Skip to main content
. 2022 Mar 9;10(3):e31106. doi: 10.2196/31106

Table 6.

Performance of different network architectures applied to the NTUH_ROCFa data set.

Metric AlexNet Sketch-a-Net Our system



Without data augmentation and dropout techniques With data augmentation and dropout techniques
Sensitivity, mean (SD) 0.698 (0.039) 0.671 (0.047) 0.756 (0.033) 0.847 (0.017)
Specificity, mean (SD) 0.790 (0.046) 0.820 (0.054) 0.864 (0.017) 0.905 (0.009)
Accuracy, mean (SD) 0.744 (0.034) 0.746 (0.019) 0.810 (0.020) 0.876 (0.010)
AUROC,b mean (SD) 0.814 (0.021) 0.819 (0.009) 0.851 (0.020) 0.913 (0.004)
Total parameters (×106), n 46.73 8.38 0.40 0.56
Time required to complete 1-fold training, minutes 10 29 9 2

aNTUH_ROCF: National Taiwan University Hospital_Rey-Osterrieth Complex Figure.

bAUROC: area under the receiver operating characteristic curve.