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Introduction

1. Maternal-fetal medicine
Maternal fetal medicine is traditionally a litigation area that 
accounts for a large portion of compensation payments. The 
characteristic of the lawsuit is that the cost per case is not 
small compared to the number of claims. According to a re-
port in South Korea, the number of medical disputes resolved 
between 2015 and 2019 was between KRW 61 million and 
the cost was KRW 91 million per case. Medical disputes rank 
4th to 6th in 21 departments and 10th in terms of amount. 
Likewise, the trend was notable in the UK and other coun-
tries between 2017 and 2018, with the National Health Ser-
vice reporting a total of £4.5 billion in compensation, with 
48% for obstetric malpractice claims. Interestingly, obstetrics 
and gynecology accounted for only 15 per cent of all claims. 
In addition to the costs, abnormal medical outcomes can be 
fatal socioeconomically given a long life-span with disability. 
A common complication in obstetric care is hypoxia-induced 
encephalopathy, with a 5.14 incidence rate for every 1,000 
births as reported in 2015. This can sometimes be caused by 
the misinterpretation of fetal monitoring during labor, and 
we generally agree that 50% of these cases are preventable 
[1]. The fundamental reason for this social cost expenditure 
on obstetric diseases is that it is difficult to predict and diag-
nose maternal and fetal diseases early, and therefore, even 
if the disease is found, the effectiveness of treatment is low. 
The area under the receiver operating characteristic curve 
(AUC) for diagnosis of conditions, such as preterm birth, 
preeclampsia, fetal growth restriction, and stillbirth, which 

are relatively common but have a significant impact on ma-
ternal and fetal health, has been reported to be 0.51-0.85, 
0.61-0.99, 0.54-0.98, and 0.58-0.76, respectively [2-10].  
Evidence-based traditional research methodologies have 
been the main tools used to solve problems related to ob-
stetric healthcare. These include classical research method-
ologies such as meta-analysis, clinical trials, cohort studies, 
cross-sectional studies, case-control studies, and case report-
ing. However, the limitations of the current prediction model 
are revealed in most borderline domains, and these have not 
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yet been solved by existing research. In addition, traditional 
research methodologies have the disadvantage of requiring a 
high expenditure and long time for high-quality results. This 
is the basis for the utilization of artificial intelligence to replace 
or help existing methodologies in solving such problems.

2. Artificial intelligence
The popularity of the terms “deep learning,” “machine 
learning,” and “artificial intelligence” recently have regis-
tered a rapid growth worldwide. For instance, their Google 
trends show a great rise from 10 in 2013 to 100 in 2018. 
The definition of artificial intelligence provided in the Mer-
riam-Webster dictionary is “the capability of a machine to 
imitate intelligent human behavior.” Machine learning is a 
division of artificial intelligence and it is defined as “extract 
knowledge from large amounts of data” [11-14]. There are 
six major machine learning approaches. (1) The decision 
tree has internal nodes (the tests on independent variables), 
branches (the outcomes of the tests), and terminal nodes 
(the values of the dependent variable). (2) The naïve Bayes-
ian uses Bayes’ theorem for classification. (3) The random 
forest is a group of many decision trees with a majority vote 
on the dependent variable: in a random forest with 100 
decision trees, 100 training sets are sampled with replace-
ments, 100 decision trees are trained with the 100 training 
sets, and the 100 decision trees take a majority vote on the 
dependent variable. (4) The support vector machine finds a 
hyperplane, which is a space dividing data with the maxi-
mal space among different groups. (5) The artificial neural 
network is a group of neurons, which are input/output units 
linked through weights. Normally, it has 3-5 layers, that is, 1 
input layer, 1-3 hidden layers, and 1 output layer. Here, the 
weights serve as numerical values for the effects of neurons 
in a previous layer on neurons in the next layer. And (6) deep 
learning is a special artificial neural network with more hid-
den layers than five [14]. The unprecedented popularity of 
the artificial neural network all over the world can be attrib-
uted to the great development of computing power in recent 
decades. 

3. Aims of study
Traditional research considered a limited scope of predictors 
for maternal-fetal conditions and was based on hypothesis 
with an unrealistic assumption (the variables are acting un-
der a certain distribution). In this context, emerging studies 

began to use artificial intelligence for a variety of purposes, 
e.g., classification and pattern recognition for financial and 
medical sectors [15-21]. They did not depend on unrealistic 
presumptions of ceteris paribus, and they could examine 
which factors were more important for the prediction of the 
dependent variable. The purpose of this study was  to review 
recent advances on the application of artificial intelligence 
for the early diagnosis of various maternal-fetal conditions 
such as preterm birth and abnormal fetal growth.

4. Methods of study
Thirteen articles were chosen out of 278 articles in Google 
and PubMed, with the search words “artificial intelligence,” 
“machine learning,” “fetal growth,” “maternal-fetal condi-
tions,” and “preterm birth.” The following eligibility crite-
ria were employed: (1) the intervention(s) of a new deep 
learning approach or several machine learning methods 
introduced above; (2) the outcome(s) of accuracy, the AUC, 
and/or the root mean squared error for the prediction of 
maternal-fetal conditions (i.e., preterm birth and abnormal 
fetal growth); (3) the year of publication being 2000 or later; 
and (4) the language of publication being English. The fol-
lowing summary indicators were used: artificial intelligence 
approach, sample size, data type, performance indicators, 
and important factors (independent variables).

Application of machine learning in early 
diagnosis of maternal-fetal conditions

1. Preterm birth
The performance measures of the artificial neural network 
and the random forest are reported to be similar to or better 
than those of traditional approaches such as logistic regres-
sion regarding the early diagnosis of preterm birth [17-21]. 
For instance, recent research employed data with 19,970 
participants at the Duke University Medical Center from  
January 1, 1988 to June 1, 1997 [17-19]. The class (or the 
dependent variable) was preterm birth, and the attributes (or 
the independent variables) were 1,622 demographic, socio-
economic, obstetric variables including age, education, insur-
ance, marital status, race, region, and religion. The artificial 
neural network (0.68) performed better than did logistic 
regression (0.66) and the decision tree (0.65) in terms of the 
AUC.
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Other recent study made a rare comparison of popular 
machine learning approaches for the early diagnosis of pre-
term birth [20]. This study included 596 obstetric patients 
admitted in Anam Hospital (Seoul, Korea) from 27 March 
2014 to 21 August 2018. Variable importance was used to 
find major predictors of preterm birth. The artificial neural 
network (0.9115) was similar to logistic regression (0.9180) 
and the random forest (0.8918) in terms of accuracy. The 
variable importance results of the artificial neural network 
put more focus on hypertension, diabetes mellitus, and prior 
cone biopsy, while their random forest counterparts placed 
more emphasis on cervical length, age, and prior preterm 
birth. The former outcomes agreed with those of previous 
research [22-33], requesting the change of focus from direct 
to indirect factors of preterm birth.

More recent research employed similar methods for ex-
amining preterm birth, gastroesophageal reflux disease, 
and periodontitis [21]. Previous research made independent 
hypotheses on a positive linkage between gastroesophageal 
reflux disease and periodontitis and on a positive relation-
ship between periodontitis and preterm birth [34-40]. In a 
similar context, one would hypothesize a positive association 
between gastroesophageal reflux disease and preterm birth. 
However, no study has been conducted in this regard. The 
source of data for the study mentioned above was obtained 
from Anam Hospital in Seoul, Korea, with 731 obstetric pa-
tients admitted from January 5, 1995 to August 28, 2018. 
Variable importance was employed for finding major factors 
of preterm birth. The random forest (0.8681) was compa-
rable to logistic regression (0.8736) in terms of accuracy. 
Based on the findings of this study, (1) the importance of 
gastroesophageal reflux disease (13th) is greater than that 
of periodontitis (22nd) for preventing preterm birth and (2) 
for the prevention of preterm birth, preventive approaches 
for hypertension, gastroesophageal reflux disease, and dia-
betes mellitus would be essential, together with effective 
body mass index management and appropriate progesterone 
and calcium-channel-blocker medications. Other notable at-
tempts in this direction include the employment of machine 
learning for predicting early stillbirth, late stillbirth, and pre-
term birth [41] and the use of uterine electrohysterogram 
data [42,43] (see Table 1, summary of this Study, for these 
studies).

Finally, the employment of deep learning for predicting pre-
term birth is addressed here. Different kinds of deep learning 

have been utilized for different types of data, i.e., convolu-
tional vs. recurrent network for image vs. sequence data. The 
convolutional neural network uses convolutional, rectified-
linear-unit, pooling, and fully-connected layers to acquire 
the global context of input information [44]. In the recurrent 
neural network, current output depends on current input 
and the memory of the network in a “recurrent” pattern [45]. 
Recent research employed a recurrent neural network en-
semble for the early diagnosis of extreme preterm birth (birth 
before the 28th week of gestational age) [46]. The data 
source of this study was electronic health records on 25,689 
deliveries at the Vanderbilt University Medical Center. The re-
current neural network ensemble (0.965, 0.827) performed 
better than did logistical regression (0.819, 0.749) and the 
support vector machine (0.660, 0.728) in terms of sensitivity 
and the AUC, respectively. In a similar context, other recent 
research employed a 3-dimensional convolutional neural 
network for the early diagnosis of preterm birth [47]. Nota-
bly, a relevance score was assigned to each input voxel in a 
backpropagation algorithm (layer-wise relevance propaga-
tion). Data came from 157 magnetic resonance imaging (MRI) 
scans of newborns with 23-42 weeks of gestational age. The 
performance indicators of the convolutional neural network 
were very good in terms of accuracy (94%), the true positive 
rate (100%) and the true negative rate (86%).

2. Abnormal fetal growth
A recent study used machine learning and ultrasound mea-
sures for the prediction of estimated fetal weight [48]. Data 
of 24,910 obstetric patients and their newborns enrolled 
in the Magee Obstetric Medical and Infant database from 
the University of Pittsburgh Medical Center was evaluated. 
Estimated fetal weight was the dependent variable, and 
five independent variables were accordingly considered, i.e., 
gestational age at delivery, parity, 1-minute/5-minute Apgar 
scores, and newborn’s gender. The random forest (96.2) was 
better than the decision tree (104.9) and linear regression 
(127.5) in terms of the root mean squared error. This is one 
of the first machine-learning studies with clinical and sono-
graphic markers for the prediction of newborns’ estimated 
fetal weight.

The aim of another recent study was to employ linear re-
gression and ultrasound measures for the prediction of ges-
tational weeks [49]. The source of data was 4,299 mother-
newborn pairs enrolled in a multi-center study (International 
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Table 1. Summary of this study

Study Method Sample size Data type Performance Important predictors
Goodwin et al. 

[18] (2001)
ANNa)

DT
LR

19,970 Numeric AUC: 0.65-0.68 For the prediction of preterm birth  
Age, race, region, religion, education, insurance, 
marriage

Lee and Ahn 
[20] (2019)

ANNa)

DT
LRa)

NB
RFa)

SVMa)

596 Numeric Accuracy: 0.89-0.92  
AUC: 0.62-0.64

For the prediction of preterm birth
- Body mass index 
- Hypertension 
- Diabetes mellitus 
- Prior cone biopsy 
- Parity 
- Cervical length age 
- Prior preterm birth 
- Myomas & adenomyosisb)

Lee et al. [21] 
(2020)

ANN
DT
LRa)

NB
RFa)

SVM

731 Numeric Accuracy: 0.79-0.87  
AUC: 0.54-0.76

For the prediction of preterm birth
Top 01-10

- Body mass index delivery/pregestational
- Age
- Parity
- Blood pressure predelivery systolic/diastolic
- Twin
- Education (below high school graduation)
- Newborn sex
- Prior preterm birth

Top 11-17
- Medication history 
- Progesterone 
- Upper gastrointestinal tract symptom
- Gastroesophageal reflux disease
- Helicobacter pylori
- Region (urban)
- Medication history
- Calcium-channel-blocker
- Gestational diabetes mellitusb)

Koivu and 
Sairanen [41] 
(2020)

ANNa)

DT
LR

16,340,661 Numeric Sensitivity: 0.22-0.24  
AUC: 0.62-0.64

For the prediction of preterm birth
Demographic

- Age
- Body mass index
- Education 
- Marital status
- Pre-pregnancy smoking
- Previous terminations
- Race
- Special Nutritional program
- Weight

Obstetric
- Diabetes pre-pregnancy/gestational
- Hypertension pre-pregnancy/gestational
- Hypertension eclampsia
- Infertility medication/treatment
- Parity
- Previous cesarean section
- Previous preterm birth
- Assisted reproductive technology 
- Chlamydia 
- Gonorrhea 
- Hepatitis C 
- Syphilis 
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Fetal and Newborn Growth Consortium for the 21st Century 
Study). The number of gestational weeks was the dependent 
variable, and three independent variables were included ac-
cordingly, that is, abdominal circumference, femur length, 
and head circumference. The accuracy of linear regression 
was defined as the percentage of correct predictions within 

1 week, and it was above 0.99. This is one of the earliest 
machine-learning studies with clinical and sonographic mark-
ers for the prediction of gestational weeks.

Two recent studies involved the combination of machine 
learning and ultrasound measures to predict intrauterine 
growth restriction [50,51]. Data were obtained from 120 and 

Study Method Sample size Data type Performance Important predictors

Fergus et al. 
[42] (2013)

DT
LR
SVMa)

300 Electrohysterogram Specificity: 0.86-1.00 
AUC: 0.60-0.61

For the prediction of preterm birth  
Uterine electrical signals (root mean squares, peak 
frequency, median frequency, sample entropy)

Gao et al. [46] 
(2019)

LR
RNNa)

SVM

25,689 Text (5,602,792 
medical concepts)

Sensitivity: 0.66-0.97 
AUC: 0.73-0.83

For the prediction of preterm birth  
Twin pregnancy, short cervical length, 
hypertensive disorder, systemic lupus 
erythematosus, hydroxychloroquine sulfate

Grigorescu 
et al. [47] 
(2019)

CNN 157 Magnetic 
resonance 
imaging

Accuracy: 0.94 For the prediction of preterm birth  
Increased cerebrospinal fluid and reduced cortical 
folding due to impaired brain growth

Naimi et al. 
[48] (2018)

DT
LR
RFa)

24,910 Numeric RMSE: 96.2-127.5 For the prediction of estimated fetal weight  
Gestational age at delivery, parity, 1-minute/ 
5-minute Apgar scores, newborn’s gender

Fung et al. [49] 
(2020)

LR 4,299 Numeric Accuracy: 0.99 For the prediction of gestational weeks  
Abdominal circumference, femur length, head 
circumference

Signorini et al. 
[50] (2020)

DT
LR
NB
RFa)

SVM

120 Numeric Accuracy: 0.85-0.91 
Sensitivity: 0.85-0.93 
Specificity: 0.83-0.95

For the prediction of intrauterine growth restriction  
Maternal age, gestational age at 
cardiotocography, newborn’s gender, newborn’s 
weight, 1-minute/5-minute Apgar scores, delivery 
mode 

Pini et al. [51] 
(2021)

SVM 262 Numeric Accuracy: 0.93 
Sensitivity: 0.93 
Specificity: 0.84

For the prediction of intrauterine growth restriction  
Maternal age, gestational age at 
cardiotocography, newborn’s gender, newborn’s 
weight, 1-minute/5-minute Apgar scores, delivery 
mode 

Lee et al. [52] 
(2021)

ANN
LRa)

RF

3,159 Numeric RMSE: 1.44-12.44 For the prediction of newborn’s body mass index  
The first abdominal circumference and estimated 
fetal weight in the week 36 or later, gestational 
age at delivery, the first abdominal circumference 
during the week 21 - the week 35, maternal 
body mass index at delivery, maternal weight at 
delivery and the first biparietal diameter in the 
week 36 or laterb)

Sridar et al. 
[53] (2019)

CNN 4,074 Red-green-blue 
imaging

Accuracy: 0.97 For the prediction of fetal structures  
14 fetal structures including abdomen, arm, 
blood vessels, cord insertion, face, femur, foot, 
genitals, hand, head, heart, kidney, leg and spine 

ANN, artificial neural network; DT, decision tree; LR, linear regression (fetal growth)/logistic regression (preterm birth); AUC, area under the re-
ceiver operating characteristic curve; NB, naïve bayes; RF, random forest; SVM, support vector machine; RNN, recurrent neural network; CNN, 
(3-dimensional) convolutional neural network; RMSE, root mean squared error. 
a)Method with the best performance; b)Predictors listed on the basis of the variable importance ranking of the random forest.

Table 1. Continued
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262 mother-newborn pairs in Italy’s obstetrics and gynecolo-
gy clinics, respectively. The dependent variable was intrauter-
ine growth restriction, and seven independent variables were 
considered accordingly, i.e., maternal age, gestational age 
at cardiotocography, newborn’s gender, newborn’s weight, 
1-minute/5-minute Apgar scores, and delivery mode. In the 
first study, the random forest was the best model in terms of 
accuracy (0.91). In the second study, the support vector ma-
chine was the only model used, and its accuracy was slightly 
higher (0.93) than its random-forest counterpart in the first 
study with a smaller sample size. The ranges of sensitivity 
and specificity were 0.85-0.93 and 0.83-0.95, respectively, in 
these studies. These studies showed that machine learning 
can be an effective non-invasive tool, together with clinical 
and sonographic markers, to predict intrauterine growth re-
striction.

The most recent was the first machine-learning study for 
the prediction of newborn’s body mass index from 64 ultra-
sound-maternal-delivery variables [52]. This study included 
3,159 mother-newborn pairs enrolled in the Korean Society 
of Ultrasound in Obstetrics and Gynecology Research Group 
Study (a multi-center retrospective study). Variable importance 
was employed to find important predictors of newborn’s 
body mass index among ultrasound-maternal-delivery infor-
mation. For the prediction of newborn’s body mass index, 
linear regression (2.0744) and the random forest (2.1610) 
performed better than did artificial neural networks with 
one, two, and three hidden layers (150.7100, 154.7198, and 
152.5843, respectively) in terms of the mean squared error. 
Based on the findings of this study, (1) the week 36 or later 
is the best period for taking the ultrasound measures and (2) 
abdominal circumference and estimated fetal weight are the 
best predictors of newborns’ body mass index, together with 
gestational age and maternal body mass index at delivery.

Finally, one recent study applied the convolutional neural 
network (Alex) for ultrasound image data to predict each 
of fetal structures [53]. The fetal structures were related to 
abnormal fetal growth; hence, this study could be included 
in this review. Data was obtained from 4,074 ultrasound im-
ages (red-green-blue format) in the University of Sydney Ne-
pean Center for Perinatal Care. The dependent variable was 
binary (no vs. yes) and 14 fetal structures were considered in 
the study (abdomen, arm, blood vessels, cord insertion, face, 
femur/humerus, foot, genitals, hand, head, heart, kidney, 
leg, and spine). The accuracy of Alex varied from 0.94 (face) 

to 0.99 (cord insertion, femur, genitals, head). Its mean ac-
curacy was 0.97. The results of this study are expected to aid 
in the derivation of new indicators of fetal structures (and 
abnormal fetal growth in a broad context).

Summary of this study

The summary of our study (review) is shown in Table 1. 
The table has five summary indicators, including artificial 
intelligence approach, sample size, data type, performance 
indicators, and important factors (independent variables). 
Based on the results of this study, different machine learning 
methods would be appropriate for different kinds of data 
regarding the early diagnosis of maternal-fetal conditions: lo-
gistic regression (numeric), the random forest (numeric), the 
support vector machine (electrohysterogram), the artificial 
neural network (numeric), the convolutional neural network 
(image), and the recurrent neural network (text). The per-
formance indicators registered variations with the following 
ranges: 0.79-0.99 (accuracy); 0.54-0.83 (the AUC); 0.22-0.97 
(sensitivity); and 0.86-1.00 (specificity). Artificial intelligence 
is a data-driven method; hence, further research needs to be 
performed for more external validation.

Recent expansion of artificial 
intelligence in maternal-fetal medicine

Recent research into predicting postpartum hemorrhage is 
very interesting. Venkatesh et al. [54] defined postpartum 
hemorrhage as a minimum of 1,000 mL of blood loss and 
considered 55 risk factors. Among the 152,279 births, 7,279 
(4.8% and 95% confidence interval [CI], 4.7-4.9) suffered 
postpartum hemorrhage. The extreme gradient boosting 
model had the highest performance in predicting postpar-
tum hemorrhage (C statistic, 0.93; 95% CI, 0.92-0.93) fol-
lowed by random forests (C statistic, 0.92; 95% CI, 0.91-
0.92). Lasso regression models (C statistics, 0.87; 95% CI, 
0.86-0.88) and logistic regression (C statistics, 0.87; 95% 
CI, 0.86-0.87) were shown to have low but good predictive 
capabilities. The above results retained their predictive power 
regardless of time and place. Although decision curve analy-
sis provided excellent net benefits for all models when the 
threshold was between 0% and 80%, the extreme gradient 
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boosting model showed the greatest net benefits [54].
There has also been a recent study for applying machine 

learning models to clinical and laboratory features of women 
with intrahepatic cholestasis of pregnancy to create algo-
rithms for identifying patients without bile acid measure-
ments. The study included 336 pregnant women suffering 
from rash-free pruritus during the second and third trimes-
ters, using demographic, obstetrical, clinical and laboratory 
data to predict bile acid level ≥10 mol/L. As a result, the XGB 
Classifier model was the most accurate (AUC, 0.9), followed 
by the K-neighbors model (AUC, 0.86), and the support vec-
tor classification model (AUC, 0.82). The model with the low-
est predictive capability was logistic regression (AUC, 0.72). 
The sensitivity of the XGB model was 86%, and its specificity 
was 75% [55].

Postpartum complications are difficult to predict and, if 
they actually occur, these place a heavy medical and so-
cioeconomic burden on mothers and their families. From 
January 2009 to October 2015, machine learning analysis 
of predictions of postpartum complications using data from 
all live births (n=422,509) in Queensland, Australia showed 
hypertension disorder (AUC, 0.879; 95% CI, 0.846-0.912) 
and postpartum wound infections (AUC, 0.856; 95% CI, 
0.838-0.873). The authors argued that usage of such meth-
ods could play an important role in determining the risk of 
postpartum complications in advance [56].

Shoulder dystocia must be the least accessible clinical situ-
ation for obstetricians. A recent study presents a good model 
for predicting shoulder dystocia using machine learning. Fol-
lowing the application of the inclusion and exclusion criteria, 
the derivation cohort included 686 singleton vaginal deliver-
ies, of which 131 cases had shoulder dystocia. In the valida-
tion cohort, there were 2,584 deliveries, of which 31 cases 
had shoulder dystocia. In the derivation cohort, machine 
learning models provided significantly better predictive pow-
er than current clinical guidance based on fetal weight and 
gestational diabetes (AUC, 0.793±0.041 vs. 0.745±0.044; 
P=1e-16). Furthermore, the model showed better predictive 
power than adjusted estimated fetal weight among 273 fe-
male subgroups, with a fetus of EFW≥4,000 g in the valida-
tion cohort (AUC, 0.775 vs. 0.548, P=0.0002) [57].

Poor neonatal prognosis caused by labor is also a very 
important issue for obstetricians. The machine learning 
model for 1,346 cases (1.8%) with severe adverse neonatal 
outcomes (SANO) among 73,868 single-child pregnancies 

showed an AUC of 0.761 (95% CI, 0.748-0.774). A third 
(33.5%; n=24,721) of cohorts were assigned to high-risk 
groups for SANOs, and SANOs in these high-risk groups 
were found to occur more frequently than in low-risk groups 
(odds ratio, 5.3; 95% CI, 4.7-6.0; high risk vs. low risk) [58].

The applicability of machine learning models also appears 
to be high in predicting successful vaginal delivery. Using 
the model, we calculated an AUC of 0.817 (95% CI, 0.811-
0.823). Models containing cervical exam data showed that 
their AUC increased to 0.917 (95% CI, 0.913-0.921) at the 
end of stage 1 of labor [59]. The trial of labor after cesarean 
(TOLAC) selection is very important for the success of the vir-
tual birth after cesarean delivery. Machine learning algorithm 
for TOLAC analyses with 989 cases demonstrated more ac-
curate predictive power than conventional maternal–fetal 
medicine units calculator (0.351 vs. 0.325, P=0.0002) [60]. 

Continuous fetal heart rate monitoring is widely used to 
monitor fetal heart rate and uterine contraction as a means 
of detecting fetal distress. Fetal heart rate monitoring leads 
to a decrease in neonatal seizures; however, it is associated 
with an increase in C-sections and instrumental vaginal birth 
rates. A recent study has shown that artificial intelligence 
algorithms based on fully convolutional networks can predict 
non reassuring fetal heart rate patterns with an accuracy of 
AUC 0.892 [61]. There are also reports of successful abnor-
mal fetal heart rate pattern and fetal electrocardiogram pre-
diction using deep learning [62].

Artificial intelligence shows many possibilities in maternal-
fetal imaging techniques. In particular, it is expected to play 
its role in screening and diagnosis of abnormal findings. In 
particular, the application of ultrasound artificial intelligence 
may be useful in probe guidance, fetal biometrics plane find-
er, anomaly scan completeness, anomaly highlighting, and 
cyst classification [63]. One example is the effort to detect 
changes in fetal heart structures or facial expressions using 
artificial intelligence technologies [64,65].

Efforts to apply artificial intelligence algorithms to prenatal 
genetic diagnoses have long been made and have shown 
good results [66]. Recently, there have been many advances 
in research, including predicting pregnancy rates with fetal 
MRI using deep learning, discriminating maternal and fetal 
anatomy with MRI and ultrasound, obtaining diagnostic help 
using photographs of the placenta, and detecting fetal heart 
abnormalities [67-70].

Finally, there is an emerging body of literature on the ap-
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plication of machine learning with gestational diabetes or 
hypertension as the dependent variable [71-74]. The inde-
pendent variables of machine-learning studies on gestational 
diabetes [71,72] include age, blood pressure, body mass 
index, diabetes pedigree function, education (elementary, 
junior high school, senior high school, and university), fast-
ing plasma glucose, gestational diabetes history, pregnancies 
(number), serum insulin, skin-fold thickness, and smoking. 
The AUCs of these models vary among naïve Bayes (0.892), 
logistic regression (0.919), random forest (0.939), adaptive 
boosting (0.971), gradient boosting (0.973), and XGBoost-
ing (0.993). Likewise, the independent variables of machine-
learning research on gestational hypertension [73,74] include 
age, ethnicity, pre-pregnancy and pregnancy height, weight, 
and body mass index, chronic hypertension, chemical and 
hemodynamic factors, abortion, gravidity, parity, cesarean 
delivery, and gestational age. The accuracy values of XG-
Boosting [73] and the support vector machine [74] belong 
to the range of 0.81-0.93. These studies demonstrate that 
machine learning can be an effective tool for the diagnosis 
of gestational diabetes or hypertension.

Current limitations and future 
perspectives

Existing research on artificial intelligence for the early diagno-
sis of maternal-fetal conditions has several limitations. First, 
a cross-sectional design is still common in these studies, and 
data improvement with a longitudinal design would hence 
strengthen the performance of artificial intelligence in this 
area. Second, these studies had not analyzed the possible 
mediating effects among predictors for the early diagnosis 
of maternal-fetal conditions. Third, usage of big data (e.g., 
national health insurance claims data) would be a good strat-
egy for future studies. Fourth, whether binary categories (no, 
yes) are common for maternal-fetal conditions and analyzing 
various factors of maternal-fetal conditions based on more 
refined categories will be an interesting issue for future re-
search. Fifth, the literature is lacking and more examination is 
needed on possible pathways between gastroesophageal re-
flux disease and maternal-fetal conditions [21]. Sixth, uniting 
different kinds of deep learning methods for different types 
of maternal-fetal data would bring forth more profound clin-
ical implications. Seventh, little research has been conducted 

on ethical issues for the application of artificial intelligence in 
maternal-fetal conditions. It is not surprising given that the 
application of artificial intelligence in this area has started to 
expand very recently. Nevertheless, if the current trend con-
tinues, this situation is expected to change, and professionals 
in maternal-fetal conditions would have to devote more at-
tention to these issues and discuss them thoroughly. Finally, 
no basic or translational research has been performed on the 
basis of artificial intelligence regarding maternal-fetal condi-
tions.

This study reviewed recent advances on the application of 
artificial intelligence for the early diagnosis of various mater-
nal-fetal conditions such as preterm birth and abnormal fetal 
growth. Based on the findings of this study, it is observed 
that artificial intelligence provides a potential for an effective 
non-invasive decision support system for the early diagnosis 
of maternal-fetal conditions.

Conclusion

As in other medical or academic fields, the application of 
artificial intelligence technologies in maternal-fetal medicine 
has seen an exponential increase in the number recently and 
it is getting increasingly utilized in diagnostic and therapeutic 
medical decisions. Although classical statistical techniques so 
far have made significant progress in disease causes, patho-
physiology, diagnosis, treatment, and prognosis prediction, 
artificial intelligence technologies appear to be the basis and 
the next standard methodology for the huge wave of data-
based Fourth Industrial Revolution [75]. Since maternal-fetal 
medicine deals with two lives (mother and fetus), stricter 
ethical standards will be needed for the application of artifi-
cial intelligence technologies; hence, more attention should 
be paid to the amount, quality, and accuracy of data and 
research inputs in this direction.
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