blr cells and Huh7 PKR Blr cells (PKROE) (11) were 
supplemented with blasticidine (5 g/ml; Life Technologies). Huh7 
GADD34 Puro cells (11) were supplemented with puromycin (3 g/ml; 
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Sigma-Aldrich). Huh7.5 cells (64) were used for production of 
HCV (Jc1) virus stock. Huh7.5 [CE1][E2p7NS2] Blr cells (65) were 
supplemented with blasticidine (5 g/ml) and used for the production 
of HCVTCP. For live-cell microscopy, cells were maintained in phenol 
red–free DMEM containing 1 mM Hepes, penicillin-streptomycin, 
and 10% FCS.

Plasmids
A plasmid encoding HCV subgenomic replicon harboring Renilla 
luciferase (RLuc) and mCherry fused to HCV NS5A was generated 
by Pme I and Age I digest of pFKI389neoNS3-3’dg_JFH-1_NS5A-
aa383_mCherry K1402Q plasmid (11). RLuc coding sequence flanked 
by Age I and Pme I restriction sites was amplified from the vector 
pFK i389 JcR2a dg (66) by polymerase chain reaction (PCR) using 
Phusion High-Fidelity DNA polymerase (New England Biolabs) 
using the following primers: Age I-RLuc_For: 5′-CGGAACCGGT-
GAGTACAC-3′ and RLuc-Pme I_Rev: 5′-AGGCGTTTAAACT-
TATTCATTTTTGAGAACTCG-3′. This replicon (pFKI389RLuc_ 
NS3-3′dg_JFH-1_NS5A-aa383_mCherry K1402Q) was designated 
“HCV RLuc-mCherry replicon”.

To generate plasmids used for bacterial expression of recombi-
nant His-tagged proteins, sequences of EIF2AK2 and EIF2S1 were 
amplified by PCR using the Phusion Flash High-Fidelity PCR Mas-
ter Mix (Thermo Fisher Scientific), pWPI PKR Blr or pET-MCN 
eIF2 as template, and primers introducing sequences C- and 
N-terminally overlapping with the pET-His 1a vector (PKR_For: 
5′-TTATTTTCAGGGCGCCATGGCTGGTGATCTTTCAG-3′ 
and PKR_Rev: 5′-CGAATTCGGATCCGGTACCCTAACATGT-
GTGTCGTTC-3′; eIF2_For: 5′-TTATTTTCAGGGCGCCATG-
CCGGGTCTAAGTTGTAG-3′ and eIF2_Rev: 5′-CGAATTCGGATC 
CGGTACCTTAATCTTCAGCTTTGGCTTC-3′). Full pET-His 1a 
vector was amplified by PCR (pET-His_1a_For: 5′-GGTACCG-
GATCCGAATTCG-3′ and pET-His_1a_Rev: 5′-GGCGCCCT-
GAAAATAAAG-3′) using the following conditions: 98°C for 10 s 
and 30 cycles of 98°C for 1 s, 55°C for 5 s, and 72°C for varying pe-
riods (90 s for PKR, 15 s for eIF2, and 20 s for pET-His 1a). A final 
extension at 72°C for 60 s was performed. Template plasmid was 
digested using FastDigest Dpn I (Thermo Fisher Scientific) for 
1 hour at 37°C. PCR products were purified from agarose gels using 
the Nucleospin Gel and PCR Clean-Up kit (Macherey-Nagel). EIF2AK2 
and EIF2S1 sequences were inserted into pET-His 1a vector using 
the Gibson Assembly Cloning Kit (New England Biolabs) as described 
by the manufacturer.

pWPI GADD34-(G4S)4-eGFP Puro used for absolute quantifica-
tion of GADD34 molecules per cell was generated by amplifying 
ppp1r15a sequence from its cDNA clone (11) by PCR using the fol-
lowing primers: Xho I_GADD34_For: 5′-AACTTCCTCGAGAT-
GGCCCCAGGCCAAGCACCCCATC-3′ and Hind III_GADD34_Rev: 
5′-GGATCGAAGCTTGCCACGCCTCCCACTGAGGTCCAGG-3′. 
First, the PCR product and vector pTurboGFP-N (Evrogen) were 
digested with Xho I and Hind III, purified, and ligated to generate 
pGADD34-TurboGFP. Second, the sequence of a (G4S)4-linker flanked 
by Hind III and Age I restriction sites was generated by hybridizing 100 M 
of each of the following oligonucleotides [Hind III_(G4S)4_Age I_For: 
5′-AGCTTGGTGGAGGCGGGTCTGGGGGCGGAGGTTCAG-
GCGGGGGTGGTTCCGGTGGCGGTGGCTCGGGA-3′ and Age I_
(G4S)4_Hind III_Rev: 5′-CCGGTCCCGAGCCACCGCCACCGGAACC
ACCCCCGCCTGAACCTCCGCCCCCAGACCCGCCTCCAC-
CA-3′] in annealing buffer [25 mM Hepes (pH 7.4) and 50 mM NaCl] 

at 95°C for 5 min followed by a gradual decrease in temperature to 
25°C at 5°C/min. Hybridized oligonucleotides were phosphorylated 
with 5 U T4 polynucleotide kinase in T4 Ligation Buffer (New England 
Biolabs) for 30 min at 37°C. Last, pGADD34-TurboGFP was di-
gested by Hind III and Age I, and pGADD34-(G4S)4-TurboGFP 
was generated by ligation with the hybridized oligonucleotide. Of 
note, TurboGFP was exchanged for eGFP by amplifying the eGFP 
sequence by PCR from peGFP-N1 (Clontech) using the following 
primers to introduce Age I and Not I restriction sites: Age I_eGFP_
For: 5′-TTATTAGACCGGTCATGGTGAGCAAGGGCGAGGA-3′ 
and Not I_eGFP_Rev: 5′-TAATTGCGGCCGCTTACTTGTA-
CAGCTCGTCCA-3′. PCR product and vector were digested with 
Age I and Not I. pGADD34-(G4S)4-eGFP was generated by ligation. 
GADD34-(G4S)4-eGFP sequence was finally cloned into a lentiviral 
vector pWPI Puro. To this end, pGADD34-(G4S)4-eGFP was digest-
ed by Xho I and Not I. The sticky end product was blunted using 10 
U of DNA Polymerase I Large (Klenow) Fragment (New England 
Biolabs). pWPI Puro was digested by Pme I and dephosphorylated 
using 20 U of calf alkaline phosphatase (New England Biolabs) for 
1 hour at 37°C. The lentiviral vector pWPI GADD34-(G4S)4-eGFP 
Puro was generated by ligation.

In vitro transcription
In vitro transcription reaction was performed as described earlier 
(11). Ten micrograms of plasmid template was linearized by restric-
tion with Mlu I (New England Biolabs) and purified using the 
Nucleospin Gel and PCR Clean-Up kit (Macherey-Nagel). In vitro 
transcription reaction was carried out in a final volume of 100 l of 
transcription mix containing 80 mM Hepes (pH 7.5), 12 mM 
MgCl2, 2 mM spermidine, 40 mM dithiothreitol (DTT), 3.125 mM 
of each nucleoside triphosphate (Roche), 100 U of RNasin ribonuclease 
inhibitor (Promega), and 80 U T7 RNA polymerase (Promega). After 
2 hours of incubation at 37°C, 40 U of T7 RNA polymerase was 
added to the reaction mix and incubated for an additional 2 hours 
at 37°C. Transcription was terminated by addition of 10 U RQ1 
ribonuclease (RNase)–free deoxyribonuclease (DNase) (Promega) 
and incubation at 37°C for 30 min. RNA was extracted with acidic 
phenol and chloroform, precipitated with isopropanol, and dis-
solved in RNase-free water. RNA integrity was determined on non-
denaturing agarose gel and concentration by measuring absorbance 
at 260 nm.

Analysis of HCV RLuc-mCherry replication kinetics
Huh7.5 cells were washed twice with phosphate-buffered saline (PBS) 
and resuspended in cytomix solution pH 7.6 [120 mM KCl, 0.15 mM 
CaCl2,10 mM K2HPO4/KH2PO4 (pH 7.6), 25 mM Hepes, 2 mM 
EGTA, and 5 mM MgCl2] freshly supplemented with 5 mM gluta-
thione and 2 mM adenosine triphosphate (ATP) to a final con-
centration of 1.5 × 107 cells/ml. Cell suspension (400 l) was mixed 
with 10 g of in vitro transcript, transferred in a 0.4-cm electropo-
ration cuvette (Bio-Rad), and pulsed at 975 F and 270 V using a 
Gene Pulser system (Bio-Rad). Electroporated cells were immedi-
ately resuspended in 15 ml of DMEM complete and seeded into 
one six-well plate in duplicates. At 4, 24, 48, 72, and 96 hours, cells 
were washed once with PBS and lysed using 250 l of ice-cold 
Luciferase Lysis Buffer [25 mM glycylglycine (pH 7.8), 15 mM MgSO4, 
15 mM K2PO4, 4 mM EGTA, 10% (v/v) glycerol, and 0.1% Triton 
X-100] freshly supplemented with 1 mM DTT. Samples were 
stored at −80°C. Renilla luciferase activity in cell lysates (20 l) was 
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measured with 100 l of Luciferase Assay Buffer [25 mM glycylgly-
cine (pH 7.8), 15 mM MgSO4, 15 mM K2PO4, and 4 mM EGTA] in 
duplicates using the tube luminometer LB9507 (Berthold Technol-
ogies). Relative light unit (RLU) values from the 4-hour time point 
after electroporation served as input control for normalization.

Virus production and titration
RLuc-mCherry HCVTCP was used to observe SG response dynamics 
by live-cell imaging. Huh7.5 [CE1][E2p7NS2] Blr cells were electro-
porated with 10 g of HCV RLuc-mCherry replicon in vitro tran-
script as described above, immediately resuspended into 6.5 ml of 
DMEM complete, and seeded into a 10-cm cell culture dish. Virus 
supernatants were collected at 24, 48, 72, and 96 hours after electro-
poration, filtered through a 0.45-m-pore size membrane (Merck), 
and stored at −80°C.

Full-length HCV Jc1 was used to analyze levels of various 
proteins and transcripts per cell during virus infection. Huh7.5 cells 
were electroporated with in vitro transcripts from pFK-J6/C3 (67) 
and processed as described above. Virus supernatants were concen-
trated by precipitation using 8% (w/v) polyethylene glycol-8000 in 
PBS for 72  hours at 4°C followed by centrifugation at 8000g for 
2 hours at 4°C. The virus pellet was resuspended in DMEM com-
plete and stored at −80°C. Infectious titers were determined by lim-
iting dilution assay [tissue culture infectious dose 50 (TCID50)] as 
described in (68).

Analysis of HCVTCP replication kinetics upon IFN- treatment
Huh7 cells (3 × 104) were seeded in 12-well plates and infected with 
HCVTCP at a multiplicity of infection (MOI) of 2 TCID50 per cell in 
duplicate wells for 48  hours. Medium was replaced with 2  ml of 
DMEM complete with and without 100 IU/ml IFN- (PBL Interna-
tional). Cells were lysed at 24, 48, or 72 hours after treatment. Renilla 
luciferase activity was measured as described above. RLU values 
were normalized to the time point 0 of IFN- addition.

Long-term live-cell imaging of HCV-infected cells 
and microscope equipment
Huh7 YFP-TIA1 Neo cells (1.8 × 104) with or without stable over-
expression of PKR were seeded 24 hours before infection in 12-well 
plates with glass bottom (thickness 0.16 to 0.19 mm) (Cellvis). Cells 
were infected with HCVTCP at an MOI of 1.5 TCID50 per cell. Medi-
um was replenished 24 hours after infection. Forty-eight hours after 
infection, culture medium was replenished with phenol red–free 
microscopy medium supplemented with IFN- (100 IU/ml; PBL 
International) and transferred to the heating chamber of the micro-
scope (Okolab). Image acquisition was performed using a Nikon 
Eclipse Ti2/Andor Revolution CSU-W1 spinning disc confocal micro-
scope equipped with a 20× air objective CFI Plan Apo lambda [nu-
merical aperture (NA) = 0.75], Nikon Perfect Focus System, Andor 
lasers 514 nm (40 mW) and 561 nm (50 mW), triple line dichroic 
beamsplitter 445/514/561, emission filters for YFP (540/30) and 
mCherry (600/50), Nikon motorized stage with linear encoder, 
electron multiplying charge-coupled device (EMCCD) Camera iXon 
DU-888—13 m by 13 m pixel size (Andor), and NIS Elements AR 
software (Nikon). Images (signals of YFP-TIA1 and NS5A-mCherry) 
were acquired in 15-min intervals for 72 hours, starting 4 to 5 hours 
after treatment with IFN-. Typically, 15 to 30 fields of view were 
manually selected using the NS5A-mCherry signal and acquired 
simultaneously.

Image analysis of SG single-cell time series
Images were exported as one 16-bit hyperstack TIFF (tagged Image 
File Format) per field of view using NIS Elements AR software. 
Using the ilastik (Linux v1.3) (20) image conversion tool, the im-
ages were further converted into 8-bit .h5 format. The ilastik pixel 
classification tool was used for automatic detection of single cells, 
SGs, and virus protein. Random frames were used for software 
training by manually creating separate labels for pixels representing 
nuclei, SGs, background pixels (all in the YFP-TIA1 channel), and 
virus protein (NS5A-mCherry channel). Using the segmentation 
tool, segmentation masks were created for each label. Single-cell 
tracks were generated with the Ilastik tracking toolkit using the nu-
clei segmentation masks. To assign density and count as well as vi-
rus protein levels to individual cell tracks at any given point in time, 
we used a Voronoi partitioning of each time frame based on the 
nuclei segmentation center of mass. For each cell track and frame, 
the respective Voronoi cells were overlaid with SG and infection 
marker masks to generate time-resolved single-cell trajectories of 
total number of SG pixels, SGs, and NS5A-mCherry pixels. To 
exclude faulty cell tracks and SG detection, each track was manually 
curated using a Python/Kivy-based graphical interface iterating 
every time frame of long tracks (minimum length of 48 hours) and 
comparing time-lapse data with assigned center of mass of tracks 
and detected SG pixel number. Only tracks with correctly assigned 
presence of SGs (SG pixel threshold >15) with maximum aberra-
tions of one frame false-positive/negative SG detection were accepted. 
In a further downstream data filter, all stress events/stress disrup-
tion events of one frame length were smoothed out.

Estimation of Huh7 cell volume
Huh7 YFP-TIA1 cells (105) were seeded in a 35-mm dish with 
20-mm cover glass no. 1.5 (MatTek). Confocal Z-stacks (200 nm 
Z spacing) of whole cells were acquired using the YFP-TIA1 signal 
(514 nm excitation) on a Nikon Ti Eclipse using an Apo total inter-
nal reflection fluorescence (TIRF) 60× oil (NA 1.49) objective 
(Nikon) with a digital image using the Orca Flash 4 v2 camera (6.5 × 
6.5 m pixel size, Hamamatsu). Substacks with 1-m Z spacing in-
cluding the whole cell volume were chosen and manually circled to 
measure area per stack. Total cell volume was calculated by multi-
plication of total area volume with 1-m stack thickness.

Western blot analysis
Cells were detached by trypsinization and pellets were lysed with 
ice-cold protein lysis buffer [50 mM tris-HCl (pH 7.3), 150 mM 
NaCl, 1% Triton X-100 supplemented with EDTA-free protease in-
hibitor cocktail (Roche), 60 mM -glycerophosphate, 15 mM 
4-nitrophenylphosphate, 1 mM sodium orthovanadate, and 1 mM 
sodium fluoride] on ice for 30 min. Cell debris were pelleted by cen-
trifugation for 30 min at 13,000 rpm at 4°C. Total protein concen-
tration was determined by colorimetric measurement using Protein 
Assay Dye Reagent (Bio-Rad). Bovine serum albumin (BSA, Thermo 
Fisher Scientific) dilutions served as protein standard for calibra-
tion. Equal amounts of total protein (20 to 100 g, depending on 
experiment) were resuspended in 1× Laemmli sample buffer [62.5 mM 
tris-HCl (pH 6.8), 10% glycerol, 1.5% SDS, 1.5% -mercaptoethanol, 
and 0.01% bromophenol blue], denatured for 5 min at 95°C, sepa-
rated by SDS–polyacrylamide gel electrophoresis (SDS-PAGE), and 
transferred to a polyvinylidene difluoride membrane (Millipore). 
Membranes were blocked by incubation with tris-buffered saline 
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containing 0.1% Tween 20 and 5% (w/v) skim milk powder or 
5% (w/v) BSA (Roth) depending on the antibody requirements for 
1 hour. Immunostaining was performed in the corresponding buffer 
supplemented with the respective primary and secondary anti
bodies. Proteins were detected using Western Lightning enhanced 
chemiluminescence (ECL) Plus (Perkin Elmer) according to the in-
structions of the manufacturer. Chemiluminescence signal was de-
tected using the Advance ECL Chemocam Imager (Intas Science 
Imaging). Band intensities were quantified using the LabImage 1D 
Software (v 4.1, Intas Science Imaging).

The following primary antibodies were used: rabbit polyclonal 
anti–phospho-PKR (T446) (Abcam; BSA; 1:500), rabbit polyclonal 
anti–rabbit-phospho-eIF2 (S51) (Cell Signaling Technology; BSA; 
1:500), rabbit polyclonal anti-PKR (K-17) (Santa Cruz Biotechnology; milk; 
1:1000) for GST-PKR titration experiment, rabbit polyclonal anti-PKR 
(Proteintech; BSA; 1:1000) for detection in other experiments, rabbit 
polyclonal anti-eIF2 (Cell Signaling Technology; BSA; 1:1000), rabbit 
polyclonal anti-GADD34 (Proteintech; milk; 1:1000), rabbit polyclonal 
anti–cyclin D1 (H-295) (Santa Cruz Biotechnology; BSA; 1:1000), 
mouse monoclonal anti–-actin (Sigma-Aldrich; milk; 1:5000), mouse 
monoclonal anti-GAPDH (G-9) (Santa Cruz Biotechnology; milk; 
1:10,000), and mouse monoclonal anti-GFP (Clontech; milk; 1:2000).

Protein half-lives
Huh7 cells (for eIF2 and PKR) or Huh7 GADD34 Puro cells (for 
GADD34) were treated with CHX (100 g/ml; Sigma-Aldrich) and 
harvested at different times after treatment. Protein expression levels 
were measured by Western blotting and band intensities quantified using 
LabImage 1D as described above. Protein half-life was determined 
by normalization to loading control (-actin) and compared to levels 
in untreated cells. Cyclin D served as control of short-lived protein.

Absolute quantification of eIF2 and PKR protein 
in cell lysates
Huh7 YFP-TIA1 Neo cells (2 × 106) with or without stable over-
expression of PKR were seeded on 15-cm cell culture dishes. One 
day after seeding, cells were incubated with DMEM complete sup-
plemented with IFN- (100 IU/ml) or left untreated. Twenty-four 
hours after treatment, cells were detached by trypsinization, counted 
by fluorescence-activated cell sorting (FACS), and lysed in protein 
lysis buffer as described above. To ensure thorough lysis, lysates 
were subjected to three freeze/thaw cycles at −80°C before centrifu-
gation. Total protein concentration was measured as described 
above. Lysates (n = 8) containing 20 g of total protein were spiked 
with different amounts of recombinant GST-tagged eIF2 (Abnova, 
5/10/15/22/33/50/75 ng), recombinant GST-tagged PKR kinase 
domain (Abcam, 1/2/3/4.4/6.7/10/12.5 ng), or protein lysis buffer. 
Samples were subjected to SDS-PAGE, Western blotting, and im-
munostaining as described above. Band intensities were quantified 
as described above, and recombinant protein titration intensities 
were used as standard curves to quantify average endogenous pro-
tein molecule numbers per cell.

Absolute quantification of GADD34 protein in cell lysates
Huh7 cells were reverse-transduced with lentivirus of pWPI 
GADD34-eGFP Puro for 30 hours, as previously described. To 
determine GADD34-eGFP molecule number per cell, a lysate of 
1.75 × 105 cells (ca. 100 g of total protein as determined by protein 
assay) was analyzed in triplicate by Western blotting. A dilution 

series (0.5/1/2.5/5/10 ng) of recombinant eGFP protein was used to 
generate a standard curve. Whole-lane signal of membranes probed 
with eGFP-specific antibody was used to determine the total molecule 
number of GADD34-eGFP expressed in the standard lysate, includ-
ing degradation products. The average molecule number per cell was 
used to calculate levels of GADD34 in various experiments by ana-
lyzing the calibrated lysate on the same Western blot membranes. 
To this end, band intensities of full-length GADD34 and GADD34-eG-
FP were compared. GAPDH signal intensity was used as a loading control.

Single-cell transcript quantification using RNA FISH
To analyze cell-to-cell variability of transcript levels, we performed 
single-cell transcript quantification using the ViewRNA ISH Cell 
Assay Kit (Affymetrix). Huh7 cells (1.5 × 105) were seeded on cov-
erslips in a six-well plate and infected with HCV (MOI = 10 TCID50 
per cell) or left uninfected. Twenty-four hours after infection, cells 
were treated with IFN- (100 IU/ml; PBL) or left untreated. Forty-
eight hours after infection, cells were fixed for 15 min in 4% para-
formaldehyde in PBS. RNA FISH was performed as follows: (i) cell 
permeabilization with 100% ethanol for 45 min at 4°C, (ii) three 
10-min wash steps with PBS, (iii) protein digest with the Protease 
QS diluted 1:12,000 in PBS for 5 min at room temperature, (iv) three 
10-min wash steps with PBS, (v) first labeling for 30 min at 40°C 
with the fluorescent probes diluted 1:25 with prewarmed Probe Set 
Diluent QF, (vi) three 10-min wash steps with wash buffer, (vii) sec-
ond labeling for 30 min at 40°C with the label probe mix (diluted 
1:25 with prewarmed Probe Set Diluent QF), (viii) three 10-min wash 
steps with PBS, (ix) one 10-min wash step with double-distilled water, 
and (x) mounting coverlips on glass slides with ProLong Gold 
Antifade Mountant (Molecular Probes).

All fluorescently labeled probes were purchased from Affymetrix: 
EIF2S1 (eIF2) type 1 (#VA1-20426, diluted 1:50); PPP1R15A 
(GADD34) type 1 (#VA1-15768, diluted 1:50); PRKR (PKR) type 4 
(#VA4-18296, diluted 1:50); and HCV (+)ssRNA type 6 (#VF6-13516, 
diluted 1:100). Probes targeting dapB transcripts were used as neg-
ative control (type 1 #VF1-11712 and type 4 #VF-4-10408, diluted 
1:50). 5′ fluorescently labeled Oligo(dT)50 probes (Alexa Fluor 488 
or Alexa Fluor 555) targeting mRNA poly(A) sequences were used 
at a final concentration of 50 nM to visualize cell outlines and SGs.

Images of whole cell volume (200 nm Z spacing) were acquired 
on a Nikon Ti Eclipse microscope equipped with a PerkinElmer 
UltraView Vox spinning disc CSU-X1, using the CFI Apo TIRF 60× 
(NA 1.49) oil objective (Nikon). Images were corrected for uneven 
illumination by division with an illumination bias mask and multi-
plying each pixel intensity by a factor of 2000 using the Fiji package 
software (http://fiji.sc) (69). Individual masks were generated for 
each channel by acquiring an image of autofluorescent plastic slides 
(Chromas) and processed by applying the Gaussian blur function in 
Fiji (radius 50).

To determine transcript levels on a single-cell level, a MATLAB-​
based software was developed to manually circle cells of interest and 
to assign individual phenotypes (infected/noninfected and stressed/
nonstressed). For each dataset (two biological repeats) and 
fluorescent channel, negative control samples (uninfected cells 
hybridized with probes targeting prokaryotic dapB transcripts and 
HCV genome) were used to identify fixed size threshold (ST) and 
intensity thresholds (IT): GADD34 + HCV FISH – GADD34 [IT 
750/1500, ST 25/15] and HCV [IT 750/1500, ST 10/15]; PKR + HCV 
FISH – PKR [IT 220/400, ST 10/6] and HCV [IT 500/1800, ST 

http://fiji.sc
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15/10]; GADD34 + HCV FISH in PKROE – GADD34 [IT 6000, 
ST 10] and HCV [IT 1500, ST 10]. Applying these values, total 
transcript levels were calculated on a single-cell, multilayered phe-
notype level. Signals exceeding the IT and ST (determined in cells 
hybridized by negative control probes) are circled in white.

Single-cell Western blot analysis
Huh7 cells (105; naïve, PKRKO clone 2#3, or PKROE) were seeded in 
six-well plates. Twenty-four hours after seeding, cells were treated 
with IFN- (100 IU/ml) or left untreated. Twenty-four hours after 
treatment, cells were detached using Accutase (Capricorn). Single-
cell Western blotting was performed using the Standard scWestern 
Kit (Proteinsimple) as recommended by the manufacturer. In short, 
2 ml of cell suspension (4 × 105 cells) was loaded on dry slides, al-
lowed to settle for 30 min, and carefully washed with suspension 
buffer. For PKR protein detection, 500 l of Huh7 PKRKO cell sus-
pension was loaded on a separate section of the microslide as a back-
ground control. Well occupation rate (maximum 30%) and duplicates 
(maximum 2% of occupied wells) were monitored manually by light 
microscopy. Microslides were transferred to the MILO single-cell 
Western system (Proteinsimple) and subjected to 10-s lysis, 90-s 
electrophoresis at 240 V, and 240-s UV capture. Subsequently, 
slides were washed three times for 15 min in wash buffer and stained 
in primary antibodies (dilution 1:10  in Antibody Diluent 2) for 
2 hours, followed by three washes of 15 min. Fluorescent secondary 
antibodies (dilution 1:20 in Antibody Diluent 2) were incubated for 
90 min, followed by three washes of 15 min. For complete salt re-
moval, slides were washed in double-distilled water twice for at least 
2 hours. Last, slides were transferred to 50-ml reaction tubes and 
subjected to dry centrifugation for 1  hour at 1000g. Images were 
acquired using the InnoScan 710 microarray scanner (Innopsys) 
and the acquisition software Mapix (Innopsys, version 8.1.1). Cor-
rection for staining intensity variation was performed using Fiji by 
division of each image by a blurred mask of itself and subsequent 
pixel intensity multiplication by 2000. The masks were generated by 
applying Gaussian blur function (radius 200). Each well was manu-
ally curated by filtering out damaged or soiled regions of the chip 
using Scout 2.1 software (Proteinsimple). To determine total signal 
intensity per lane, a script was developed to automatically detect 
centers of wells and to segment total lane areas on each chip. Back-
ground intensity was determined using empty wells for eIF2 quan-
tification or PKRKO cells for PKR quantification. The following 
primary and secondary antibodies were used: mouse monoclonal 
anti-GAPDH (G-9) (Santa Cruz Biotechnology), rabbit polyclonal 
anti-eIF2 (Cell Signaling Technology), rabbit monoclonal anti-
PKR (Proteintech), goat anti–mouse-Alexa532 (Invitrogen), and goat 
anti–rabbit-Alexa635 (Invitrogen).

In vitro synthesis of ssRNA of positive and negative polarity, 
hybridization of dsRNA and purification
The sequence of the prokaryotic ampicillin resistance gene was 
used as template for the synthesis of dsRNA (100, 200, and 400 bp). 
Primers used included the T7 RNA polymerase promoter se-
quence: Plus_For (5′-TAATACGACTCACTATAGGGAGTAT-
TCAACATTTCCGTGTCGCCCTTAT-3′); Plus_100bp_Rev 
(5 ′ -CATCTTTTACTTTCACCAGCGTTTCTGGGT-3′) ; 
Plus_200bp_Rev (5′-ATCATTGGAAAACGTTCTTCGGGGC-
GAAAA-3′); Minus_100bp_F o r  ( 5 ′ - T A A T A C G A C T C A C -
TATAGGTCTTTTACTTTCACCAGCGTTTCTGGGTGA-3′); 

Minus_200bp_For (5′-TAATACGACTCACTATAGGCATTG-
GAAAACGTTCTTCGGGGCGAAAACT-3′), and Minus_Rev 
(5′-ATGAGTATTCAACATTTCCGTGTCGCCCTT-3′). Forty–
base pair dsRNA, including the first 40 bp of ampicillin resistance 
gene was synthesized by Metabion (5′-AUGAGUAUUCAACAUUUC-
CGUGUCGCCCUUAUUCCCUUUU-3′). PCR products were puri-
fied using the Nucleospin Gel and PCR Clean-Up kit (Macherey-Nagel). 
ssRNA of positive and negative polarity was synthesized by in vitro 
transcription and purified as described above, using 3 g of PCR 
product as template in a 100-l reaction. For hybridization, equim-
olar amounts of respective positive and negative ssRNA were incu-
bated at 85°C for 10 min in hybridization buffer (25 mM Hepes and 
50 mM NaCl) and gradually cooled to room temperature within 
1 hour. dsRNA was precipitated by adding 10% (v/v) 2 M sodium 
acetate (pH 4.5) and 75% (v/v) isopropanol and incubation on ice 
for 2 hours. Precipitated dsRNA was pelleted at 20,000g for 45 min. 
Pellets were washed with 70% (v/v) ethanol and resuspended in 
RNase-free water. RNA concentration was determined by measur-
ing absorbance at 260 nm. RNA integrity and secondary structures 
were analyzed on denaturing agarose gels.

Induction of SGs by dsRNA and chemical stressors
Huh7 cells (1.5 × 105) or Huh7 YFP-TIA1 cells were seeded in six-
well plates containing glass coverslips. After 24 hours, medium 
was replaced with fresh medium containing varying concentra-
tions of sodium arsenite (Sigma-Aldrich), thapsigargin (Biotrend), 
or dimethyl sulfoxide (DMSO, Merck Millipore). Samples were 
analyzed by Western blot, Phos-tag gel, or by immunofluorescence 
analyses. To determine p-eIF2 expression levels and visualize SG 
formations, cells were treated for 45 min with arsenite or 1 hour with 
thapsigargin. To determine GADD34 expression levels, cells were 
treated for 8 hours with DMSO or thapsigargin. To measure the response 
to dsRNA, cells were transfected for 16 hours with varying amounts 
of dsRNA using Lipofectamine 2000 (Invitrogen) with an RNA: 
transfectant ratio of 1:2 according to the manufacturer’s instructions.

Quantification of SGs by immunofluorescence analysis
To quantify percentage of SG-positive cells after drug treatment, Huh7 
cells were fixed for 15 min with 4% paraformaldehyde in PBS, per-
meabilized by incubation in 0.5% Triton X-100 in PBS for 5 min, 
and incubated in blocking buffer [5% horse serum (C.c.pro) and 5% 
sucrose in PBS] for 30 min. SGs were visualized using polyclonal 
rabbit anti-eIF3B (Bethyl Laboratories, 1:1000), diluted in blocking 
buffer for 1 hour, washed three times with PBS for 5 min, and incu-
bated with donkey anti-rabbit secondary antibody coupled to Alexa 
Fluor 488 (Invitrogen, 1:2000). Coverslips were washed in PBS 
three times for 5 min before mounting on glass slides using Fluoro-
mount G Reagent (Southern Biotech). For Huh7 YFP-TIA1 cells, 
coverslips were directly mounted on glass slides after fixation. 
Images were acquired with a Nikon Ti Eclipse fluorescence micro-
scope using a CFI Plan Apo Lambda 20× objective (NA 0.75) 
(Nikon). Fluorescent signal was captured using an EMCCD camera 
C9100 (Hamamatsu) and the NIS-Elements AR software package 
(Nikon, version 4.30). The percentage of SG-positive cells was de-
termined manually using Fiji Cell Counter plug-in.

Phos-tag polyacrylamide gel analysis
Phos-tag gel analysis was performed to detect the mobility shift of 
p-eIF2, as previously described (63). A 10% resolving polyacrylamide 

http://C.c.pro
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gel was supplemented with 70 M Phos-tag acrylamide (Fujifilm 
Wako Chemicals) and 140 M Mn2+ as recommended by the man-
ufacturer. Before blotting, gels were incubated in transfer buffer 
[25 mM tris-HCl (pH 8.3), 150 mM glycine, and 20% methanol] 
supplemented with 1 mM EDTA for 10 min, followed by a 10-min 
wash step in transfer buffer in the absence of EDTA. Both basal and 
phosphorylated forms of eIF2 were visualized using eIF2-specific 
antibody. Signal and band intensity were quantified as described 
above. The percentage of p-eIF2 was determined by dividing the 
intensity of the slowly migrating band (p-eIF2) with the sum of 
both band intensities (p-eIF2 + eIF2).

Inhibition of thapsigargin-induced SG formation by  
GADD34 overexpression
For GADD34 lentivirus production, 5 × 106 HEK 293T cells were 
seeded into 10-cm cell culture dishes. One hour before transfection, 
medium was replenished. For transfection, 6.4 g of pWPI GADD34 
Puro or pWPI Puro (control), 6.4 g of packaging plasmid 
(pCMV8.91), and 2.16 g of the vector expressing the vesicular 
stomatitis virus envelope glycoprotein (pMD2.G) were mixed with 
OptiMEM (Gibco) to a final volume of 400 l. Polyethylenimine 
(PEI) (Sigma-Aldrich) was diluted to 112.5 g/ml in OptiMEM to 
a final volume of 400 l. Solutions of plasmid and PEI were mixed, 
vortexed rigorously, and incubated for 20 min at room temperature. 
Transfection mix was added dropwise onto producer cells. Medium 
was replenished after 6 hours. Lentivirus supernatant was harvested 
at 48 and 72 hours after transfection and filtered with a 0.45-m 
pore size membrane. For transient overexpression of GADD34, 
Huh7 cells were detached by trypsinization, and 105 cells were re-
suspended in lentivirus supernatant diluted with DMEM complete 
to a final volume of 2 ml and seeded in six-well plates. Thirty hours 
after transduction, cells were treated with 2 M thapsigargin for 
1 hour and subsequently harvested for Western blot and immuno-
fluorescence analyses. Lentiviruses encoding for the antibiotic resistance 
gene (pWPI Puro) were used as control.

Bacterial expression and purification of his-PKR 
and his-eIF2
His-PKR was expressed from pET-His-PKR in E. coli BL21 (DE3)-
RIL (provided by C. Müller, Heidelberg) cultured at 37°C in auto-
induction medium [1% (w/v) tryptone, 0,5% (w/v) yeast extracts, 
1 mM MgSO4, 0.5% glycerol, 0.05% glucose, 0.2% lactose mono-
hydrate, 25 mM (NH4)2SO4, 50 mM KH2PO4, 50 mM Na2HPO4, 
chloramphenicol (34 g/ml), and kanamycin (50 g/ml)] until 
reaching an OD600 (optical density at 600 nm) of 2.0 and then trans-
ferred to 18°C for 20 hours. Bacteria were pelleted at 6000g at 4°C 
for 15 min and stored at −80°C. The bacteria were resuspended in 
5 ml/g bacteria lysis buffer pH 8.0 [50 mM Na2HPO4, 300 mM NaCl, 
20 mM imidazole, 1 mM phenylmethylsulfonyl fluoride (PMSF), and 
cOmplete EDTA-free protease inhibitor cocktail (Roche)] and lysed 
in three homogenization cycles using EmulsiFlex C3 (Avestin). The 
lysate was centrifuged at 15,000g for 1 hour at 4°C, and the super-
natant was incubated with Ni-NTA agarose beads (1 ml of 50% slur-
ry; Macherey & Nagel) for 18 hours at 4°C while tumbling. Beads 
were pelleted by centrifugation at 500g for 10 min at 4°C and washed 
twice with 10 ml wash buffer (50 mM Na2HPO4, 300 mM NaCl, 
and 20 mM imidazole). Protein was eluted with 10 ml of elution 
buffer (50 mM Na2HPO4, 300 mM NaCl, and 250 mM imidazole) 
in 1.5-ml fractions. Eluate was dialyzed for 16 hours in storage 

buffer [10 mM tris (pH 7.5), 50 mM KCl, 2 mM MgCl2, 10% 
glycerol, and 7 mM -mercaptoethanol] using dialysis tubes with 
a 12,000 to 14,000 molecular weight cutoff. His-PKR was con-
centrated to at least 10 mg/ml using Vivaspin centrifugal con-
centrator 30 K (Sartorius), snap-frozen in liquid nitrogen, and 
stored at −80°C.

His-eIF2 was expressed as described above with the following 
modifications: The protein pellet was resuspended in modified lysis 
buffer [20 mM tris, 500 mM NaCl, 2 mM -mercaptoethanol, 20 mM 
imidazole, 1 mM PMSF, and cOmplete EDTA-free protease inhibi-
tor cocktail (pH 8.0) (Roche)]. Beads were washed in modified wash 
buffer (20 mM tris, 500 mM NaCl, 2 mM -mercaptoethanol, and 
20 mM imidazole). Protein was eluted using modified elution 
buffer (20 mM tris, 500 mM NaCl, 2 mM -mercaptoethanol, and 
500 mM imidazole). Fractions containing the protein were identified 
by SDS-PAGE using Coomassie stain or Bio-Rad 12% TGX Stain-
Free FastCast gels. The fractions containing His-eIF2 were pooled 
and dialyzed into ion exchange buffer A [20 mM bis-tris (pH 6.0) and 
2 mM -mercaptoethanol] for 16 hours at 4°C. Precipitate was sep-
arated by centrifugation at 15,000g for 5 min at 4°C followed by an 
anion exchange chromatography loading the supernatant on a Hi-
Trap Q HP 5-ml column (GE Healthcare) and intensive wash step 
of 20 column volumes with ion exchange buffer A. Protein was eluted 
by a gradient of 0 to 100% ion exchange buffer B [20 mM bis-tris 
(pH 6.0), 500 mM NaCl, and 2 mM -mercaptoethanol]. Clean frac-
tions were pooled and concentrated to at least 10 mg/ml using Vivaspin 
centrifugal concentrator 10 K (Sartorius), snap-frozen in liquid nitro-
gen, and stored at −80°C. To remove hyperphosphorylation from 
His-PKR expressed in E. coli, the purified protein was subjected to 
dephosphorylation [adapted from (70)]. His-PKR (100 g) was de-
phosphorylated using 3200 units of -PPase (New England Biolabs) 
in 200 l of reaction buffer [50 mM Hepes, 100 mM NaCl, 2 mM DTT, 
0.01% Brij 35 (pH 7.5), and 1 mM MnCl2] for 2 hours at 37°C. The 
dephosphorylation reaction was stopped by the addition of 2 l of 
200 mM sodium orthovanadate and further incubation for 5 min 
at 37°C. Protein aggregates were removed by centrifugation for 
30  min at 20,000g at 4°C. Protein concentration was determined by 
subjecting samples and dilution series of GST-PKR kinase domain 
(Abcam) to SDS-PAGE, followed by protein visualization by silver 
staining using the Silver Stain Plus Kit (Bio-Rad) following the 
manufacturer’s instructions. Band intensity was quantified as de-
scribed above.

In vitro PKR kinase assay
The protocol was adapted from (70). The reaction mix was prepared 
on ice in a final volume of 12 l containing 150 ng of dephosphoryl
ated His-PKR and 1 g of His-eIF2 in activation buffer [20 mM 
Hepes (pH 7.5), 4 mM MgCl2, and 100 mM KCl] supplemented with 
1 mM Ultra-Pure ATP (Promega). Three microliters of dsRNA 
dilutions or water was added to the mix, and reactions were imme-
diately incubated at 30°C for 20 min. Phosphatase activity was in-
hibited by the addition of 2 l of 20 mM sodium orthovanadate. A 
total of 3.5 l of 6× Laemmli buffer was added to the reaction mix, 
and samples were boiled at 95°C for 5  min. Half of the reaction 
(75 ng of PKR and 500 ng of eIF2) was analyzed by SDS-PAGE, 
and total protein was visualized by Silver stain (see below); 
1.67% of the reaction (2.5 ng of PKR and 16.7 ng of eIF2) was 
analyzed by either SDS-PAGE or Phos-tag polyacrylamide gel as 
described above.
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qRT-PCR of GADD34 mRNA and pre-mRNA
Huh7 cells (8 × 104) were seeded in a 12-well plate and treated with 2 M 
thapsigargin for up to 12 hours. Cells were harvested 0, 1, 3, 6, and 
12 hours after treatment, and total RNA was extracted as described 
above. Levels of mature GADD34 mRNA were determined using the 
qPCRBIO Probe 1-Step Go Lo-ROX, PCR Biosystems kit (Nippon 
Genetics). In brief, 15 l of reaction mixes contained 7.5 l of 2 × qPCRBIO 
mix, 0.75 l of 20 × RTase, 400 nM per primer, 200 nM per probe, and 
3 l of extracted total RNA. For absolute quantification, serial 1:10 dilu
tion series (103 to 109 copies) of GADD34 and GAPDH transcripts were 
processed on each plate. Each sample was measured in triplicate wells. 
Quantitative reverse transcription PCR (qRT-PCR) was performed on a 
CFX96 Real-Time System (Bio-Rad) using the following settings: 50°C 
for 10 min, 95°C for 1 min, and 40 cycles as follows: 95°C for 10 s and 
60°C for 1 min. The following primers and probes were used to detect 
cellular transcripts: GAPDH_For: 5′-GAAGGTGAAGGTCGGAGTC-3′; 
GAPDH_Rev: 5′-GAAGATGGTGATGGGATTTC-3′; GAPDH_Probe: 
5′-VIC–CAAGCTTCCCGTTCTCAGCCT–TAMRA-3′; GADD34mRNA_
For: 5′-CAGAAACCCCTACTCATGATCC-3′, GADD34mRNA_Rev: 
5′-AAATGGACAGTGACCTTCTCG-3′, GADD34_Probe: 5′-FAM–
CCCCTAAAGGCCAGAAAGGTGCGC–TAMRA-3′. GAPDH copy 
number was used for normalization. For the detection of GADD34 
pre-mRNA, 30 l of total RNA was incubated with 1 l of TURBO 
DNase and TURBO DNase buffer (Invitrogen) in a total volume of 
50 l at 37°C for 30 min to remove genomic DNA. Next, 3 l of DNase-
digested RNA was reverse-transcribed into cDNA using the Applied 
Biosystems High Capacity cDNA Reverse Transcription kit (Thermo 
Fisher Scientific) as recommended by the manufacturer (25°C for 10 min, 
37°C for 2 hours, and 85°C for 5 min). The cDNA was diluted 1:20 
before detection of GADD34 pre-mRNA transcripts using iTaq Uni-
versal SYBR Green (Bio-Rad). In short, 15 l of mix contained 7.5 l 
of 2× iTaq mix, 500 nM per primer, and 3 l of prediluted cDNA. Each 
sample was measured in triplicate wells. qRT-PCR was performed 
on a CFX96 Real-Time System (Bio-Rad) using the following set-
tings: 95°C for 3 min and 45 cycles as follows: 95°C for 10 s and 
60°C for 30 s. The following primers were used: GADD34prem:For: 
5′-ACAGTGACAGGCAAGTGACTAG-3′ and GADD34prem:Rev: 5′- 
GGAAGAGAGAGAGAGAAGCAAAC-3′; GAPDH_For: 5′-GAAGGTGAAGGTC 
GGAGTC-3′ and GAPDH_Rev: 5′-GAAGATGGTGATGGGATTTC-3′. 
GAPDH mRNA was used for normalization. RT-PCR data were 
analyzed by using the CT method (71).

Statistical analysis
Statistical analysis was performed by using the GraphPad Prism software 
(version 7.04). Statistical significance for Western blot, Phos-tag gel, and 
SG immunofluorescence analyses was calculated by performing two-way 
ANOVA with Dunnett’s multiple comparisons test. Statistical significance 
for FISH analyses was calculated by performing two-tailed unpaired t test 
with Welch’s correction. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abk2022

View/request a protocol for this paper from Bio-protocol.
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