Skip to main content
. 2022 Mar 23;12:4954. doi: 10.1038/s41598-022-08842-5

Table 4.

The most precise prediction obtained by different intelligent estimators (1053 training and 186 testing datasets).

Model name Datasets MAPE% MAE RAPE% RMSE R2
LSSVR Training data 0.25 2.86 3.94 5.64 0.99799
Testing data 0.30 3.38 4.75 5.68 0.99794
Training + Testing 0.26 2.94 4.06 5.65 0.99798
MLP Training data 1.04 11.75 16.54 18.16 0.97805
Testing data 1.10 12.47 15.68 19.98 0.97801
Training + Testing 1.05 11.86 16.39 18.44 0.97804
CFF Training data 1.16 13.29 18.12 18.53 0.97844
Testing data 1.16 13.20 19.88 18.61 0.97345
Training + Testing 1.16 13.28 18.36 18.54 0.97780
GR Training data 0.95 10.73 14.82 16.92 0.98246
Testing data 1.52 17.10 23.72 27.70 0.94916
Training + Testing 1.04 11.68 16.16 18.94 0.97758
RBF Training data 2.98 33.87 46.13 44.17 0.86954
Testing data 2.56 29.32 44.33 38.72 0.88919
Training + Testing 2.92 33.18 45.88 43.39 0.87158
RNN Training data 2.52 28.57 39.49 36.93 0.90923
Testing data 2.58 28.95 40.21 39.10 0.89494
Training + Testing 2.53 28.63 39.59 37.26 0.90701
ANFIS Training data 1.17 13.40 18.61 19.22 0.97605
Testing data 1.21 13.89 18.76 20.23 0.97402
Training + Testing 1.17 13.47 18.63 19.37 0.97573