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A multi-encoder variational autoencoder controls
multiple transformational features in single-cell
image analysis
Luke Ternes1, Mark Dane 1, Sean Gross1, Marilyne Labrie 2, Gordon Mills2, Joe Gray1, Laura Heiser 1✉ &

Young Hwan Chang 1✉

Image-based cell phenotyping relies on quantitative measurements as encoded representa-

tions of cells; however, defining suitable representations that capture complex imaging fea-

tures is challenged by the lack of robust methods to segment cells, identify subcellular

compartments, and extract relevant features. Variational autoencoder (VAE) approaches

produce encouraging results by mapping an image to a representative descriptor, and out-

perform classical hand-crafted features for morphology, intensity, and texture at differ-

entiating data. Although VAEs show promising results for capturing morphological and

organizational features in tissue, single cell image analyses based on VAEs often fail to

identify biologically informative features due to uninformative technical variation. Here we

propose a multi-encoder VAE (ME-VAE) in single cell image analysis using transformed

images as a self-supervised signal to extract transform-invariant biologically meaningful

features, including emergent features not obvious from prior knowledge. We show that the

proposed architecture improves analysis by making distinct cell populations more separable

compared to traditional and recent extensions of VAE architectures and intensity measure-

ments by enhancing phenotypic differences between cells and by improving correlations to

other analytic modalities. Better feature extraction and image analysis methods enabled by

the ME-VAE will advance our understanding of complex cell biology and enable discoveries

previously hidden behind image complexity ultimately improving medical outcomes and drug

discovery.
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Understanding cellular changes and phenotypic pathways
at the single-cell level is becoming increasingly important
because it creates a comprehensive understanding of cell

state and cell-to-cell heterogeneity. Multiple analytical tools are
available to extract, normalize, and evaluate single-cell RNA
sequencing (scRNAseq) data1–3. Until recently, analyzing single-
cell imaging data in a similar fashion was limited to extracting
mean intensity profiles, predefined shape, textural, and morpho-
logical features, and images stained with only a few markers.
Emerging multiplexed imaging technologies such as cyclic immu-
nofluorescence (CYCIF)4, multiplexed immunohistochemistry5,
CO-Detection by indEXing (CODEX)6, and Multiplexed Ion Beam
Imaging7 create images comprised of a large number of markers,
expanding the depth of information. Robust analytical methods for
high-dimensional multiplexed imaging data, however, are still
needed. One limitation with analyzing highly multiplexed single-
cell images is the ability to extract biologically meaningful infor-
mation on staining localization patterns that indicate divergent cell
states. Single-cell imaging data has morpho-spatial information not
captured using simple mean intensity information, with successful
quantification of these features potentially leading to improved
analysis and understanding8.

The classical approach for image feature extraction is manually
creating a list of desired features and predefined metrics to
quantify them. This is biased toward known and easily measured
features and can miss subtle but important features. More robust
image feature extraction has been employed using deep learning
architectures such as the Variational Autoencoder (VAE)9 in
other domains where feature representation can be automatically
generated without supervising information or prior knowledge.
However, the problem with VAE feature extraction in single-cell
imaging is that there are typically unimportant or uninformative
features driving differences between biologically similar images
and skewing the results in undesired ways10. In single-cell ima-
ging data, these unimportant features include any form of basic
image transformation such as rotation, transposition, affine/skew,
and stretching. Despite having the same underlying information,
the common uninformative features in transformed images dis-
tract deep learning architectures so that they ignore most of the
biologically relevant features11–15. This holds true in single-cell
images, where VAEs frequently ignore biologically meaningful
features and focus on recreating the transformational features
which have a high variance across the dataset. When these fea-
tures are known and controllable transformations, they can be
used for a self-supervised signal to extract invariant features with
respect to a set of transformations during model training.
Untailored deep learning architectures are unable to overcome
these uninformative features unless some modification is made to
either their architecture or objective functions11–15. Many recent
works propose changing autoencoder architectures to coupled
networks or using multiple latent dimensions to overcome this
without the need for biased hyperparameter tuning and data
normalization10,16–18. Similar methodologies have also been
explored that seek to correct transformative features with coupled
networks, direct latent space modifications, novel layer archi-
tectures, and training networks with combinations of corrected
and uncorrected image data11–13,15,19,20. Most of these corrected
architectures, however, only target one specified feature and
cannot generalize to other features without further modification.
Two examples of recent architectures that use modifications to
the objective function are the β-VAE21 and the invariant
C-VAE22, which attempt to apply pressure to the model such that
it will prioritize a more regularized encoding space and be more
interpretable and invariable to specific features.

Here we propose a method for single-cell image feature
extraction that removes specified uninformative features by

making them uniform and invariant across the reconstructions,
using modified pairs of transformed input and output images by
self-supervised transformation, and utilizing multiple encoding
blocks. Using this multi-encoder VAE (ME-VAE) to control for
multiple transformational features, we highlight its ability to
extract biologically meaningful and transform-invariant single-
cell information and better separate biologically distinct cell
populations.

Results
Controlling for uninformative features. When a transforma-
tional feature varies across a single-cell imaging dataset, standard
VAEs extract only the dominant component to reconstruction.
When rotation varies from image to image, reconstructions along
the principal component walk23 only constitute the angle of the cell,
and downstream analysis is heavily skewed by this extracted
component (Fig. 1a). In another dataset where polar orientation is
the dominant feature, we observe the same behavior (Fig. 1b); VAEs
only extract the dominant uninformative features, ignoring subtle
but informative features necessary for detailed reconstruction.

In order to overcome model hypersensitivity to dominant
uninformative features, several architectures were proposed and
tested to learn the latent space while attempting to ignore
uninformative features (Fig. 1c–g). A standard VAE without
control for uninformative features was used as a baseline and
shows a high correlation between the embedded components and
the respective feature metrics (Fig. 1c and Supplementary Fig. 1a).
When a single factor is controlled (e.g., rotation), it becomes
uncorrelated to all VAE encodings, and even the max correlated
component in the latent space is insignificant (Fig. 1d and
Supplementary Fig. 1b). Controlling for one feature does not
significantly impact the other dominant transformation features
(i.e., polar orientation). With a double transformed output
correcting two features simultaneously, we see decorrelation of
both dominant features (Supplementary Fig. 1c), but the
reconstructed images are poor (Supplementary Fig. 1g) reflecting
the model’s failure to learn relevant feature embeddings. The VAE
with transformed output is shown to work on simple transforms
such as rotation, but pairs of complex transformations like rotation
combined with polar orientation prove too difficult. Both the β-
VAE21 and invariant C-VAE22 also show strong correlations
between the uninformative features we wanted to ignore and the
latent space (Fig. 1e, f and Supplementary Fig. 1d, e). When both
uninformative features are controlled for using the proposed ME-
VAE with transformed image pairs, we see a decorrelation in both
uninformative features, indicating that the VAE reconstructions
learned to overcome them and focus on underlying features that
better separate cell populations (Fig. 1g and Supplementary Fig. 1f).
Unlike with the corrected output VAE, the ME-VAE produced
coherent reconstructions (Supplementary Fig. 1i). Moreover, the
ME-VAE is generalizable and scalable since it controls many
uninformative features together in parallel by using a multi-
encoder network where any number of encoders can be added, and
each encoder learns a single transformation. Finally, when training
on the same dataset of 15,898 single-channel images, all
comparison architectures took a similar amount of computation
time to train ranging between 53 and 54 s per epoch on average.
The proposed architecture only took a few seconds longer,
averaging 64 s per epoch, indicating that the increased performance
and reduction in uninformative features do not come with a
significant increase in computation time.

Improving biological interpretation on single-channel images.
To evaluate the models’ ability to improve downstream usefulness
and biological relevance, we analyzed a dataset (see “Methods—
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Datasets”) of single-cell CYCIF images from MCF10A non-
malignant breast epithelium cell line. The full dataset we analyzed
is comprised of 6 ligand-treated cell populations and is stained
with 23 biomarkers (Supplementary Table 1). Here we restricted
our analysis to PBS (control) and TGFβ+ EGF population and
considered only the epidermal growth factor receptor (EGFR)
channel. These were chosen because they have similar distribu-
tions of cell size and mean whole-cell EGFR intensity following
cell-level normalization, making them difficult to naively separate
with classical cellular features (Fig. 2a), but qualitatively show
phenotypic differences such as compartment localization and
stain texture. Within this dataset, we show that the ME-VAE
better separates PBS- and TGFβ+ EGF-treated cell populations
compared to the standard VAE.

As can be observed in Fig. 2b, the standard VAE is incapable of
separating the two cell populations, creating a mix of the labeled
cell populations in k-means cluster space (number of clusters = 2)
and UMAP embedding space. The cells within UMAP regions also
have an arbitrary range of phenotypes; the only observed patterns
are of uninformative features such as rotation, polar orientation,
and size. Classically extracted features (Supplementary Table 2)
show similar results to the standard VAE (Fig. 2c) where
uninformative and non-biological features govern the clustering
and UMAP distribution. Despite the fact that orientation was not
included in the set of extracted properties, the rotation angle is still
captured because the same information is available through a
combination of important features such as eccentricity, extent,

moments, and inertia which were extracted. A denoising
autoencoder, which is architecturally the same with no regulariza-
tion loss on the latent space, performs similarly to the standard
VAE with corrected output, having poor image reconstructions as
a result of using transformed images that it has to overcome in a
single encoder (Supplementary Fig. 1h). A result of this is that the
denoising autoencoder reconstructs size as the primary feature with
little other information capable of separating the cell populations
(Fig. 2d). The β-VAE architecture21 does not show significant
improvement from the standard VAE either (Fig. 2e). Moreover,
the β hyperparameter is known to be difficult to tune which can
lead to large variations in both reconstruction quality and
clusterability (Supplementary Fig. 2). The invariant C-VAE
adapted from Moyer et al.22 does see an improvement in clustering
compared to the standard VAE (Fig. 2f), but despite having the
uninformative values injected into the model, it is unable to keep
them from being encoded in the latent space, resulting in UMAP
embeddings dependent of uninformative features. Many of the
recent extensions of the VAE that seek to improve the
interpretability of the latent space simply modify the loss function
used during training to encourage a result instead of forcing it (see
“Methods—VAE models”). Unlike these previous attempts, the
ME-VAE changes the actual deep learning architecture by adding
multiple encoding blocks each for the purpose of removing a
specific feature, making the implementation more straightforward
for users (without introducing additional hyperparameter tuning
such as β-VAE), and demonstrates increased performance.

Fig. 1 VAE hypersensitivity and proposed model architecture. VAE analysis of two datasets is shown, each governed by a single biologically
uninformative feature a rotation and b polar orientation. Principal walk reconstructions23 show the VAEs’ governing features across the latent space
through a range of image reconstructions. To correct this model hypersensitivity, several architectures were tested: c standard VAE with matched raw
images; d VAE with paired randomly transformed input and controlled output images; e β-VAE that operates similarly to the Standard VAE, but utilizes a β
hyperparameter in the loss function to encourage an independent latent space; f an invariant conditional VAE that injects the values of the uninformative
features into the decoder such that they are not embedded in the latent space; g the proposed multi-encoder VAE: VAE with corrections for multiple
features (rotation, polar orientation, size, shape, etc.) using parallel encoder models, a shared latent space, and a single decoder model. In c–e, a correlation
between the embedding components and the respective feature (angle and orientation) is measured to quantify how effectively the model removes
uninformative features. PBS and TGFβ+ EGF cell populations with single channels were used in this analysis (n= 15,898 single-cell images).
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By comparison to all other attempted methods, the ME-VAE
has a dramatic increase in k-means cluster purity and Normalized
Mutual Information and shows a clear separation of labeled cell
populations in UMAP (Fig. 2g), indicating improved cluster-
ability and separability. Regional cell images within the multi-
encoder’s UMAP space show distinct phenotypic differences that
separate the cell populations with biologically relevant features
(stain localization and subcellular pattern). In PBS dominant
regions, EGFR stain is most heavily concentrated uniformly along
the cellular membrane, while TGFβ+ EGF regions show a cloudy
diffuse concentration of EGFR stain throughout the cell with the
heaviest concentration of stain localizing to one side of the
nuclear membrane. These observed features illustrate a clear
difference in cellular regulation and compartmentalization of the
EGFR protein induced by the TGFβ+ EGF ligand combination.
Based on observations from the multi-encoder output in Fig. 2g,
we were able to infer a metric of the radial slope which similarly
separates the two populations (see “Methods—Evaluation
metrics” and Supplementary Fig. 3). We observe a larger (more
positive) radial slope in the PBS population on average, indicating
that the distribution of stain increases radially toward the
membrane, and by comparison the radial slope of the TGFβ+
EGF population has a smaller (more negative) radial slope than
the PBS, indicating that the stain distribution is located primarily
toward the center of the cell and decreases radially toward the
membrane. Using this metric, we see improved separation, cluster
purity, and normalized mutual information compared to the
selected naïve metrics (Fig. 2a, h). Furthermore, the concentration
of EGFR in the TGFβ+ EGF population is located just outside
the nucleus, and therefore would not be successfully separated
simply by isolating the mean intensity of the nuclear region. This
demonstrates that ME-VAE yields biologically meaningful
representations by identifying previously unappreciated features
and generates biological discoveries by going beyond the limited
set of known features such as mean intensity. The clustering
metrics from the radial slope, however, are still lower than the full
ME-VAE cluster purity, indicating more features beyond the
radial slope are being extracted from ME-VAE.

Use case with a large complex dataset. Models were next trained
on the expanded dataset (five ligands and PBS control) and 23
channel CYCIF images (see “Methods—Datasets” and Supple-
mentary Table 1). Like before, the ME-VAE was trained to
control for rotation, polar orientation, and cell size/shape. The
standard VAE performed similarly to the previous experiment,

encoding cells based primarily on the dominant features such as
size and rotation while largely ignoring complex staining infor-
mation (Fig. 3). Although visually there is some preferential
localization in UMAP (OSM left side, TGFβ+ EGF right side), it
is clear that the populations are thoroughly mixed with poor
separability. The intensity profiles show that size has a strong
impact on this left/right embedding (Fig. 3b). Most stains show
little or no consistency within the embedding space, with the
exception of DAPI and Ki67. These stains, however, show the
same left/right distribution as size, indicating the nuclear intensity
distributions are simply a result of cell size since the whole-cell
mean intensity of a nuclear marker will decrease with larger cells
and increase with smaller cells.

Despite the increased complexity of the multi-channel CYCIF
images and a heterogeneous large dataset that could overload a
simple architecture, the ME-VAE shows good separation of the
labeled cell populations (Fig. 3a). We also observe subcluster
formation for HGF, BMP2+ EGF, and TGFβ+ EGF. By
analyzing intensity profiles and regional cell images of these
populations, we can see differences in expression (Fig. 3b and
Supplementary Fig. 4b). The UMAP intensity profiles show clear
stain intensity patterns indicating that the ME-VAE encoding
space contains relevant biological information. Size does show
some distribution in the UMAP, but the effect is largely dulled in
comparison to the standard VAE.

Here we discuss some of the most noticeable drivers of
separation between cell populations in the MCF10A dataset. PBS
shows a marked decrease in Ki67 expression compared to other
ligands, consistent with a relative decrease in proliferation. The
TGFβ+ EGF populations show an increase in S6 expression,
indicating an increase in cell growth. This is observed visually
with regional cell images (Supplementary Fig. 4b); however, it’s
worth noting that high S6 expression is seen in both large and
small cells treated with TGFβ+ EGF. In EGF- and BMP2+ EGF-
treated populations, decreased expression of membrane adhesion
proteins such E-cadherin and β-Catenin is observed. This
decrease presents visually as a dim stain, but the marker is still
localized to the membrane rather than missing or diffuse
throughout the cell.

In both TGFβ+ EGF- and PBS-treated cells, we see an
increased concentration of HES1 localized primarily to the
nucleus, while in other populations the distribution is uniform
throughout the cell. In the case of TGFβ+ EGF, this localization
is accompanied by increased intensity (Supplementary Fig. 4b),
but PBS intensity is more similar to the other ligand-treated
populations. Similarly, Stat1a is primarily located in the nucleus

Fig. 2 Separation of biologically distinct cell populations. a Cells are compared using initial naive metrics such as mean EGFR intensity and cell size to
show the difficulty separating the cell populations. b–g The model architectures are quantitatively evaluated using cluster purity and normalized mutual
information (k-means with the number of clusters= 2). The sample size for all comparison methods and metrics is n= 15,898 single-cell images. A
qualitative comparison is made using visual separation of two labeled cell populations in UMAP embedding space and visual analysis of cells from UMAP
regions to identify biologically distinct factors. Rotation angles of cells are shown in UMAP embedding to show the influence of unimportant features on
downstream analysis. h The same population of cells is compared using radial slope (a metric inferred from visually analyzing the regional cell images in g).
Scale bars in b–g represent 20 μm.
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for TGFβ+ EGF-, BMP2+ EGF-, and OSM-treated populations,
but shows decentralized staining in cell images for other ligand
populations. This is important because both HES1 and Stat1a are
functional in the nucleus (Stat1 particularly as it translocates into
the nucleus as part of its functional pathway) with limited activity
in the cytosol24,25. Another observation is that p21 uniquely
separates subpopulations in TGFβ+ EGF-, HGF-, and BMP2+
EGF-treated cells, indicating that there are subsets of the
population that are undergoing growth arrest due to inhibition
of cell cycle progression via p21 regulation.

These results show that the ME-VAE captures relevant
biological information and separates cell populations, high-
lighting important features without significant interference from
the controlled uninformative features. Furthermore, the ME-
VAE can capture emergent and biologically relevant imaging
features not obvious without prior knowledge. By contrast, little
to no biologically relevant information is obtained from the
standard VAE.

Correlation of reverse phase protein arrays pathway activity
and CYCIF using ME-VAE features. To validate that ME-VAE
yields biologically more meaningful representations, we correlate
VAE features with respect to Reverse Phase Protein Arrays
(RPPA) pathway activity. By reordering VAE features using
hierarchical clustering to form feature spectra, we extract broad
patterns and reduce the dimensionality of the feature set. The
standard VAE shows very poor self-correlation with only a

handful of feature clusters showing strong correlation (Supple-
mentary Fig. 5a). Comparatively, we observe a clear pattern of
self-correlation between ME-VAE features, indicating the model
successfully extracts distinct yet different expression patterns
(Fig. 4a). We identify ten representative clusters from the ME-
VAE latent space that illustrate different expression patterns,
which are explored using representative images (Fig. 4a). Repre-
sentative cell images are chosen by selecting the cell for each
feature set that has a high mean expression of all features in that
respective aggregated feature set. Between clusters 0 and 1, we see
a difference in the ratio of nuclear size and cell size. Cluster 1
encodes for larger nuclei than cluster 0 (this pattern is reaffirmed
in Fig. 4b where cluster 1 correlates to DNA pathways and
nuclear stains while cluster 0 does not). Cluster 4 is a highly
varied cluster but contains large cells with more diffuse intensity
patterns. From these aggregated features, we see that the ME-
VAE architecture extracts a combination of intensity and
morpho-spatial profiles with at least 10 clear axes of variation.
Using these aggregated features, we can analyze and interpret
biological meaning with fewer spurious correlations than com-
paring many to many.

A growing method for single-cell analysis is to integrate
multiple modalities. Multi-modal integration helps validate where
the two modalities overlap, expands the dataset with mutually
exclusive or orthogonal features, and allows for cross-wise
mapping of features. This is important for VAE based single-
cell image analysis because it frames inherently obscure encoding
features in a biological context and validates that the extracted

Fig. 3 Ligand separation and feature distribution in full MCF10A dataset. a UMAP embeddings for respective VAE encodings, allowing for qualitative
visual evaluation of ligand separability. Cluster purities and normalized mutual information were calculated to quantitatively compare methods (k-means
clusters= 12 to allow for ligand subpopulations). The mean cluster purity of the standard VAE was 0.04 with a standard deviation of 0.03. The mean
cluster purity of the ME-VAE was 0.59 with a standard deviation of 0.15. The total sample size is n= 73,134 single-cell images. b Distribution of stain
features across UMAP space, colored by intensity.
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features are coherent. The increased feature range of ME-VAE
allows for cross-wise mapping and integration of complex CYCIF
image features and other modalities (e.g., RPPA).

When correlating the seven aggregated standard VAE features
with RPPA pathway activity, we notice two distinct issues. First,
there is a single aggregated feature that shows significant
correlations to nearly every RPPA pathway activity profile
(Supplementary Fig. 5b). Second, there is a single RPPA pathway
that correlates to nearly every standard VAE aggregated feature.
When correlating standard VAE aggregated features to the
extracted CYCIF metrics (“Methods—Evaluation metrics”), the
Spearman correlations are small despite the increased sample size
of n= 73,134 single-cell images (Supplementary Fig. 5b), with the
largest correlations being restricted to nuclear markers such as
CyclinD1, DAPI, and Ki67. As mentioned above this is likely an
artifact of encoding for size since nuclear expressions can be a
function of cell size. By contrast, the ME-VAE features result in
more powerful and informative Spearman correlations with both
RPPA pathways and CYCIF (Fig. 4b). All 10 aggregated features
show strong and consistent Spearman correlations, illustrating
that the ME-VAE has biological interpretability in both CYCIF
and RPPA. Improved correlations demonstrate that the learned
features from ME-VAE are biologically meaningful and illustrate
the multi-encoder’s applicability for multi-modal integration and
comparison by extracting biologically meaningful features.

Biological correlations are validated by looking at representa-
tive images for each ligand treatment (Supplementary Figs. 4 and
6), where the stains shown were selected for their high
correlations to the ME-VAE features or distinct visual patterns.
The same patterns observed in the CYCIF correlation table and
ME-VAE Z-score expression matrix (Fig. 4b), are also qualita-
tively confirmed by visual inspection. For example, S6 expression
(ME-VAE aggregated feature 0) is high in BMP2+ EGF, EGF,

and TGFβ+ EGF and is low in HGF, OSM, and PBS. Radial
CyclinD1 radial slope (ME-VAE aggregated feature 6), as shown
in Supplementary Fig. 6, is negative in BMP2+ EGF, EGF, and
TGFβ+ EGF, with high stain intensity in the inner compartment
and rapid decrease toward the cell perimeter; conversely, HGF,
OSM, and PBS show much dimmer CyclinD1 expression in the
inner compartment. This pattern is even more clear in the radial
HES1 slope (Supplementary Fig. 6, fourth column), where HGF,
OSM, and PBS show a more continuous stain abundance all the
way to the cell membrane. Although the RPPA sample size (n= 6
independent ligand treated cell populations) is still too small to
achieve statistical significance, the correlations between protein
markers in CYCIF and RPPA pathways linked by VAE features,
are supported by known literature. DAPI expression (ME-VAE
aggregated feature 1) is highly correlated to the DNA damage and
repair pathway, which is expected since DAPI is a marker for
DNA expression. A more interesting finding (ME-VAE aggre-
gated feature 9) shows a strong correlation between the Stat3
radial slope of distribution and the epithelial-to-mesenchymal
transition and hormone receptor pathways in RPPA. Prior
literature also shows that Stat3 distribution throughout the cell,
its translocation to the nucleus, and its cytoplasmic activation are
important in the EGF-induced epithelial-to-mesenchymal transi-
tion pathway26. The ME-VAE architecture also extracts patterns
when multiple markers play a role; CyclinD1 and p21 (ME-VAE
aggregated feature 5) are known in the literature to play a joint
part in the cell growth pathway27. These observations demon-
strate a potential application of multi-modal integration using the
proposed approach for other single-cell image analysis28.

The ME-VAE can also improve downstream analysis by
increasing population separability (Fig. 5) as measured by mean
pairwise Tukey p values and mean effect sizes. For the given
MCF10A dataset, the CYCIF marker panels were chosen with the

Fig. 4 ME-VAE feature aggregation and transitive inter-modality correlation. a Using the single-cell observations as features, correlations are drawn
between pairs of ME-VAE features. These features are then hierarchically clustered to observe patterns and reduce VAE features to aggregated feature
sets. Cell images were assigned aggregated feature scores using the mean expression of each feature in a cluster. Shown are representative cells that are
highly expressing for each respective cluster. Scale bar represents 20 μm for all single-cell images. b Correlation matrix between RPPA pathway activity
scores and ME-VAE aggregated features. Samples from the two modalities were paired by their ligand treatments, resulting in a sample size of n= 6
biologically independent ligand treated cell populations. RPPA pathways and VAE features were hierarchically clustered to show prominent patterns in
correlation. ME-VAE aggregated features were also correlated to several metrics of CYCIF expression (mean inner, mean middle, whole-cell means, and
radial slope) for all 23 stains. This CYCIF correlation was done using the full dataset of single-cell images (sample size n= 73,134 single-cell images). The
table of CYCIF correlations shows the top three correlations for each ME-VAE aggregated feature.
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known ligands and cell populations in mind to highlight
differences between the populations and separate them. This
results in already decent separability using just CYCIF mean
intensity information (Fig. 5). That being said, ME-VAE features
show lower mean Tukey pairwise p-values indicating a greater
average significance in separability, and the effects sizes for those
separations are larger (Fig. 5). The marker that was an exception
to this (shown in the first example) is S6, where the CYCIF mean
intensity shows better separability. Even in this example, however,
the multi-encoder’s feature is still adequate. It is worth noting
that ME-VAE latent space features are encoded in combination to
represent even a single stain, so separability can be improved even
further when utilizing more than just one feature at a time.

Although aggregated features are useful for integrating data
modalities, since they reduce spurious correlations, using the full
range of latent features is preferable for clustering populations
since aggregation can average out some relevant signal (Supple-
mentary Fig. 7). The aggregated features still perform well at
separating cell populations and still outperform most stains,
however, there is a noticeable reduction in effect size after
aggregation.

Discussion
Just as it is necessary to pre-process, normalize, and remove
unwanted features from scRNAseq or RPPA analysis, so too is it
necessary to remove uninformative features from single-cell
imaging analysis in order to extract features of interest. Without
this guided feature alignment, VAE applications for single-cell
image analysis will only reconstruct dominant features while
ignoring subtle more informative features (Fig. 1a, b). By making
uninformative features invariable across a dataset using pairs of
transformed images in parallel encoding blocks (Fig. 1g), VAE
priority can be shifted to mutually shared, biologically relevant
information (Figs. 2g and 3). This results in a more complex and
meaningful latent space.

Feature extraction is important for all downstream analysis and
interpretation, but oftentimes naïve metrics are not sufficient to
capture biological differences and separate cell populations,
especially in datasets where labeled populations are not known
beforehand. By separating populations with the ME-VAE, distinct
populations and biologically meaningful metrics can be estab-
lished, allowing identification of emergent image properties such
as localization and staining pattern (Figs. 2g and 3 and Supple-
mentary Fig. 4), with increased separability compared to using
intensity or morphology information alone (Figs. 2c, g, h and 5).
Although a theoretically infinite number of handcrafted naïve
features could be designed to capture more information, the
advantage of deep-learning is that it can extract the most
important features of an image with limited prior knowledge
required. More complex single-cell analysis methods such as
multimodal integration (Fig. 4) require a wide range of biologi-
cally relevant features. The ME-VAE architecture provides an
important step for biological research by linking imaging data to
molecular readouts. By employing this architecture to extract a
larger range of features and metrics from single-cell images,
potential applications, such as multi-modal integration using
imaging features, become available that were previously restricted
due to inadequate cell representations.

Generalizability of the model was evaluated (Supplementary
Fig. 8) by testing on an unseen replicate of MCF10A cells treated
with two ligand perturbations. The ME-VAE is able to separate
the cell populations with similar efficacy without having seen the
cell images during training. To further demonstrate the general-
izability of the ME-VAE architecture with a large complex
dataset, we applied ME-VAE to another multiplexed imaging
modality, CODEX (see “Methods—Datasets” and Supplementary
Table 3). The same overall increased performance is observed in
the additional dataset of single-cell images extracted from
CODEX tissue microarrays (TMA)29 (Supplementary Fig. 9),
where the Standard VAE mixes populations and organizes cells
primarily based on size. By contrast, the ME-VAE forms distinct

Fig. 5 Separability of ligands using individual ME-VAE features. Density function for several CYCIF and ME-VAE feature pairs. A two-sided ANOVA was
performed for features and intensities between populations in order to compute the F statistic and p value (PR(>F)). Subsequently, the mean Tukey
pairwise p value across ligands and mean effect size are shown for each feature. ME-VAE features used for comparison were the features with the largest
correlation to the respective CYCIF marker. This analysis utilized all 73,134 cell images from the MCF10A dataset.
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clusters with unique expression profiles and is even able to extract
cell types with known size differences, for instance, macrophages
(as determined by high CD68 expression). In the CODEX dataset,
the ME-VAE was only correcting for rotation and polar orien-
tation, since size and shape were considered to be more biologi-
cally relevant variables of interest in this setting. This illustrates
the ME-VAE’s ability to generalize to additional modalities, cell
types, as well as to tissue data.

The simplicity of the multi-encoder design makes it easily
incorporated into other deep-learning architectures that have
other advantages, such as being augmented with a discriminator
to improve reconstruction quality. An example of this is shown
by integrating a denoising autoencoder with the multi-encoder
architecture with self-supervised signal which encourages better
reconstructions at the cost of a less interpretable latent space
(Supplementary Fig. 10). The clustering results of the multi-
encoder denoising autoencoder (ME-DAE) are slightly worse
than the ME-VAE, suggesting that the denoising aspect improves
reconstruction but makes the latent space less useful. The ME-
VAE methodology is limited by two criteria which the unin-
formative features must meet: (1) being known so that they can
be addressed with a new encoding block and transformed image
pair; (2) being a known or inducible transform operation such as
rotation, affine, or scale such that a respective randomly trans-
formed image can be generated using the operation. Despite these
limitations, the majority of dominant uninformative imaging
features are based on known transformations, making the ME-
VAE architecture widely applicable.

Computationally the model is not significantly larger than a
standard VAE or other comparable architectures required for
training (Fig. 1c–g), excluding the time necessary to transform
images which will vary based on transformation complexity, as it
only adds a single encoding block for each undesired feature.
Future applications of this architecture will allow complex fea-
tures such as texture, pattern, and distribution to be extracted
from single-cell images without the hassle of disentangling
dominant uninteresting transform features. Images contain
morpho-spatial features not shared by their other single-cell
counterparts (scRNAseq and RPPA), and by implementing this
architecture, the scientific community will be able to analyze these
unique image features with the same robustness as algorithms
made for other well-established single-cell modalities.

Methods
Datasets. MCF10A cell populations were treated with seven ligands, PBS (con-
trol), HGF, OSM, EGF, BMP2+ EGF, TGFβ+ EGF, and EGF+ IFNγ (data from
the LINCS Consortium—https://lincs.hms.harvard.edu/mcf10a/)30. For this paper,
we analyzed all but the IFNγ population because the initial analysis showed that it
was so distinct from other cell populations that even a single marker intensity
resulted in decent separability. After 48 h, cells were fixed and subjected to cyclic
immunofluorescence with 23 markers shown in Supplementary Table 1. The
dataset comprises three plates of replicates. On each plate, there are three replicates
of each ligand in different wells, and in each well nine different fields of view were
taken. Cells were segmented using the Cellpose segmentation tool31 using the
EGFR and DAPI channels. Stains were normalized using histogram stretching to
the 1st and 99th percentiles across intensities for individual cells and across the
whole dataset. Image transformations were applied for rotation, polar orientation,
and size/shape (Supplementary Fig. 11). Rotation was corrected by obtaining the
major axis from the binary cell mask, then rotating the image using the Python
package OpenCV32. Polar orientation was corrected by calculating the angle
toward the image’s center of mass, then applying a flip/rotation to align the angle
using the Python NumPy package33. Size/shape was corrected simultaneously by
registering the cell mask to a circle target image (code available here: https://
github.com/GelatinFrogs/Cells2Circles). In total, 73,134 cells were processed
through this pipeline. When isolating the PBS and TGFβ+ EGF populations for
the two-ligand separation analysis (“Results—Controlling for uninformative fea-
tures and Improving biological interpretation on single-channel images”), the
sample size was 15,898. All 73,134 cells were analyzed in the full MCF10A analysis,
modality integration, and separability test (“Results—Use case with a large complex

dataset and Correlation of reverse phase protein arrays pathway activity and
CYCIF using ME-VAE features”).

A publicly available CODEX dataset (the patients' consent to use their tissues
for research)29 was used as a secondary multiplex imaging technology to
demonstrate the generalizability of the ME-VAE to other tools, cell types, and to
tissue data. The portion of the dataset tested consisted of eight TMAs from the skin
and breast cancer. From the full panel of 91 markers, we chose 20 stains that were
the least sparse, highest quality, and important for labeling the full tissue
(Supplementary Table 3). We then segmented 12,229 cells from the TMA images
using the Hoechst and CD71 channels in Mesmer34, and normalized using
histogram stretching to the 1st and 99th percentiles across the whole dataset.

Bulk Reverse Phase Protein Array (RPPA) was performed by the LINCS
consortium30 in parallel to the CYCIF imaging, on cell populations treated with the
same ligands after 48 h of exposure. The protein array incorporated 295 protein
markers. RPPA data were median-centered and normalized by the standard
deviation across all samples for each component to obtain the relative protein
level35. The pathway score is then the sum of the relative protein level of all positive
regulatory components minus that of negative regulatory components in a
particular pathway. Pathway members and weights were developed through a
literature review. Pathways were used instead of individual proteins because a large
number of proteins would decrease the significance of correlations. Despite the
available bulk RPPA dataset having a smaller sample size than the single-cell
CYCIF dataset, it was chosen as the secondary modality because similar ligand
separation and cluster patterns were observed in both modalities, indicating an
overlap in the information each contains (Supplementary Fig. 12).

For correlation to CYCIF and RPPA pathways, the VAE latent space was
restricted to smaller sets of aggregated features. These aggregated features were
made using self-correlation of VAE features across individual cell metrics and
averaging the VAE features for resulting hierarchical clusters (Fig. 4 and
Supplementary Fig. 5). This was done to reduce the feature dimensionality and
reduce spurious correlations in the biological findings. Representative images for
each cluster were done by finding cells with a high average expression for all
features within the cluster. For other analyses of VAE features comparing VAE
separability to CYCIF expression and interpreting image feature space, ME-VAE
encoding features were restricted to 18 single features for each. The dimension of
18 was chosen because it is the number of mutual markers between the RPPA and
CYCIF datasets. Explanatory features were chosen from the VAE encodings such
that the inter-cluster variability was maximized and the intra-cluster variability was
minimized using the following equation:

Feature score ¼ Varall �
∑

i¼cluster
VarCi

# of clusters
ð1Þ

VAE models. To allow for a fair comparison, the structure of the encoder and
decoder blocks were kept consistent between networks, and the same latent
dimension was used for all models for a given dataset (64 for the 1-channel dataset,
512 for the 23-channel dataset). Both encoder and decoder blocks consist of three
layers, and all layers utilize a Rectified Linear Unit activation except the final
output, which uses sigmoid activation. All models were trained for 10 epochs
(determined by identifying the loss function plateau) on the NVIDIA P100 with
100 GB of RAM and 100 GB of disc space, but the ME-VAE architecture can work
on any NVIDIA GPU.

A standard VAE with matching pairs of single-cell images was used to establish
baseline performance (Fig. 1c). Standard VAEs utilized the standard Evidence
Lower Bound loss format characterized by reconstruction and Kullback–Leibler
(KL) divergence terms. We used a Binary Cross-Entropy loss (BCE) as the
reconstruction term for all VAEs tested here to keep the comparisons fair and
consistent. Put together, the standard VAE loss used was:

LStandard VAE ¼ BCE x; p zð Þ� �� KL q zjxð Þjjp zð Þ� � ð2Þ
where q represents the encoder and p represents the decoder as described in
Kingma et al.’s initial VAE paper9. Here x represents the unadjusted input image
and z represents the latent space.

By using an image randomly transformed with respect to a dominant feature as
the input and controlling for the same uninformative feature in the output image
(Fig. 1d), the model can self-supervise the transformation and will only encode
novel features since the controlled features (such as rotation) no longer aid
reconstruction:

LOutput Corrected VAE ¼ BCE x0; p q zjT�1 x0ð Þ� �� �� �� KL q zjT�1 x0ð Þ� �jjp zð Þ� �
ð3Þ

where x′ represents an image that has been transformed with a known
transformation to remove one or more uninformative features and T−1(·)
represents a transformation of the controlled image to create a dominant
uninformative feature at a random degree.

The proposed multi-encoder architecture uses multiple transformed inputs with
separate encoder blocks, where each block controls for a separate uninformative
feature, and a single decoder block uses the shared latent space (combined by
multiplication to emphasize mutual information) for reconstruction (Fig. 1g). To
accommodate the multiple encoders in the loss, the KL term is replaced with a
summation of all KL divergences for each individual latent space, which is then
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divided by the total number of encoders (n):

LME-VAE ¼ BCE x0; p zall
� �� �� 1

n
∑
n

i¼1
KL qi zijTi

�1ðx0Þ� �jjp zi
� �� �� �

ð4Þ

where each encoder’s (qi) individual latent space (zi) is combined in an element-
wise multiplication layer to create a mutual latent space (zall) and Ti

−1(·) represents
a different random transformation for individual uninformative features such as
rotation, polar orientation, size, shape, etc., respectively. The shared latent space of
the multi-encoder forces the deep learning model to encode features that are shared
between each transformation, reinforcing the shared mutual information and
eliminating the non-shared transformational information. A base implementation
of the ME-VAE architecture can be found here: https://github.com/GelatinFrogs/
ME-VAE_Architecture. The multi-encoder architecture allows for image pairs to
be randomly transformed, which can act as a balancing agent for imbalanced
features. Furthermore, the corrected outputs serve as a weakly self-supervised
signal for the model. With the extra information from the additional inputs, the
model is able to overcome more complex transformations that failed in the
corrected output architecture in Fig. 1d, when multiple corrections are attempted.
Paired images also serve one additional benefit of allowing for features to be
retained in parallel encoders that might be lost due to artifacts in other corrections,
i.e., artifacts within a polarity correction encoder will not be present in a rotation
correction encoder.

The β-VAE21 makes a small but significant change to the standard ELBO loss
function of the Standard VAE by adding an adjustable hyperparameter to the loss
function:

Lβ-VAE ¼ BCE x; p zð Þ� �� β � KL q zjxð Þjjq zð Þ� �
ð5Þ

where the β applies varying amounts of priority to the KL regularization term. This
forces the VAE to separate features into a more interpretable format where each
component corresponds to a specific feature21. One downside of this method is that
shifting priority to the regularization term causes the model to produce poorer
quality reconstructions since less priority is placed on the reconstruction term.
Another downside is that the β hyperparameter can be difficult to tune properly,
and a different β value will be optimal for different datasets, image sizes, and latent
dimensions (Supplementary Fig. 2).

A final architecture tested was the invariant conditional autoencoder (C-VAE),
which injects a vector of quantified class/values of interest into the decoder (here
termed c). The improvement this architecture makes upon the ELBO loss used by
standard VAEs and conditional VAEs is the addition of a conditional and marginal
KL regularization term that operates similar to a Maximum Mean Discrepancy
penalty by pushing the latent spaces to be the same for varying c values22. In our
application this means that the resulting latent space will ideally be independent of
the undesired values injected into the architecture through the c vector:

LC-VAE ¼ �KL q zjxð Þjjp zð Þ� �� λKL q zjxð Þjjq zð Þ� �þ 1þ λð ÞBCE x; p zð Þ� � ð6Þ
where λ is a hyperparameter which during this experiment was set to 1. The
invariant conditional VAE was adapted based on the paper by Moyer et al.22 and
code available from the author’s GitHub and tutorials (https://github.com/
dcmoyer/invariance-tutorial/blob/master/tutorial.ipynb). In our implementation,
we used the quantified values of rotation angle, polar orientation, and size as the c
inputs such that the latent space would hopefully be invariant to those features.
Similar to our proposed approach, the uninformative features of interest must be
known and quantifiable in this method since the c values are input into the model.

Denoising autoencoder methods (Fig. 2d and Supplementary Fig. 10) used the
same architecture as the standard VAE and the ME-VAE, respectively, but in the
case of the standard denoising autoencoder the model was also trained using the
transformed image sets. Denoising autoencoders do not use a regularization term
in the latent space, relying solely on the reconstruction term for loss. As such, both
methods used the loss function:

LDenoising AE ¼ BCE x0; p q zjT�1 x0ð Þ� �� �� �
Additionally, in the reduced dataset, the architectures are compared to

classically extracted intensity and morphology features using scikit-image’s
regionprops package36. The classical feature dataset is defined by 58 properties
(Supplementary Table 2) extracted from each single channel cell image. We
included all properties we could for single-channel images but left out orientation
in order to show that rotation angle is still captured through other properties even
when it is not explicitly an extracted feature.

Evaluation metrics. In order to evaluate the model’s ability to separate labeled cell
populations, k-means clustering was applied to the encoding spaces using
sklearn37. Cluster purity was then calculated by taking the percentage of the largest
population for each cluster. UMAP embeddings were calculated using the UMAP
Python package38. Regional cell images within UMAP (Fig. 2 and Supplementary
Fig. 4) were created by sampling cells from various regions of the UMAP
embedding space to give visual context to the features that are being separated.
Cells were placed into regions by snapping their embeddings to a grid and taking
one representative image from each point on the grid23. Biological metrics were
calculated to give VAE encoding features biological grounding (Supplementary
Fig. 3). Circularized cells were used for calculation because they made the

compartmentalization of the cell more consistent and uniform. Mean intensities
were calculated for inner, middle, outer, and whole-cell compartments. To calculate
the radial slope, the mean intensity was taken from each radius of the circularized
cell, then the linear regression of the series was calculated using the scipy.stats
package39 in Python. The slope of the calculated linear regression was used as the
metric and the intercept was ignored. Self-correlations between VAE features were
performed using Spearman correlation and clustering was done in seaborn
clustermap40. Clustermaps using hierarchical clustering were calculated
using the method’s default distance metric (Euclidean). Representative cluster
images were chosen based on the high expression of the cluster’s respective VAE
features. RPPA pathways activity scores, VAE features, and biological metrics were
all standardized prior to analyses using the sklearn StandardScaler function37 in
Python.

Statistics and reproducibility. To test whether a specific feature was embedding
in the latent space, the max spearman correlation was taken between the feature
and the components of the latent space (n= 15,898 cell embeddings). Spearman
correlations between RPPA pathway activities and VAE encodings and between
CYCIF and VAE encodings were both calculated using the Spearman correlation
(n= 6 perturbation conditions). To test for separability (Fig. 5 and Supplementary
Fig. 7), features were first tested using type 2 ANOVA with the Python imple-
mentation of anova_lm from statsmodels41 for the default F-statistic, all of which
proved significant (n= 73,134 single-cell images). Subsequently, the post hoc
pairwise Tukey p test was used to calculate the significance and effect size for each
ligand pair (n= 73,134 single-cell images). The mean p value and effect size are
reported to illustrate average separability.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
CYCIF and RPPA data are publicly available through the LINCS Consortium: https://
lincs.hms.harvard.edu/mcf10a/. CODEX data are available online (https://doi.org/
10.7937/tcia.2020.fqn0-0326). Supplementary Data 1: EGFR intensity, cell size features
for Fig. 2a and EGFR Radial slope features for Fig. 2h.

Code availability
For reproducibility, we share the code with precise implementation; further details
describing variables and equations, as well as shared trained models with parameters in
GitHub. All ME-VAE codes are available on GitHub (https://github.com/GelatinFrogs/
ME-VAE_Architecture).
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