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Abstract
Key message  GWAS identifies candidate gene controlling resistance to anthracnose disease in white lupin.
Abstract  White lupin (Lupinus albus L.) is a promising grain legume to meet the growing demand for plant-based protein. 
Its cultivation, however, is severely threatened by anthracnose disease caused by the fungal pathogen Colletotrichum lupini. 
To dissect the genetic architecture for anthracnose resistance, genotyping by sequencing was performed on white lupin 
accessions collected from the center of domestication and traditional cultivation regions. GBS resulted in 4611 high-quality 
single-nucleotide polymorphisms (SNPs) for 181 accessions, which were combined with resistance data observed under 
controlled conditions to perform a genome-wide association study (GWAS). Obtained disease phenotypes were shown to 
highly correlate with overall three-year disease assessments under Swiss field conditions (r > 0.8). GWAS results identified 
two significant SNPs associated with anthracnose resistance on gene Lalb_Chr05_g0216161 encoding a RING zinc-finger 
E3 ubiquitin ligase which is potentially involved in plant immunity. Population analysis showed a remarkably fast linkage 
disequilibrium decay, weak population structure and grouping of commercial varieties with landraces, corresponding to the 
slow domestication history and scarcity of modern breeding efforts in white lupin. Together with 15 highly resistant acces-
sions identified in the resistance assay, our findings show promise for further crop improvement. This study provides the basis 
for marker-assisted selection, genomic prediction and studies aimed at understanding anthracnose resistance mechanisms in 
white lupin and contributes to improving breeding programs worldwide.

Introduction

White lupin (Lupinus albus L., 2n = 50) is a grain legume 
with a high-protein content and various health benefits that 
shows great potential to complement soybean and meet the 
growing demand for plant-based protein (Abraham et al. 
2019; Annicchiarico 2008; Lucas et al. 2015). White lupin is 

believed to originate from the North-Eastern Mediterranean, 
where wild forms (var. graecus) still persist, and has been 
cultivated for more than 4000 years across the Mediterra-
nean and Eastern Africa (Wolko et al. 2011). Domestication 
of white lupin has been slow and systematic breeding efforts 
scarce. In general, lupin species have long been considered 
valuable assets in crop rotations due to their unique symbio-
sis with Bradyrhizobium lupini, making them highly efficient 
nitrogen fixers (Fernández-Pascual et al. 2007; Peix et al. 
2015). Specifically, white lupin is one of the few crops that 
form specialized cluster roots, which increase phosphorus 
availability by carboxylate secretion, significantly increas-
ing soil fertility (Gallardo et al. 2020; Lambers et al. 2013). 
Since the development of sweet low alkaloid varieties (Kroc 
et al. 2017), white lupin has become increasingly interesting 
for the food and feed industry (Lucas et al. 2015).

Cultivation of lupins, however, is severely compromised 
by the seed- and air-borne fungal pathogen Colletotrichum 
lupini, causing lupin anthracnose (Nirenberg et al. 2002; 
Talhinhas et al. 2016). Infected seeds (primary infection) 
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and rain-splash dispersal (secondary infection) can cause 
total yield loss under favorable conditions (Thomas and 
Sweetingham 2004; White et al. 2008). Typical symptoms 
are stem twisting and bending and necrotic lesions on stems 
and pods (Alkemade et al. 2021b). Colletotrichum lupini 
is a member of the C. acutatum species complex (clade 1), 
which contains numerous important plant pathogens (Damm 
et al. 2012). Contrary to the broad host range seen for most 
members of this complex, C. lupini is host specific to mem-
bers of the genus Lupinus (Baroncelli et al. 2017; Talhinhas 
et al. 2016). The current lupin anthracnose outbreak started 
in the 1970s and coincided with a decrease in lupin produc-
tion worldwide, especially in Europe (FAOSTAT 2021). The 
pandemic is caused by a globally dispersed and genetically 
uniform group (II) of highly aggressive strains originating 
from South America (Alkemade et al. 2021b; Dubrulle et al. 
2020a). Little is known about the interaction between C. 
lupini and its host, but a hemibiotrophic lifestyle is con-
sidered likely (De Silva et al. 2017; Dubrulle et al. 2020b).

Disease management of anthracnose in white lupin is cur-
rently focused on planting pathogen-free seed and chemi-
cal control, although the latter strategy is not available for 
the organic sector and is considered problematic due to 
adverse environmental effects (Thomas et al. 2008; White 
et al. 2008). The dispersal of infected symptomless seeds 
is believed to be the most likely cause of the rapid spread 
of C. lupini strains across the globe. Advanced molecular 
diagnostics to determine infection levels are developed, but 
are not yet routinely available (Kamber et al. 2021; Pec-
chia et al. 2019). Breeding for resistance is therefore likely 
to be the most sustainable solution. However, no complete 
resistance has yet been found in white lupin and the trait is 
considered polygenic (Adhikari et al. 2009; Alkemade et al. 
2021a; Jacob et al. 2017). Quantitative trait locus (QTL) 
mapping of anthracnose resistance using a recombinant 
inbred line population formed with the highly resistant Ethi-
opian landrace (P27174) and the susceptible cultivar Kiev 
Mutant revealed three major resistance QTLs in an Austral-
ian experiment (Książkiewicz et al. 2017; Phan et al. 2007; 
Yang et al. 2010). Unfortunately, accessions selected based 
on these QTLs did not show increased resistance either 
under controlled or Swiss field conditions (Alkemade et al. 
2021a). The development of a high-throughput phenotyp-
ing system for field-relevant anthracnose resistance, together 
with the availability of a high-quality white lupin reference 
genome (Hufnagel et al. 2020), allows for more in-depth 
genomic studies. Genome-wide association studies (GWAS) 
have proved to be a valuable tool to determine the underly-
ing genetics of quantitative traits in diverse populations and 
have led to the discovery of single-nucleotide polymorphism 
(SNP) markers and candidate genes associated with traits 
of interest for numerous crops (Liu and Yan 2019). As an 
example, GWAS was recently used with the closely related 

blue lupin (L. angustifolius L.) to identify SNP markers for 
pod shattering (Mousavi-Derazmahalleh et al. 2018b) and 
climatic adaptation (Mousavi-Derazmahalleh et al. 2018a).

The aim of this study was to identify SNP markers and 
candidate genes associated with anthracnose resistance 
in white lupin. A collection of 200 white lupin cultivars, 
breeding lines and landraces, originating from across the 
Mediterranean and important cultivation regions, was geno-
typed-by-sequencing (GBS) and phenotyped for anthracnose 
resistance under controlled conditions. These accessions 
were shown to be variable for key agronomic traits (Annic-
chiarico et  al. 2010) such as drought tolerance (Annic-
chiarico et al. 2018) and grain yield (Annicchiarico et al. 
2019). Understanding the genetic architecture of anthracnose 
resistance in white lupin will provide crucial information to 
support further crop improvement.

Material and methods

Germplasm collection

White lupin (Lupinus albus L.) accessions were collected 
across the Mediterranean region, Atlantic islands, Eastern 
Africa, Europe, Chile and Australia from seed genebanks 
and local partners. The accessions are described in Elec-
tronic Supplemental Material 1 (ESM_1). In total, the 200 
accessions include commercial cultivars, breeding lines and 
traditional land races. The collection includes a large num-
ber of landraces from CREA’s white lupin world collection 
(Annicchiarico et al. 2010), widely studied accessions such 
as Amiga, Feodora, Kiev Mutant and P27174 (Adhikari 
et al. 2009; Hufnagel et al. 2021), and recently discovered 
anthracnose-resistant lines (Alkemade et al. 2021a).

Disease phenotyping

The white lupin collection was phenotyped for anthrac-
nose resistance under controlled conditions (25 ± 2 °C, 
16 h light and 70% relative humidity) using the high-
throughput protocol described by Alkemade et al. (2021a). 
Stem wound inoculations were performed with the highly 
virulent Colletotrichum lupini strain JA01 (genetic group 
II; Alkemade et al. (2021b)). Disease was assessed at 3, 
7 and 10 days post-inoculation (dpi) with a 1 to 9 disease 
score index (DSI), with 1 being healthy and 9 completely 
diseased (Alkemade et al. 2021a). At 10 dpi, lesion size, 
stem length and shoot fresh weight were determined. The 
overall disease score (based on the three DSI assessments) 
is expressed as the standardized area under the disease 
progress curve (sAUDPC, Jeger and Viljanen-Rollinson 
(2001)), the lesion size as relative to overall stem length 
(LSrel), and the shoot fresh weight is expressed relative to 
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a control (SFWrel). All of the experiments were performed 
in a randomized complete block design with a minimum 
of 8 replicates per accession.

Field trials

Phenotypic data obtained under controlled conditions of 
twelve selected accessions, ranging from susceptible to 
resistance, were compared to phenotypic data of these twelve 
accessions acquired over three-year field trials in Switzer-
land (ESM_1). Field trials were performed within six row 
plots according to Alkemade et al. (2021a) at three distinct 
sites: Mellikon (47°34′05.3"N 8°21′19.3″E) in 2018 and 
2019, Full-Reuenthal (47°36′02.8″N 8°11′35.2″E) in 2020 
and Feldbach (47°14′20.0″N, 8°47′18.8″E) in 2018, 2019 
and 2020. Trials performed in 2018 and 2019 are described 
in Alkemade et al. (2021a). In 2020, in Full-Reuenthal plot 
sizes were 1.32 × 3.5 m and in Feldbach plot sizes were 
1.5 × 2.7 m with a seed density of 65 seed/m2. Total field size 
was 304 m2 in Full-Reuenthal and 259 m2 in Feldbach. Tri-
als were performed in a randomized complete block design 
consisting of 4 replicates. The field trials relied on natural 
infection and were scored 80, 100 and 135 days after sowing. 
The DSI ranged from 1 (healthy) to 9 (dead), as described 
in Alkemade et al. (2021a). The sAUDPC and yield (dt/ha) 
were determined.

Phenotypic data analysis

Statistical analyses of the phenotypic data were performed 
within R 4.0.3 (R Core Team 2020) using the packages lme4 
(Bates et al. 2015), lmerTest (Kuznetsova et al. 2017) and 
emmeans (Lenth et al. 2019), following a mixed model. The 
factors of interest (i.e., accession) were included as fixed 
effects, while environment, environment x accession and 
replicated block nested in environment were fitted as ran-
dom factors, after confirming the assumptions of normality 
of residuals and homogeneity of variance. To achieve a nor-
mal distribution, data were transformed with a square root 
(yield), log10 (SFWrel), square (sAUDPCCC), or logit (LSrel) 
transformation. The mean separation between accessions 
and the overall mean of all accessions combined was ana-
lyzed using Dunnett’s test (P ≤ 0.05). The data are presented 
as non-transformed estimated least-squares means obtained 
using the aforementioned mixed model. Estimated means 
of controlled and field conditions were correlated using the 
Pearson correlation coefficient. Broad sense heritability (H2) 
was estimated as: genotypic variance/phenotypic variance 
(Toker 2004).

Genotyping and SNP calling

Genomic DNA was isolated from leaf tissue of three week 
old plants using DNeasy Plant Mini Kit (Qiagen, Hilden, 
D) and quantified with a Quant-iT™ PicoGreen™ dsDNA 
Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA). 
Samples were genotyped in four different batches referred to 
as TX2016-1 (88 samples), TX2016-2 (32 samples), EL2018 
(40 samples) and EL2020 (40 samples), using slightly dif-
ferent procedures as follows:

Genotyping-by-sequencing (GBS) libraries for TX2016-1 
and TX2016-2 were prepared with a modified Elshire et al. 
(2011) protocol. DNA samples (100 ng) were digested with 
restriction enzyme ApeKI (New England Biolabs, Ipswich, 
MA, USA) and ligated to unique barcodes and common 
adapters. Equal volumes of ligated products were pooled 
and purified with NucleoSpin Gel and PCR Clean-up (Mach-
erey–Nagel, Düren, D). Template DNA (50 ng) was mixed 
with two primers (ESM_2) and KAPA Library Amplifica-
tion Readymix (Roche, Basel, CH). Amplification steps were 
as follows: 5 min at 72 °C, 30 s at 98 °C and 10 cycles with 
10 s at 98 °C, 30 s at 65 °C and 30 s at 72 °C. Sequenc-
ing was performed at the University of Texas (USA) on 
four Illumina HiSeq 2000 (Illumina Inc., San Diego, CA, 
USA) lanes, at 100 bp single end. DNA samples for libraries 
EL2018 and EL2020 were sent to The Elshire Group Ltd. 
(Palmerston North, New Zealand) for library preparation and 
sequencing. Library preparation was performed according to 
Elshire et al. (2011) as described above with the following 
changes: libraries were amplified with 14 PCR cycles and 
prepared using a KAPA HyperPrep Kit (Roche, Basel, CH) 
following the manufacturer’s instructions. Sequencing was 
performed on a single Illumina HiSeq X lane, at 2X150 bp 
paired end.

GBS raw reads were demultiplexed using axe demulti-
plexer (Murray and Borevitz 2018). Trimming for restriction 
enzyme remnants, alignment on reference genome and SNP 
calling were performed using the dDocent pipeline (Puritz 
et al. 2014). For alignment we used the L. albus genome 
version 1.0 (Hufnagel et al. 2020) which was downloaded 
from https://​www.​white​lupin.​fr/. The final genotype matrix, 
in the form of a vcf file, was further filtered for quality using 
the vcftools software (Danecek et al. 2011) with parame-
ters − minQ 30 − max-non-ref-af 1 –non-ref-af 0.001. The 
resulting data set of 246,279 SNPS was filtered for mono-
morphic markers, minor allele frequency (MAF) < 5%, 
missing SNP marker rate > 10%, and a missing rate per indi-
vidual > 20% (Pavan et al. 2020). Genotypes that deviated 
with 3 SD from the mean heterozygosity rate were removed 
(Marees et al. 2018). Missing data were imputed through 
Beagle (Browning and Browning 2016) within statgenGWAS 
(van Rossum et al. 2020) in R, resulting in 4611 high-quality 
SNPs for 181 accessions (ESM_3).

https://www.whitelupin.fr/
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Linkage disequilibrium and population structure

Linkage disequilibrium (LD) of SNP markers was calcu-
lated as the pairwise squared correlation coefficient (r2) 
between markers using LD.decay in R (Laido et al. 2014). 
Significant (P ≤ 0.05) pair-wise LD estimates were used 
to calculate average LD decay within a sliding window 
of 5 kb. LD decay was visualized by plotting r2 estimates 
against genetic distance (kb). A pairwise distance matrix 
derived from Euclidean distance of the full SNP dataset 
was calculated in R to construct a Ward Hierarchical clus-
tering tree (Murtagh and Legendre 2014) with 1000 boot-
straps using pvclust in R (Suzuki and Shimodaira 2006). 
The tree was generated with ape (Paradis and Schliep 
2019) in R and modified in iTOL v 6.1 (Letunic and Bork 
2007). Principal component analysis (PCA) was performed 
using the prcomp function in R based on 1,292 SNPs fil-
tered for a MAF > 20 and physical distance > 2.5 kb. An 
Astle kinship matrix (Astle and Balding 2009) was gen-
erated using statgenGWAS in R using the pruned SNP 
dataset.

Genome‑wide association mapping

A genome-wide association study (GWAS) was performed 
on 181 accessions and 4,611 SNPs using estimated least-
square means for the traits disease score (sAUDPC), LSrel 
and SFWrel. The association between SNPs and pheno-
types was determined by performing a single-trait GWAS 
following a single-locus mixed linear model (MLM) and 
multi-locus Bayesian information and linkage disequilib-
rium iteratively nested keyway (BLINK) model (Huang 
et al. 2019). MLM was performed within statgenGWAS in 
R following the method described in Kang et al. (2010). 
The first ten principal components (PCs) were included 
as covariates to control for population structure, and the 
Astle kinship matrix was included to account for cryptic 
relatedness (Astle and Balding 2009; Rincent et al. 2014). 
An efficient mixed model association (EMMA) algorithm 
was used to estimate the variance components (Kang et al. 
2008). General least squares (GLS) were used to estimate 
effect size and P-value for each SNP. BLINK was per-
formed within GAPIT 3.0 (Wang and Zhang 2021) using 
the first ten PCs. A Bonferroni corrected LOD threshold 
( − log10(0.05/number of SNPs)) was used to identify sig-
nificant SNPs, and a fixed threshold of − log10(5.00E-05)) 
was used to identify low peak SNPs otherwise missed by 
the highly conservative Bonferroni threshold (Storey and 
Tibshirani 2003). SNPs within 2.5 kb and ≥ 0.5 r2 were 
considered linked. Manhattan and quantile–quantile (Q–Q) 
plots were generated within statgenGWAS.

Candidate gene selection

Candidate genes were considered when containing a sig-
nificant SNP or a SNP in LD (r2 > 0.5) with a significant 
SNP and when within 10 kb of significant SNPs. Candidate 
genes were located using the white lupin reference genome 
(v 1.0) browser (Hufnagel et al. 2020). Protein sequences 
were acquired and blasted (BLASTp) to find homologs in 
closely related species, i.e., blue lupin (L. angustifolius), 
peanut (Arachis hypogea), common bean (Phaseolis vul-
garis), soybean (Glycine max) and model species Medicago 
truncatula (LPWG 2017). The potential function of each 
candidate gene was derived from annotations, literature and 
in silico analysis.

Results

Strong differentiation and heritability 
of anthracnose‑related traits

Disease phenotyping of 200 white lupin accessions under 
controlled conditions revealed a range of resistant and sus-
ceptible accessions (Fig. 1). Strong differences between 
accessions (P < 0.0001) for all three anthracnose related 
traits, sAUDPC, LSrel and SFWrel, were observed with her-
itabilities of 0.77, 0.78 and 0.74, respectively. Significant 
(P ≤ 0.05) Pearson correlations were found between the 
three traits (r > (−)0.86; ESM_4). For twelve selected acces-
sions, strong correlations were observed between these three 
traits and the overall disease assessment means of three-
year field trials in Switzerland (r > (−)0.8; ESM_5). We did 
not observe complete resistance against anthracnose, which 
we interpret as evidence that resistance in white lupin is 
quantitative. For sAUDPC, LSrel and relative SFWrel, 8, 13 
and 2 accessions, respectively, were more resistant than the 
respective overall mean (P ≤ 0.05, ESM_1). Six of these 
accessions originated from Ethiopia, two from Chile and 
one being the newly available commercial variety Frieda. 
In contrast, seven accessions were more susceptible than the 
overall mean. Remarkably, the Ethiopian landrace P27175 
was resistant in one seed batch (FiBL 39) but susceptible 
in another (FiBL 19) and showed distinct heterozygosity 
rates of 0.77% and 32.2%, respectively (ESM_1). Resist-
ant FiBL025 (R-6020) and susceptible LAP0119b (Aster) 
seeds showed a black-speckled morphology typical for wild 
graecus types.

Weak population structure and fast LD decay

Genotyping by sequencing yielded 4611 high-quality SNPs 
for 181 accessions after filtering for monomorphic markers, 
minor allele frequency (MAF) < 5%, missing SNP marker 
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rate > 10%, missing rate per accession > 20% and heterozy-
gosity > 40% (mean Ho = 15%; ESM_1). LD decayed to 
half its maximum value at 2.9 kb (r2 = 0.45), and SNPs 
were in linkage (r2 > 0.5) over an average distance of 2.5 kb 
(ESM_6). Cluster analysis on the full SNP dataset distin-
guished 4 subgroups (I–IV) based on bootstrap support val-
ues (BS) > 90 and a branch length threshold of 10 (Fig. 2a). 
These subgroups could also be observed through PCA 
and Astle kinship analysis after pruning the SNP dataset 
(MAF > 20% and physical distance > 2.5 kb; Fig. 2b and c), 
which revealed overlap between groups II, III and IV, while 
group I was more clearly separated. Group I exclusively 
contained landraces originating from the South-East Medi-
terranean (Fig. 2a and ESM_1). Group II, which includes 
accessions from across the entire study area, encompasses 
most of the commercial cultivars and breeding lines used 
in this study (88%). A large proportion (27%) of group II 
includes landraces from North Africa, with half originat-
ing from Ethiopia. Group III consists mostly of Egyptian 
(64%) and Ethiopian (23%) landraces, with the Ethiopian 
landraces strongly clustering together (BS = 100). Group IV 
contains accessions from across the entire study area, includ-
ing lines from the Iberian Peninsula (30%) and the Atlantic 
Isles (26%). Kinship between accessions showed relatively 
close relatedness among sampled accessions (Fig. 2c).

Three significant SNPs associated with anthracnose 
resistance

To map genetic variants associated with anthracnose 
resistance, we performed a genome-wide association 
study (GWAS) following a MLM and BLINK model. We 
included the first 10 principal components (PCs) and the 

Astle kinship matrix to correct for population structure. 
The first 10 PCs explained 24% of the genetic variance. The 
resulting Q-Q plots revealed that the model was well cali-
brated, as we observed a good approximation between the 
expected and observed P-values (Fig. 3 and ESM_7). Fol-
lowing the MLM and applying a Bonferroni LOD-threshold 
of 4.96 (P = 1.08E-05), we identified two highly significant 
SNPs, Lalb_Chr05_2957601 and Lalb_Chr05_2957940, for 
both sAUDPC (P = 6.11E-09 and 2.41E-07, respectively) 
and LSrel (P = 1.55E-06 and 2.13E-06, respectively; Fig. 3 
and Table 1). Analysis with the BLINK model identified 
a significant association between Lalb_Chr05_2957601 
and sAUDPC (P = 6.58E-12) and SFWrel (P = 2.72E-07), 
and between Lalb_Chr05_2957940 and LSrel (P = 2.72E-
07; ESM_7 and Table 1). The two SNPs explained 12 to 
16% of the observed variation (R2

LR; Table 1), were not 
strongly linked with other SNPs and were found in exons of 
the same gene (Lalb_Chr05g0216161; Fig. 4). The minor 
allele frequencies (MAF) of these SNPs were 10 and 7%, 
respectively, and the non-reference alleles were significantly 
associated with increased anthracnose resistance when either 
heterozygous or homozygous (Fig. 4c). The non-reference 
alleles were only found homozygous for both SNPs in the 
Chilean accessions Fibl016 (Blu-25) and LAP0155a & b 
(Rumbo Baer), which were found to be highly resistant 
(sAUDPC = 2.55, 2.78 and 3.11, respectively).

Analysis with the BLINK model identified an additional 
SNP on chromosome 5, Lalb_Chr05_3706534 (P = 1.91E-
07), associated with LSrel (ESM_7 and Table 1). This SNP 
explained 10% of the observed variation and showed a MAF 
of 16%. The non-reference allele of this SNP was impli-
cated in decreased anthracnose resistance (ESM_8). SNPs 
Lalb_Chr05_3688076 and Lalb_Chr05_3784474 were 

Fig. 1   Phenotypic variation in three anthracnose resistance traits among 200 white lupin accessions. a Disease score (standardized area under 
the disease progress curve (sAUDPC)). b Relative lesion size (%). c Relative shoot fresh weight. Dashed line indicates overall mean
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Fig. 2   Genetic diversity and population structure of 181 white lupin 
accessions. a Ward cluster analysis (1,000 bootstraps). Colors repre-
sent subgroups (I-IV). Black dots represent bootstrap support values 
(> 90), and dotted circle indicates branch length of 10. Letters indi-
cate accession type (inner) and region of origin (outer) with Lr = lan-
drace, Cu = cultivar, Br = breeding line, A = Atlantic Isles, B = Iberian 

Peninsula, C = West and Eastern Europe, D = North-East Mediterra-
nean, E = South-East Mediterranean, F = Egypt, G = South-West Med-
iterranean, H = East Africa and I = Chile. b Principal component 
analysis (PCA). Each dot represents an accession and colors represent 
subgroups (I-IV). c Heatmap of the Astle kinship value among acces-
sions
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Fig. 3   Manhattan and corresponding Q–Q plots by MLM show-
ing SNP association with anthracnose resistance. a, b Disease score 
(standardized area under the disease progress curve (sAUDPC)). c, 
d Relative lesion size (%). e, f Relative shoot fresh weight. Upper 

dashed line indicates Bonferroni corrected LOD threshold of 4.96 
(P = 1.08E-05), and lower dotted line indicates fixed LOD threshold 
of 4.3 (P = 5.00E-05)

considered linked with Lalb_Chr05_3706534 (ESM_9). 
Other promising SNPs, above the fixed LOD threshold of 
4.3 (P = 5.00E–5)), were found on chromosome 1 (Lalb_
Chr01_3872625) for LSrel, on chromosome 13 (Lalb_
Chr13_12108967) for SFWrel and on chromosome 6 (Lalb_
Chr06_9655085) for sAUDPC (ESM_9).

Candidate genes involved in resistance pathways

Candidate genes were considered when containing a sig-
nificant SNP, a SNP linked (r2 > 0.5) to a significant SNP or 
when located within 10 kb of a significant SNP. The signifi-
cant SNPs Lalb_Chr05_2957601 and Lalb_Chr05_2957940 
are both located within an exon of the same gene: Lalb_
Chr05g0216161 (Table 1, Fig. 4d). This gene is annotated 

as a putative chromatin regulator and encodes a protein con-
taining a Von Willebrand factor type A (VWFA) as well as a 
RING zinc-finger domain (ZF; Fig. 4d). Homologs in closely 
related legume species encode for RING zinc-finger E3 ubiq-
uitin ligases, which are widely associated with plant immu-
nity (Marino et al. 2012). Lalb_Chr05_3706534 is located 
within an intron of gene Lalb_Chr05g0217341 which 
encodes a putative transcription regulator, and homologs in 
related species encode a paired amphipathic helix protein 
Sin3. Linked to this SNP is Lalb_Chr05_3784474, which 
is located within an exon of the gene Lalb_Chr05g0217471 
which encodes for a non-specific serine/threonine pro-
tein kinase (ESM_9). Homologs in closely related species 
encode leucine-rich repeat (LRR) receptor-like serine/thre-
onine-protein kinases, which are often implicated in plant 



1018	 Theoretical and Applied Genetics (2022) 135:1011–1024

1 3

Table 1   Significant SNPs and associated candidate genes

SNP single-nucleotide polymorphism, MAF minor allele frequency, R2
LR likelihood-ratio-based R2, sAUDPC standardized area under the disease 

progress curve.
a Lalb Lupinus albus, Chr chromosome, number = position on chromosome. bNot significant

Trait SNPa Allele P value MLM P value BLINK R2
LR MAF Candidate gene Annotation

Disease Score (sAU-
DPC)

Lalb_
Chr05_2957601

G/A 6.11E-09 6.58E-12 0.16 0.10 Lalb_Chr05 
g0216161

E3 ubiquitin-protein 
ligase

Lalb_
Chr05_2957940

C/T 2.41E-07 0.016b 0.13 0.07

Relative lesion size 
(%)

Lalb_
Chr05_2957601

G/A 1.55E-06 0.042b 0.12 0.10

Lalb_
Chr05_2957940

C/T 2.13E-06 3.98E-10 0.12 0.07

Relative shoot fresh 
weight

Lalb_
Chr05_2957601

G/A 2.29E-05b 2.72E-07 0.09 0.10

Lalb_
Chr05_2957940

C/T 1.81E-04b 0.11b 0.07 0.07

Relative lesion size 
(%)

Lalb_
Chr05_3706534

A/G 2.21E-05b 1.91E-07 0.10 0.16 Lalb_Chr05 
g0217341

Paired amphipathic 
helix protein Sin3-
like 4

Fig. 4   Characterization of SNP Lalb_Chr05_2957601 & -940. a 
Manhattan plot of chromosome 5, dashed line indicates Bonferroni 
corrected LOD threshold of 4.96 (P = 1.08E-05). b Linkage disequi-
librium (LD) heatmap of 20 SNPs within 500 kb of significant SNPs 
(stars). c Boxplots showing allele effect on disease score (standard-
ized area under the disease progress curve (sAUDPC)). Capital let-

ters within plot indicate significant difference (Tukey-HSD, P ≤ 0.05). 
d Candidate gene Lalb_Chr05g0216161, showing protein coding 
region (orange) and spliced non-coding RNA (blue; www.​white​lupin.​
fr) and corresponding protein KAE9613313.1 with Von Willebrand 
factor type A (VWFA) and RING zinc-finger domain (ZF; De Castro 
et al. (2006))

http://www.whitelupin.fr
http://www.whitelupin.fr
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defense against fungal pathogens (Afzal et al. 2008; Tang 
et al. 2017).

Discussion

Disease phenotypes of twelve selected accessions obtained 
under controlled conditions, strongly correlated (r > 0.8) to 
overall three-year field plot disease assessments in Switzer-
land, confirming field-relevance of high-throughput pheno-
typing under controlled conditions (Alkemade et al. 2021a). 
No complete resistance was observed, but based on sAU-
DPC, LSrel and SFWrel, a total of 15 different accessions 
showed to be significantly more resistant to anthracnose 
compared to the overall mean. High resistance was found for 
Chilean cultivar Rumbo Baer and the breeding line Blu-25, 
both of which appear to derive from a resistant landrace from 
the Azores (von Baer et al. 2009). Five resistant accessions 
originated from Ethiopia, which was previously shown to be 
a good source for white lupin anthracnose resistance (Adhi-
kari et al. 2009; Cowling et al. 1999). However, Ethiopian 
landrace P27174 (Fibl020 & 38), used as a resistant parent 
for an anthracnose resistance QTL study (Książkiewicz et al. 
2017; Yang et al. 2010), was not shown to be resistant in 
this study and in Alkemade et al. (2021a), suggesting the 
occurrence of cross-pollination or admixture. Resistance and 
heterozygosity rate in Ethiopian landrace P27175 differed 
among seed batches, suggesting differences in seed quality, 
outcrossing or that P27175 represents a mixture of geno-
types. These observed irregularities for P27174 and P27175 
should be further investigated.

White lupin has long been cultivated across the Mediter-
ranean and North-Eastern Africa, with its primary center of 
origin believed to be in the Balkans up to Western Turkey 
where wild graecus types are still found (Wolko et al. 2011). 
This study, which contains accessions collected from across 
the traditional cultivation regions of white lupin, revealed 
an exceptionally fast LD decay (2.9 kb). This fast LD decay 
is consistent with an earlier study by Hufnagel et al. (2021) 
and the fact that white lupin has a modest rate of outcross-
ing (Green et al. 1980). Studies on other grain legume spe-
cies, including pea (> 50 kb; Gali et al. (2019)), soybean 
(> 240 kb; Wen et al. (2018)), and common bean (> 1 Mb; 
Diniz et al. (2019)), as well as the closely related blue lupin 
(> 77 kb; Mousavi-Derazmahalleh et al. (2018b)), have all 
reported slower rates of LD decay. The analyzed popula-
tion showed an average heterozygosity rate of 15%, which 
is similar to observed outcrossing rates of 10% (Green et al. 
1980). The heterozygosity within the studied population 
could have reduced the power of the GWAS to detect major 
loci (Alqudah et al. 2020). Increasing sample size, marker 
coverage and creating an inbred population could improve 
the analysis.

In addition, we detected a weak population structure, 
finding four subgroups (I–IV). Principal component analysis 
showed overlap between Groups II, III and IV, while only 
Group I, exclusively containing landraces from the South-
Eastern Mediterranean, formed a clearly distinct group. 
Group III consisted primarily of Egyptian and Ethiopian 
landraces, with Ethiopian accessions strongly grouping 
together. Landraces from Ethiopia were previously reported 
to form a distinct group within white lupin (Raman et al. 
2014) and were shown to be most closely related to wild 
graecus types (Hufnagel et al. 2020, 2021), which suggests 
these landraces derived in isolation and are still little domes-
ticated. In contrast with these results, 10 of the 16 Ethiopian 
landraces collected in this study were classified in Group 
II, containing commercial cultivars and landraces from all 
across the collection area. Taken together, we interpret the 
fast LD decay, weak population structure and the grouping 
of commercial varieties with landraces to indicate that there 
have been few recent breeding events in white lupin, which 
implies that there is great potential for further crop improve-
ment of this re-emerging protein crop.

GWAS analysis by MLM and BLINK identified three 
significant SNPs, Lalb_Chr05_2957601, 2957940 and 
3706534, on chromosome 5 associated with anthracnose 
resistance. Additionally, three SNPs were identified above 
the fixed LOD threshold of 4.3 on chromosomes 1, 6 and 13. 
Compared to MLM, BLINK improved statistical power and 
removed redundant genetically linked SNPs (Huang et al. 
2019). It should be considered, however, that the genome-
wide marker coverage in this study might not have been ade-
quate to replace the polygenic effect of the kinship matrix 
and population structure by covariate markers as done in 
multi-locus methods such as BLINK (Tibbs Cortes et al. 
2021). The identified SNPs do not correspond to previously 
reported QTLs associated with anthracnose or phomopsis 
(Diaporthe toxica) resistance in white lupin (Cowley et al. 
2014; Książkiewicz et al. 2017). Corresponding candidate 
genes also do not reflect anthracnose resistance genes iden-
tified in blue lupin, including Lanr1, Anman and LanrBo 
(Fischer et al. 2015; Yang et al. 2004, 2008).

SNPs Lalb_Chr05_2957601 and 2957940 are both 
located in the same coding region of Lalb_Chr05g0216161 
which encodes for a protein with a RING zinc-finger and 
VWFA domain. The MAF for these SNPs was low, and 
non-references alleles were only homozygous in Chilean, 
Ethiopian and Moroccan accessions, but were also present in 
wild graecus types (LD37, GR38, and Batsi; Hufnagel et al. 
(2021)). Homologs in closely related legume species encode 
RING zinc-finger E3 ubiquitin-protein ligases. E3 ubiquitin-
ligases have frequently been shown to be involved in differ-
ent steps of plant immunity (Duplan and Rivas 2014; Marino 
et al. 2012; Zhou and Zeng 2017). In pepper (Capsicum ann-
uum), the RING finger protein gene, CaRFP1, containing 
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a VWFA domain, was shown to act as E3 ubiquitin ligase 
and was highly upregulated during C. coccodes infection 
(Hong et al. 2007). Other RING type E3 ubiquitin ligases 
were shown to influence resistance against Magnaporthe 
oryzae in rice (Park et al. 2016), Xanthonomas infection in 
C. annuum (Lee et al. 2011) and Ralstonia solanacearum 
in tobacco (Ghannam et al. 2016). Besides biotic stress, 
RING E3 ubiquitin ligases have shown to improve resistance 
against abiotic stresses (Cho et al. 2017; Lee and Kim 2011), 
such as drought (Cheng et al. 2012) and salt stress (Kim and 
Kim 2013), and were shown to be involved in various plant 
developmental processes (Shu and Yang 2017), such as root 
development (Sakai et al. 2012). In conclusion, the identi-
fied gene, Lalb_Chr05g0216161, might play an important 
role in anthracnose resistance in white lupin and should be 
further investigated.

SNP Lalb_Chr05_3706534 is located in the non-
coding region of Lalb_Chr05g0217341. Homologs of 
Lalb_Chr05g0217341 in closely related legume species 
encode for paired amphipathic helix protein Sin3-like 4 
proteins, which are known to be involved in powdery mil-
dew (Podosphaera fusca) resistance in cucumber (Liu et al. 
2021). SNP Lalb_Chr05_3784474 is considered linked to 
Lalb_Chr05_3706534 and is located within the gene Lalb_
Chr05g0217471 which encodes a LRR containing receptor-
like protein with a serine/threonine kinase. LRR receptor 
kinases are well known as resistance genes and for their role 
in plant immunity (Afzal et al. 2008; Ellis et al. 2000; Tang 
et al. 2017), and serine/threonine kinases were shown to be 
involved in signaling during pathogen recognition and sub-
sequent activation of plant defense mechanisms (Afzal et al. 
2008; Goff and Ramonell 2007). LRR receptor-like serine/
threonine-protein kinases were shown to confer resistance 
against apple scab (Venturia inaequalis) in apple (Padmar-
asu et al. 2018) and against rice blast (Magnaporthe grisea) 
in rice (Song et al. 2008). The fact that the three significant 
SNPs, representing two loci (Lalb_Chr05g0216161 and 
Lalb_Chr05g0217341), could only explain 16 to 34% of 
disease phenotypic variance, the identification of few low 
peak SNPs and the quantitative nature of the trait suggests 
that anthracnose resistance is under polygenic control as 
indicated by Książkiewicz et al. (2017), but the identifica-
tion of one major loci (Lalb_Chr05g0216161) could also 
imply oligogenic control.

This study showed that GWAS, thanks to the weak pop-
ulation structure, fast LD decay and the availability of a 
high-quality reference genome, is a powerful tool to identify 
resistance loci in white lupin and provides the basis for fur-
ther gene mapping. Further characterization of the E3 ubiq-
uitin ligase encoding Lalb_Chr05g0216161 gene, e.g., via 
gene expression studies, could shed first light on white lupin 
resistance mechanisms against anthracnose disease. The 
obtained dataset also provides a basis for marker-assisted 

selection and the development of genomic prediction models 
for anthracnose resistance. Overall, this study contributes to 
understanding the genetic make-up of anthracnose resistance 
in white lupin and supports future crop improvement.
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