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ABSTRACT The formation of neuronal networks is a complex phenomenon of fundamental importance for understanding the
development of the nervous system. The basic process underlying the network formation is axonal growth, a process involving
the extension of axons from the cell body and axonal navigation toward target neurons. Axonal growth is guided by the interac-
tions between the tip of the axon (growth cone) and its extracellular environmental cues, which include intercellular interactions,
the biochemical landscape around the neuron, and the mechanical and geometrical features of the growth substrate. Here, we
present a comprehensive experimental and theoretical analysis of axonal growth for neurons cultured on micropatterned poly-
dimethylsiloxane (PDMS) surfaces. We demonstrate that closed-loop feedback is an essential component of axonal dynamics
on these surfaces: the growth cone continuously measures environmental cues and adjusts its motion in response to external
geometrical features. We show that this model captures all the characteristics of axonal dynamics on PDMS surfaces for both
untreated and chemically modified neurons. We combine experimental data with theoretical analysis to measure key parameters
that describe axonal dynamics: diffusion (cell motility) coefficients, speed and angular distributions, and cell-substrate interac-
tions. The experiments performed on neurons treated with Taxol (inhibitor of microtubule dynamics) and Y-27632 (disruptor of
actin filaments) indicate that the internal dynamics of microtubules and actin filaments plays a critical role for the proper function
of the feedback mechanism. Our results demonstrate that axons follow geometrical patterns through a contact-guidance mech-
anism, in which high-curvature geometrical features impart high traction forces to the growth cone. These results have important
implications for our fundamental understanding of axonal growth as well as for bioengineering novel substrate to guide neuronal
growth and promote nerve repair.
SIGNIFICANCE Decades of research have shown that environmental guidance cues (biochemical, mechanical,
geometrical) control the dynamics of neuronal axons, and the wiring up of the nervous system. However, a detailed
quantitative model of the axonal growth is still missing. We demonstrate that axonal dynamics on substrates with periodic
micropatterns is governed by a closed-loop feedback control mechanism that leads to axonal alignment on these surfaces.
Axons follow geometrical patterns through a contact-guidance mechanism, in which high-curvature geometrical features
impart high traction forces to the tip of the axon. We develop a quantitative theoretical model that incorporates mechanical
interactions between the axon and the growth substrate. This model fully accounts for the experimental data, including
diffusion coefficients, speed distributions, and angular alignment.
INTRODUCTION

Neurons are the basic constituents that make up the nervous
system, establishing neuronal networks to transmit informa-
tion throughout the body. During their growth, neurons
extend axons and dendrites, which navigate to other neurons
and build complex interwoven networks that in many organ-
isms grow to contain billions of synapses. The extension of
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the axon is guided by its growth cone, a dynamical unit that
is located at the distal tip of the axon (1,2). To navigate its
environment, the growth cone uses environmental cues
such as electrical, chemical, mechanical, and geometrical
stimuli (1–4). The dynamics of the growth cone throughout
the external environment is controlled by the cell cytoskel-
eton, a flexible ensemble of actin and microtubule filaments
and their associated molecular motors (1–7).

Previous research has characterized many of the molecu-
lar pathways (1–7) responsible for intercellular signaling in
developing neuronal systems (2,5–8); however, the descrip-
tion of the fundamental mechanisms behind the growth cone
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response to geometrical and mechanical cues has not been
determined at the same level of detail. Much of the research
into geometrical and mechanical cues has studied neurons
on substrates in vitro where the geometry of the substrate
can be controlled. These studies have shown that neurons
grown on substrates with periodic geometrical features
develop different growth patterns as a population compared
with neurons grown on surfaces lacking a periodic geometry
(3,5,9–14). Observational differences include populations of
axons that are markedly longer and that strongly tend to
align their growth along preferred spatial directions
(9,10,12,13,15–18). Most of this previous work has focused
on qualitative or semi-quantitative models to describe the
influence of a substrate with controlled geometrical features
on neuronal development. However, a detailed quantitative
model of the growth dynamics on these substrates that incor-
porates the mechanisms of axonal alignment and cell-sur-
face interactions is still missing.

Fundamentally, axonal growth on surfaces with
controlled geometries arises as the result of an interplay be-
tween deterministic and stochastic components of growth
cone motility (12,18–21). An example of a deterministic in-
fluence is the presence of a preferred direction of growth
along a specific geometrical pattern on a substrate (18,21).
Examples of stochastic influences are the effects of poly-
merization of cytoskeletal features such as actin filaments
and microtubules, cell signaling, low concentration biomol-
ecule detection, biochemical reactions within the neuron,
and the formation of lamellipodia and filopodia (1,2,7,22).
The resultant growth cannot be predicted for individual neu-
rons due to this stochastic-deterministic interplay; however,
the defining features of a population of neurons can be
modeled by probability functions that satisfy a set of well-
defined stochastic differential equations (12,19,20). Fore-
most examples include the Langevin and Fokker-Planck
equations, which have been used previously to capture the
effects of both deterministic and stochastic influences on
cellular motion, which is treated as a form of biased random
motion (9,12,19,20,23–27).

In previous work (20,21) we have shown that axonal dy-
namics on uniform glass surfaces is described by an Orn-
stein-Uhlenbeck (OU) process, defined by a linear Langevin
equation and stochastic white noise (28,29). We have also re-
ported that neurons cultured on poly-D-lysine(PDL)-coated
polydimethylsiloxane (PDMS) substrateswith periodic paral-
lel ridge micropatterns of spatial periodicity d (henceforth
referred to as the pattern spatial period) grow axons parallel
to the surface patterns (18,21).Wehave studied axonal growth
as a function of time on these micropatterned surfaces and
found that axonal alignment increases as a function of time
(18). While initially the growth can be represented as an OU
process, at times greater than 48 h axonal growth can no
longer be described as standard diffusion, following instead
a superdiffusive behavior. This growth is characterized by
non-Gaussian speed distributions and power law dependence
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of the axonal mean square length with time (18). Moreover,
axonal dynamics is described by non-linear Langevin equa-
tions, involving quadratic velocity terms and non-zero coeffi-
cients for the angular orientation of the growing axon (21). In
another paper, we have used the Langevin and Fokker-Planck
equations to quantify axonal growth on surfaces with ratchet-
like topography (asymmetric tilted nanorod: nano-ppx sur-
faces), and we have investigated the diffusion coefficient of
axons on this type of surface geometry (12). It was shown
that the axonal growth is alignedwith a preferred spatial direc-
tion as a result of a ‘‘deterministic torque’’ that drives the
axons to directions determined by the substrate geometry.
We have alsomeasured the angular distributions and the coef-
ficients of diffusion and angular drift on these substrates (12).

In this paper, we demonstrate that the motion of axons on
surfaceswithmicropatterned periodic geometrical patterns is
governed by a closed-loop feedback control mechanism that
leads to axonal alignment on these surfaces. We develop a
quantitative stochastic framework based on the Fokker-
Planck equation that treats each growth cone as a system
with a closed feedback loop. We demonstrate that a simple
mechanical model based on the axon bending-induced strain
justifies the use of the Fokker-Planck equation and allows us
to extract the main dynamical parameters for both untreated
and chemically modified neurons. This theoretical model
fully accounts for the experimental data measured on ensem-
bles of axons, including speed distributions and angular
alignment. Furthermore, our experiments show that inhibi-
tion of cytoskeletal dynamics by treatment of neurons with
Taxol (inhibitor of microtubules) and Y-27632 (inhibitor of
myosin II and actin dynamics) results in a significant
decrease of the axonal alignment by altering the feedback
mechanism of the cell. Feedback control means that the
growth cone is guided toward a target by using information
retrieved from the environment (external stimuli). This is a
powerful technique for describing the dynamical properties
of many types of physical and biological systems, including
particle trapping (30–32), optical tweezers (33–35), neuron
firing (36,37), and cellular dynamics (38–40). We demon-
strate that this approach provides significant insight into the
neuronal response to external mechanical and topographical
stimuli. In particular, our results show that axonal dynamics
is controlled by a contact-guidance mechanism, which stems
from cellular feedback in an external periodic potential im-
parted by the surface geometry. This work has a significant
impact for designing new platforms for guiding growth and
regeneration of neurons and provides new insights for devel-
oping a general model to describe cellular motility.
MATERIALS AND METHODS

Surface preparation, cell culture, and imaging

The periodic micropatterns on PDMS surfaces are made of parallel ridges

separated by troughs. Each surface is characterized by a different value



FIGURE 1 (a) Top: AFM topographic image of

a PDL-coated PDMS-patterned surface. Bottom:

line scan (cross section) along the red line shown

in the AFM image. (b) Coordinate system and the

definition of the angular coordinate q. The x axis

is defined as the axis perpendicular to the direction

of the PDMS patterns. The directions correspond-

ing to q ¼ 0, p/2, and 3p/2, and the pattern spatial

period d are also shown in (a). The line scan in (a)

shows that the micropatterns are periodic in the x

direction with the spatial period d ¼ 4 mm, and

have a constant profile shape with a depth of

approximately 0.6 mm. To see this figure in color,

go online.
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of the pattern spatial period d, defined as the distance between two neigh-

boring ridges (Fig. 1 a). To make these periodic patterns we used a simple

fabrication method based on imprinting diffraction grids with different

grating constants onto PDMS substrates (additional experimental details

are given in supporting material).

The direction of the patterns is shown in Fig. 1 by the parallel bright

stripes (ridges), and by the parallel dark stripes (troughs). We have per-

formed control experiments that demonstrate that the micropatterns used

in our experiments have constant shape and depth. Examples of topograph-

ical images are presented in Figs. 1 a and S1 a). The micropatterned sur-

faces were spin-coated with PDL (Sigma-Aldrich, St. Louis, MO)

solution of concentration 0.1 mg/mL. Neuronal cells were imaged using

an MFP3D atomic force microscope (AFM) equipped with a BioHeater

closed fluid cell, and an inverted Nikon Eclipse Ti optical microscope (Mi-

cro Video Instruments, Avon, MA). Control experiments demonstrate that

the topographical and mechanical properties of the micropatterned PDMS

substrates do not change significantly among surfaces with different spatial

periods or upon coating with PDL (Figs. S1 b, S2, and S3).

The cells used in this work are cortical neurons obtained from embryonic

day 18 rats. For cell dissociation and culture we have used established pro-

tocols presented in our previous work (9,12,18,20,21,41–43). Cortical neu-

rons were cultured on micropatterned PDMS substrates coated with PDL.

The cells were cultured at a surface density of 4000 cells/cm2. We have pre-

viously reported that neurons cultured at relatively low densities (in the

range 3000–7000 cells/cm2) are optimal for studying axonal growth on sur-

faces with different mechanical, geometrical, and biochemical properties

(9,12,18,21,41).

Fluorescence images were acquired using a standard fluorescein isothio-

cyanate (FITC) filter: excitation, 495 nm and emission, 521 nm (details on

acquiring the fluorescence images are provided in the supporting material).

For the experiments on chemically modified cells, we treated the neurons

with either (1) Taxol (10 mM concentration) or (2) the chemical compound

Y-27632 (10 mM concentration), which were added to the neuron growth

medium at the time of plating. Previous work has shown that a Taxol con-

centration of 10 mM is very effective in suppressing the microtubule dy-

namics (12,22,41), and that 10 mM Y-27632 is very efficient in disrupting

actin polymerization and the formation of actin bundles, thus reducing trac-

tion forces between the neurons and the growth substrates (42).
Data analysis

Growth cone position, axonal length, and angular distributions were

measured and quantified using ImageJ (National Institutes of Health).

The displacement of the growth conewas obtained by measuring the change

in the center of the growth cone position. Examples of images that show the

tracked position for axons are shown in Fig. S4. To measure the growth
cone velocities, the samples were imaged every Dt ¼ 5 min for a total

period of 1 h per sample. The 5-min time interval between measurements

was chosen such that the typical displacement D~r of the growth cone in

this interval satisfies two requirements: (1) it is larger than the experimental

precision of our measurement (�0.1 mm) (20,21); (2) the ratio D~r=Dt accu-

rately approximates the instantaneous velocity ~V of the growth cone. The

speed of the growth cone is defined as the magnitude of the velocity vector

VðtÞ ¼
���~VðtÞ���, and the growth angle q(t) is measured with respect to the x

axis (growth angle and the x axis are defined in Fig. 1).

To obtain the speed distributions (Figs. 3 c, d, S6 c, d, and S7), the range

of growth cone speeds at each time point was divided into 15 intervals of

equal size

����D~V0

����: Experimental data (Fig. S4) show that, over a distance

of �20 mm, the axons can be approximated by straight line segments,

with a high degree of accuracy. Therefore, to obtain the angular distribu-

tions for the growth angle q (Figs. 3 a, b, 4 c, d, S6 a, and b), we tracked

all axons using ImageJ and then partitioned them into segments of 20 mm

in length, following the same procedure outlined in our previous work

(18,21). Next, we recorded the angle that each segment makes with the x

axis (schematic shown in Fig. 1). The total range [0, 2p] of growth angles

was divided into 18 intervals of equal size Dq0 ¼ p=9 (Figs. 3 a, b, 4 c, d,

S6 a, and b). Experimentally, the average for the absolute value of sin q for

each type of surface is obtained according to the formula:

Cjsin qjD ¼ 1

N
,
XN
i¼ 1

ðjsin qijÞ (1)

where N is the total number of axonal segments of 20 mm in length,

measured on a given type of surface, and qi represents the angle that ith

segment makes with the x axis.
RESULTS

Axonal alignment and speed distributions for
untreated neurons

Cortical neurons are cultured on PDL-coated PDMS sur-
faces with parallel micropatterns (periodic parallel ridges
separated by troughs). The surfaces differ by the value of
the pattern spatial period d defined as the distance between
two neighboring ridges (Fig. 1). We analyze the growth of
both untreated and chemically modified neuronal cells on
surfaces with spatial periods in the range d ¼ 1–10 mm (in
increments of 1 mm). Fig. 2 shows examples of images of
Biophysical Journal 121, 769–781, March 1, 2022 771



FIGURE 2 Examples of cultured cortical neu-

rons on PDL-coated PDMS surfaces with periodic

micropatterns. The main structural components of

a neuronal cell are labeled in (a). The angular coor-

dinate q used in this paper is defined in the inset of

(a). All angles are measured with respect to the x

axis, defined as the axis perpendicular to the direc-

tion of the PDMS patterns (see Fig. 1). The pattern

spatial period is d ¼ 1 mm in (a); d ¼ 4 mm in (b);

d ¼ 6 mm in (c); d ¼ 9 mm in (d). All images are

captured 40 h after neuron plating. The scale bar

shown in (a) is the same for all images.
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axonal growth for untreated cells, captured at t ¼ 40 h after
cell plating. Examples of the corresponding axonal normal-
ized angular and speed distributions are shown, respectively,
in Fig. 3 a and c (for d ¼ 1 mm), and Fig. 3 b and d (for d ¼
4 mm). Additional angular and speed distributions are shown
in Fig. S6. We have previously demonstrated (21) that axons
of untreated neurons display maximum alignment along
PDMS patterns for surfaces where the pattern spatial period
dmatches the linear dimension of the growth cone l, where l
is in the range 3–6 mm. The experimental data shown in
Fig. 2 b and c are in agreement with our previous findings.
Furthermore, the speed distributions for these growth cones
are close to Gaussian distributions, which are expected for
t ¼ 40 h after cell plating (18). We note that, in contrast
to axons, dendrites do not display angular alignment along
the surface micropatterns (examples of angular distributions
for dendrites are shown in Fig. S5).
Axonal alignment and speed distributions for
neurons treated with Taxol and Y-27632

To further investigate the axonal dynamics on PDMS surfaces
with periodic micropatterns, we measure angular and speed
distributions for neurons treated with chemical compounds
known to inhibit the dynamics of the cell cytoskeleton.
Fig. 4 a shows an example of axonal growth for neurons
treated with 10 mMTaxol. Fig. 4 b shows a similar image ob-
tained for neurons treated with 10 mM Y-27632. The pattern
spatial period of the PDMS surfaces is d ¼4 mm for both im-
ages. Taxol is a chemical compound that is commonly used to
inhibit the normal functioning of the cytoskeleton, due to the
disruption of microtubule dynamics (12,22,41). Y-27632 is
772 Biophysical Journal 121, 769–781, March 1, 2022
known to inhibit the formation of actin bundles and the reor-
ganization of actin-based structures during neuronal growth
(42,44). Both of these compounds have been shown to be
effective at the concentration of 10 mM used in our experi-
ments (12,22,41,42,44). The normalized angular distributions
for axonal growth are shown in Fig. 4 c for Taxol and in Fig. 4
d for Y-27632. The neurons treated with either Taxol or Y-
27632 show a dramatic decrease in the degree of alignment
with the surface patterns compared with the unmodified cells
(Figs. 2 and 3). The data show that while the axonal direction-
ality is greatly reduced by the chemical treatment, the treated
neurons still grow long axons and form cell-cell connections
(Fig. 4 a and b). These results demonstrate that the disruption
of the cytoskeletal dynamics for chemically treated neurons
affects only the degree of alignment with the surface pattern,
leaving the navigation of the growth cone and axonal
outgrowth uninhibited.
Stochastic model of axonal growth on surfaces
with periodic micropatterns

Axonal motion on the PDMS substrates is characterized by
both deterministic and stochastic components (12,18–21).
The dynamics of the growth cones is described by the spatial
probability distribution pð~r; tÞ, whose time evolution is gov-
erned by the Smoluchowski (spatial Fokker-Planck) equa-
tion (28,29):

v
vt
pð~r; tÞ ¼ D ,V2pð~r; tÞ þ 1

g
V , ðpð~r; tÞ , VVð~rÞÞ (2)

whereD represents the diffusion (cell motility) coefficient, g
is the damping coefficient (friction constant of the



FIGURE 3 (a and b) Examples of normalized

experimental angular distributions for axonal growth

measured on micropatterned PDMS surfaces with

different pattern spatial periods d. The continuous

red curves in each figure are the predictions of the

theoreticalmodel discussed in themain text. The ver-

tical axis (labeled normalized frequency) represents

the ratio between the number of axonal segments

growing in a given direction and the total number N

of axon segments. Each axonal segment is of 20 mm

in length (see section ‘‘data analysis’’). All distribu-

tions show data collected at t ¼ 40 h after neuron

plating. (a) Angular distribution obtained for

N ¼ 1404 different axon segments on surfaces with

d ¼ 1 mm. (b) Angular distribution obtained for

N ¼ 1560 different axon segments on surfaces with

d¼ 4mm.Thedata show that the axons display strong

directional alignment along the surface patterns

(peaks at q ¼ p=2 and q ¼ 3p=2), with the highest

degree of alignment (sharpness of the distribution)

measured for d ¼ 4 mm. (c and d) Examples of

normalized speed distributions for growth cones

measured on micropatterned PDMS surfaces with

different pattern spatial period d. (c) Speed distribu-

tion for N ¼ 210 different growth cones measured on surfaces with d ¼ 1 mm. (d) Speed distribution for N ¼ 242 different growth cones measured on surfaces

with d¼ 4 mm. The continuous red curves in each figure represent the predictions of the theoretical model discussed in the main text. To see this figure in color,

go online.
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corresponding Langevin equation), and Vð~rÞ is the effective
potential that determines the axonal motion. The net force
per unit mass acting on the growth cone is ~f ¼ �VVð~rÞ
(21). Wewrite the effective potential as a sum of three terms:

Vð~rÞ ¼ Vextð~rÞþVFð~rÞ þ Vintð~r; pÞ (3)

where Vextð~rÞ is the neuron-substrate coupling potential
(external potential imposed by the substrate geometry),
VFð~rÞ is the potential responsible for the closed-loop feed-
back (to be discussed below), and Vintð~r; pÞ is the neuron-
neuron interaction potential (quantifies the interactions
between neuronal cells).

In this paper, we consider the motion of an ensemble of N
growth cones when the neuron-neuron signaling potential
Vintð~r; pÞ is negligible compared with the neuron-substrate
interactions described by the periodic potential (see Eq. 4
below). This is indeed the case for the low values of the
FIGURE 4 (a and b) Examples of axonal growth

for cortical neurons treated with chemical com-

pounds that inhibit the cytoskeletal dynamics: (a)

Taxol and (b) Y-27632. The growth substrates are

PDL-coated PDMS surfaces with periodic micro-

patterns with the pattern spatial d ¼ 4 mm. The im-

ages are captured at t ¼ 40 h after neuron plating.

The scale bar shown in (a) is the same for both im-

ages. (c and d) Normalized experimental angular

distributions corresponding to the images shown

in (a) and (b), respectively. The neurons treated

with Taxol or Y-27632 show a significant decrease

in the degree of alignment with the surface pat-

terns, compared with the untreated cells (Figs. 2

and 3). The continuous red curves in each figure

are the predictions of the theoretical model dis-

cussed in the main text. To see this figure in color,

go online.
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cell culture density (4000 cells/cm2) used in our experi-
ments, as shown in previous work (9). The micropatterned
PDMS substrates have uniform geometry in the y direction,
and periodic geometry along the x axis (Fig. 1). Thus, the
mechanical coupling between the growth cone and the sub-
strate results in a constant potential along the y direction,
and a periodic external potential along the x axis:

VextðxÞ ¼ V0 , sin
2px

d
(4)

where V0 is the maximum strength of the external potential
imposed by the surface geometry, d represents the pattern
spatial period, and x is the coordinate along the x axis defined
in (Fig. 1 b). We note that the PDMS surfaces are coated with
a uniform layer of PDL (Figs. S1–S3), and thus the substrate
chemistry contributes with a constant value to Vextð~rÞ and
does not influence the axonal dynamics described by Eq. (2).

Experimental data show that the motion of growth cones
along the x axis on the micropatterned surfaces is similar to
the dynamics of particles inside a harmonic trap centered on
the mean position, similar to the dynamics of polarizable
colloids inside optical traps (30,33–35,45). This type of dy-
namics is described by the harmonic potential (30,34,35):

VFðx; pÞ ¼ V , ðx � CxDÞ2 (5)

where V is the strength of the harmonic confinement, and
CxðtÞD is the time-dependent growth cone mean position
along the x axis. We emphasize that in our model the time
evolution of the probability density in Eq. 2 is explicitly
written in real space, as opposed to velocity space treated
in previous work (18,20,21), and thus it allows us to separate
the effects of periodic geometry (Vext given by Eq. 4) from
the feedback control (VF given by Eq. 5).

Equations 3, 4, and 5 imply that the spatial probability
distribution pð~r; tÞ admits the following separation of vari-
ables: pð~r; tÞ ¼ pðx; tÞ,pðy; tÞ where pðx; tÞ and pðy; tÞ repre-
sent the cellular probability distributions in the y and x
directions respectively. Furthermore, the approximation
Vintð~r; pÞ ¼ 0 and the uniform geometry in the y direction
implies that pðy; tÞ is a constant, and thus:

pð~r; tÞ ¼ A , pðx; tÞ (6)

where A is an overall normalization constant.
With the geometrical and feedback potentials given by

Eqs. 4 and 5, and the probability distribution given by Eq.
6, the equation of motion for the growth cone (Eq. 2) in
the x direction becomes:

v

vt
pðx; tÞ ¼ D ,

v2

vx2
pðx; tÞ

þ 1

g

v

vx

�
pðx; tÞ , v

vx
ðVextðxÞþVFðx; CxDÞ

�
(7)
774 Biophysical Journal 121, 769–781, March 1, 2022
with the time-dependent growth cone mean position along
the x axis:

CxðtÞD ¼ 1

N

Z
dxx pðx; tÞ (8)

The model described by Eqs. 4, 5, 6, 7, and 8 predicts that
the overall motion for the axons has two components: (1) a
uniform drift along the directions of minimum VextðxÞ (i.e.,
along the y axis in Fig. 1), and (2) a random walk around
these equilibrium positions. This is indeed what is observed
experimentally. At early times the growth cone dynamics re-
sembles a Brownian motion, resulting in a slow increase in
the mean growth cone position CxD along the x axis. As time
progresses, the feedback control, which depends on CxD,
steers the axonal motion along the minimum values of the
periodic potential; i.e., along the micropatterned parallel
PDMS lines (Figs. 1 and 2). Furthermore, in the absence
of the confinement imposed by the periodic potential (Eq.
4) and feedback control potential (Eq. 5), the equation of
motion for the growth cones (Eq. 2) reduces to a regular
diffusion (OU) process characterized by exponential decay
of the autocorrelation functions with a characteristic time
t ¼ 1

g
, axonal mean square length that increases linearly

with time, and velocity distributions that approach Gaussian
functions (28,29). In our previous work we have shown that
this is indeed the case for axonal growth on PDL-coated
glass and PDMS surfaces characterized by large pattern
spatial periods: d > 9 mm (21).

To model the motion of the growth cones on micropat-
terned PDMS periodic surfaces we solve Eq. 7 numerically,
subject to the stationary solutions (18,28,29):

pðxÞ ¼ ð1 = ZÞ , exp�� �
V , x2 þVextðxÞ

� �
D , g

�
(9)

where Z is a normalization constant. Fig. 5 a and b show ex-
amples of experimentally measured probability distributions
for the motion of the growth cones in the x direction. Fig. 5
a shows data obtained for untreated neurons, while Fig. 5 b
displays data obtained for neurons treated with Taxol. The
pattern spatial period for both Fig. 5 a and b is d ¼ 4 mm.
The red curves in Fig. 5 a and b represent fits to the data
with the solutions of the theoretical model given by Eq. 7.
For the case of untreated neurons, the solutions of Eq. 7 fit
the experimental data for the probability distribution pðx; tÞ
(Fig. 5 a) with the following values of the growth parameters:
diffusion coefficientD ¼ ð2254Þ mm2=hr, damping coeffi-
cient g ¼ ð0:1450:05Þhr�1, and strengths of the external
and feedback potentials V0 ¼ ð1:950:3Þ mm2=hr2, and
V ¼ð0:2350:08Þhr�2, respectively.Thevalues for the diffu-
sion and damping coefficients are close to the ones we have
previously reported for growth cones on glass and PDMS sur-
faces (18,20,21). The probability distribution in the case of
neurons treatedwithTaxol (Fig. 5 b) is fittedwith the solutions
of Eq. 7 for the following values of the growth parameters:



FIGURE 5 (a and b) Examples of experimen-

tally measured probability distributions for the mo-

tion of the growth cones in the x direction. The red

curves represent fits to the data with the solutions of

the theoretical model given by Eq. 7. The fit param-

eters are the diffusion (cell motility) coefficient D,

the damping coefficient g, and the magnitudes V0

and V of the external and feedback potential,

respectively. (a) Data obtained for N ¼ 331 un-

treated neurons measured at t¼ 40 h on PDMS sur-

faces with d¼ 4 mm. (b) Data obtained for N¼ 298

neurons treated with Taxol measured at t ¼ 40 h on

PDMS surfaces with d¼ 4 mm. (c and d) Simulated

neuronal growth for untreated (c) and Taxol-treated

neurons (d). The simulations are performed by us-

ing the values of the growth parameters obtained

from the fit of the experimental data with solutions

of Eq. 7 (see main text). To see this figure in color,

go online.
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diffusion coefficientD ¼ ð1453Þ mm2=hr, damping coeffi-
cient g ¼ ð0:1150:03Þhr�1, and strengths of the external
and feedback potentials V0 ¼ ð0:650:2Þ mm2=hr2, and
V ¼ ð0:0850:04Þhr�2, respectively. We note that the values
for the growth parameters decrease either upon the chemical
treatment of the neuron or with increasing spatial period
d (see Table S1 for a summary of these parameters).

We use the solutions ofEq. 7 for the probability distribution
to simulate axonal growth trajectories, aswell as axonal speed
and angular distributions. The simulations are performed us-
ing the above values for the growth parameters and strengths
of the periodic and feedback potentials (obtained from the
data fit in Fig. 5 a and b) with no additional adjustable param-
eters (see the supporting material for simulation details).
Fig. 5 c and d show examples of simulation results for un-
treated (Fig. 5 c) and Taxol-treated neurons (Fig. 5 d) grown
on surfaceswithd¼ 4mm.Similar experimental data and sim-
ulations obtained for untreated neurons grown on surfaces
with d ¼ 6 mm, as well as neurons treated with Y-27632, are
shown in Fig. S8. Simulations performed for untreated neu-
rons cultured on surfaces with d ¼ 9 mm and d ¼ 10 mm are
shown in Fig. S9.We emphasize that the angular distributions
and speed distributions obtained from these simulations
match the experimental data for untreated (Figs. 3 and S6),
Taxol-, and Y-27632-treated neurons (Figs. 4 and S7)without
the introduction of any additional parameters. The simulated
axon trajectories in Figs. 5 c and S8 c reproduce the high de-
gree of alignment observed experimentally for untreated neu-
rons grown on surfaces with d ¼ 4 mm or d ¼ 6 mm (Fig. 2 b
and c, Figs. 3 b and S6 a). Figs. 5 d and S8 d show simulated
growth trajectories with intermediate degree of alignment
(similar to the data measured on Taxol- and Y-27632-treated
neurons in Fig. 4). Fig. S9 shows simulated axon trajectories
with low degree of alignment, similar to the growth data
measured on surfaces with d ¼ 9 mm and d ¼ 10 mm
(Fig. S6 b). In the limit of very large d, the dynamics reduces
to simple Brownianmotion, as discussed above. The Table S1
presents a summary of the values for the growth parameters
obtained from the comparison between the theoretical model
(solutions of Eq. 7) and the experimental data for different
cells and substrates. The decrease in the parameters V and
V0 observed for chemically treated cells, as well as for un-
treated neurons cultured on surfaces with large d, reflects
the lower degree of alignment measured in these cases.
Mechanical model for axonal dynamics

We justify the stochastic model described in the previous
section by introducing a simple mechanical model that takes
into account the cell-substrate interactions when the axon
grows close to the top of the micropattern; this is indeed
the case for most axons at t ¼ 40 h after cell culture as
we have shown in (18) (see also Fig. S10). We first note
that the micropatterned PDMS lines can be approximated
locally with semi-cylinders with radius of curvature R
(Fig. S1 a). The model considers the bending-induced strain
sustained by the axon while growing close to the top of the
semi-cylindrical surface: axonal adhesion to the micropat-
tern leads to axonal bending, which in turn leads to
increased mechanical strain energy in the axon cytoskel-
eton. The mechanical strain energy E depends on the axon
bending stiffness B, and the local surface curvature
Kðq;RÞ (4,46):

E ¼ 1

2
B ,K2ðq;RÞ (10)
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In the case of axonal growth on the micropatterned sur-
faces, the curvature of the axon on the surface of the
semi-cylinder is given by:

Kðq;RÞ ¼ jcos ðqÞj
R

(11)

where R is the radius of curvature of the semi-cylindrical
pattern. Under the assumption of maximum entropy (close
to growth equilibrium), the probability of axon growing in
a given direction is given by Boltzmann distribution:

pðqÞ ¼ A1 , exp

�
� E

E0

�
(12)

where E0 is the characteristic energy scale for axonal
bending, and A1 is an overall normalization constant. By
combining Eqs. 10, 11, and 12 we can write the following
expression for the angular probability distribution:

pðqÞ ¼ A , exp

�
� B

E0 ,R2
, cos2ðqÞ

�
(13)

When the axon grows close to top of the semi-cylindrical
pattern, the external potentialVext is approximatively constant
(close to its maximum value; see Eq. 4). In this limit, Eq. 13
has the general form of Eq. 9, given that the relationship be-
tween the displacement in the x direction and the axon growth
angle q isDx ¼ Dr,cosðqÞ (Fig. 1b),whereDr ¼ 20 mm(see
section ‘‘data analysis’’). Therefore, a direct comparison be-
tween Eq. 13 (derived from the mechanical beam model)
and Eq. 2 (solution of the stochastic Fokker-Planck equation)
leads to the following relationship between the stochastic pa-
rameters (diffusion coefficient D, damping coefficient g,
strength of the feedback potential V) and the mechanical pa-
rameters (axon bending stiffness B, the characteristic energy
scale E0, and the surface radius of curvature R):

V ,DL2

D ,g
¼ B

E0 ,R2
(14)

Weemphasize thatEq. 13 is a special caseofEq. 9 (obtained
at growth equilibrium andwhen the growth cone is close to the
top of the micropattern). However, we can use Eq. 14 (derived
by direct comparison between Eqs. 9 and 13) togetherwith the
values for the stochastic parameters found in the previous sec-
tion to calculate the ratios between the axon bending modulus
B and the characteristic energy scaleE0 for untreated aswell as
chemically modified neurons. The radius of curvature of the
micropatterns could be measured directly by AFM (Fig. S1
a). For example, for neurons grown on surfaces with d ¼
4 mm, the AFM measurements give R � 0.5 mm. From Eq.
14we then obtainB=E0 ¼ ð6:950:9Þ mm3 for untreated neu-
rons, and B=E0 ¼ ð5:550:9Þ mm2 for neurons treated with
Taxol. The corresponding value for Y-27632-treated cells is
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B=E0 ¼ ð5:150:9Þ mm2Þ (all values are obtained for cells
cultured on surfaces with d¼ 4 mm). A summary of the values
forB/E0 for different types of surfaces and chemical treatment
is given in Table S1. Eq. 14 gives only the ratio between the
bending modulus B and the characteristic energy scale E0

for mechanical interactions between the axons and the
PDMS micropatterns on the growth substrate. Assuming a
constant energy scale E0 for all these cases, we can perform
a joint fit for all data points using the maximum likelihood
method (12,20). The constant value of the characteristic en-
ergy scale that maximizes the likelihood of measuring the
given data set is E0 ¼ ð3:250:7Þ,10�15 J. Using this con-
stant value forE0weobtain the following values for the axonal
bending rigidities: B ¼ ð23:750:8Þ J,mm2 for untreated
neurons, B ¼ ð17:650:8Þ J,mm2 for neurons treated with
Taxol, and B ¼ ð16:350:8Þ J,mm2 for neurons treated
with Y-27632 (cells cultured on surfaces with d ¼ 4 mm).
These values for the axonal bending rigidity are comparable
with the values for axon bending rigidity reported in the liter-
ature (4,43,46,47), and are consistent with our previous values
for the elastic modulus of the neuronal cells (41–43), if we as-
sume a simple rigid beam model for the axon (48).
Feedback control dynamics for axonal growth in
periodic potentials

The stochastic model described in the previous sections
shows that the feedback potential VF depends on the dynam-
ical state of the whole system, through the ensemble average
CxðtÞD (Eq. 5). Thus, this model implies that the axonal mo-
tion on surfaces with periodic geometries exhibits a simple
closed-loop behavior: the growth cone detects the geomet-
rical cues on the surface and tends to align its motion along
certain preferred directions that maximize the cell-surface
interactions. In general, closed-loop feedback control means
that the system is steered toward a target behavior by using
information that is retrieved from the environment through
continuous measurements.

To further investigate this model, we determine the
average value for |sinq| (absolute value for the sine of the
axonal growth angle), which measures axonal alignment
for each type of surface. We use the absolute value |sin q|
due to the growth symmetry with respect to the x axis (direc-
tions q ¼ 0 and q ¼ p are equivalent; see Figs. 1 and 2). As
shown in references (38–40) on work performed for galvano-
taxis and chemotaxis dose-response curves for the motion of
human granulocytes and keratinocytes, the feedback control
model leads to the following expression for the average of
the absolute value for the sine of the growth angle:

CjsinqjDh
Z 2p

0

pðqÞ , jsinqjdq ¼ I1ða , dÞ
I2ða , dÞ (15)

where I1 and I0 are the modified Bessel functions of the first
kind, and a is a parameter with dimensions of inverse length.



FIGURE 6 Variation of the average value for |sin q| (absolute value for the

sine of the axonal growth angle) with the pattern spatial period d. The black

squares represent the values for Cjsin qjD obtained from the experimental data

for untreated neurons. The blue squares correspond to the experimental data

obtained for neurons treated with Taxol, while the red squares correspond to

the data measured for neurons treated with Y-27632. Error bars indicate the

standard error of the mean for each data set. The dotted curves represent fit of

the data points with Eq. 15, performed in the range d ¼ 1 to 6 mm. The graph

shows that data points in this range are fitted by the feedback control model

for the following values of the parameters: a ¼ ð1:950:4Þ mm�1 for un-

treated neurons, a ¼ ð0:550:2Þ mm�1 for neurons treated with Taxol, and

a ¼ ð0:350:2Þ mm�1 for neurons treated with Y-27632. To see this figure

in color, go online.

Feedback-controlled dynamics of neurons
Fig. 6 shows the variation of the experimentally
measured values for CjsinqjD with the pattern spatial period
d, for untreated neurons (black squares), as well as for
neurons treated with Taxol (blue squares) and Y-27632
(red squares). The dotted curves represent fits to the
data with the predictions of the closed-loop feedback
model given by Eq. 15. Only the data points in the range
d ¼ 1 to 6 mm are included in the fit. The data demonstrate
that axonal dynamics on micropatterned PDMS surfaces is
described by a simple linear response model, when the
pattern spatial period is in the range d ¼ 1 to 6 mm,
that is when d matches the linear dimension of the growth
cone: dzl. This conclusion applies to both untreated cells
and cells treated with Taxol and Y-27632. This type of
response is known as ‘‘automatic controller’’ in the theory
of feedback control systems (49) and it is exhibited by a
large class of biological and non-biological systems as
discussed below. In our experiments, the pattern spatial
period d plays the role of an effective control parameter
that determines the axonal alignment, similar to the
electric field in the case of galvanotaxis of human granu-
locytes and keratinocytes (23,38), or the concentration
gradient in the case of cellular chemotaxis (39). Further-
more, Fig. 6 demonstrates that the response of the
automatic controller is affected by the inhibition of cyto-
skeletal dynamics: the actual response (measured by the
coefficient a) is different for the untreated and
chemically treated cells (see the caption in Fig. 6, and
Table S1).
DISCUSSION

Neurons respond to a variety of external cues (biochemical,
mechanical, geometrical) while wiring up the nervous sys-
tem in vivo (1,2,4–7). In many cases these cues consist of
periodic geometrical patterns with dimensions of the order
of a few micrometers (1,4,5). Examples of physiological
growth scaffolds include curved brain folding (4–6), radial
glial fibers (4,5), and extracellular matrix tracks (1,2,6,7).
Our results show that growth substrates containing micro-
patterned periodic features promote axonal growth along
the direction of the pattern. The range for the micropattern
spatial periods in our experiments (d ¼ 1 to 10 mm) is rele-
vant both for neuronal growth in vivo as well as for many
proposed biomaterial implants for nerve regeneration
(13,17). Furthermore, our experiments show that neurons
grown on PDMS substrates display a significant increase
in the overall axonal length and a high degree of alignment
when the pattern spatial period d matches the linear dimen-
sion of the growth cone: d z l.

We have shown that the Fokker-Planck equation with
closed-loop feedback control and periodic external potential
(Eqs. 1, 2, 3, 4, 5, 6, 7, 8, and 9) provides a general stochas-
tic framework that describes the main characteristic of the
axonal dynamics on micropatterned PDMS substrates. The
limitations of this model are due to its phenomenological
nature: the growth parameters are obtained from fit to exper-
imental data, and not predicted from the underlying cellular
biophysics. However, we have demonstrated that a simple
mechanical model based on the axon bending-induced strain
(Eqs. 10, 11, 12, and 13) justifies the use of the Fokker-
Planck equation and allows us to extract the main dynamical
parameters that characterize axonal growth for both un-
treated and chemically modified neurons. Our results show
that the additional cues necessary to guide the axonal dy-
namics result from the interplay between the geometrical
features of the substrate and the physical properties (stiff-
ness) of the nerve process.

The theoretical model captures all the characteristics of
axonal growth on the PDMS surfaces for untreated and
chemically modified neurons, including diffusion (cell
motility) coefficients, and angular and speed distributions
(Figs. 2, 3, 4, 5, and S6–S8). Furthermore, Eqs. 2, 3, 4, 5,
6, 7, 8, and 9 imply a simple closed-loop automatic
controller model for axonal motion: the growth cone detects
geometrical features on the substrate and orients its motion
in the directions that maximize the interaction between the
axon and the substrate. This behavior is displayed by both
untreated and chemically modified neurons, as shown in
Fig. 6. In this figure, each data set (for untreated, Taxol-,
and Y-27632-treated cells) is fitted with a unique parameter
a, which demonstrates a linear response characteristic to a
proportional controller: the response is proportional to the
signal received from the guidance cue (38,39). The coeffi-
cients a obtained from the data fit (Fig. 6 and Table S1)
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measure the neuronal responses to periodic geometrical
cues, and play a similar role to the galvanotaxis and chemo-
taxis coefficients used to describe the cellular motion in
external electric fields or chemical gradients (23,38–40).

Models based on the theory of automatic controllers have
been successfully used by other groups to characterize the
galvanotaxis (motion in external electric fields) of human
granulocytes and keratinocytes (23,38), as well as the
chemotactic response of bacteria and of various types of vi-
rus-modified cells (39,40). We note that the closed-loop
feedback displayed by neurons is different than the case
of external (or open-loop) control, where the parameters
are set externally without involving the reaction of the sys-
tem. Open-loop control does not involve measurements of
the environment and it is the type of control encountered
in systems with predictable dynamics. Examples of open-
loop systems include many types of devices, such as fluores-
cent lamps or watches controlled by quartz crystals (49), or
systems under the influence of oscillating forces, such as
mixing devices or ratchet structures (50–52). In the case
of complex dynamics, such as the stochastic motion of cells,
closed-loop feedback control is a much more reliable con-
trol mechanism. In the case of neurons, the closed-loop
feedback control underlies the mechanism of axonal align-
ment on micropatterned PDMS substrates. Within this
model, the growth cone behaves similarly to a device that
senses geometrical cues, and as a result generates traction
forces that align the axon with the surface pattern.

The parameters V0, V, a, and B/E0 (see Table S1) are ob-
tained from the comparison between experimental data and
the theoretical model, and represent a measure of the inter-
actions between cells and the geometrical cues on the
growth substrates. These parameters allow for a meaningful
comparison of the cellular response to geometrical cues
among different types of cells and growth substrates. For
example, the high degree of alignment observed for un-
treated neurons grown on surfaces with d z l (e.g., d ¼
4 mm or d ¼ 6 mm) is reflected by the higher strengths of
the geometrical and feedback potentials V0 and V compared
with neurons grown on surfaces with other pattern spatial
periods (e.g., d ¼ 1 mm or d ¼ 9 mm; see Table S1). Further-
more, the reduction in axonal alignment observed for chem-
ically treated cells is measured quantitatively by the
significant decrease in the values of the parameters V0, V,
and a, compared with the corresponding values obtained
for untreated neurons grown on the same type of micropat-
terned surface (d ¼ 4 mm). Table S1 shows a decrease by a
factor �3 to 4 in the values of V0 and V for chemically
treated cells compared with the untreated neurons grown
on the same type of substrate. The unique fit parameter a ob-
tained in each case (untreated, Taxol-, and Y-27632-treated
cells) for neuronal growth on surfaces with pattern spatial
period in the range d ¼ 1 to 6 mm demonstrates a linear
response characteristic to a proportional controller. Howev-
er, the value of a for Taxol-treated cells is a factor of �4
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smaller than the value for the corresponding parameter ob-
tained for untreated cells (Fig. 6 and Table S1). This result
is in very good quantitative agreement with the experimen-
tally observed decrease in the peak of the angular distribu-
tions for Taxol-treated cells (Fig. 4 c compared with
Fig. 3 b). A similar decrease in the value of a is measured
for neurons treated with Y-27632 (Fig. 6 and Table S1).
The smaller value of the parameter a for the chemically
treated neurons implies a less effective guidance mechanism
for these cells compared with the untreated ones. Within the
feedback control model, these results show an alteration of
the automatic controller responsible for directional motion
of axons in the case of chemically treated neurons.

The comparison between the stochastic and mechanical
model given by Eqs. 10, 11, 12, and 13 allows us to calculate
the ratios between the axon bending modulus B and the
characteristic energy scale of axon-substrate interactions
E0, for untreated as well as chemically modified neurons
(Eq. 14). This ratio is almost constant for untreated neurons
grown on surfaces with different pattern spatial periods
d (Table S1), showing a constant axon-surface bending en-
ergy. The model also shows a statistically significant
decrease in the value B/E0 for cells treated with Taxol or
Y-27632 (Table S1), and thus indicates a decrease in the
bending rigidity for chemically modified neurons, which
is consistent with the alteration of cytoskeletal dynamics
and axon-substrate coupling forces for these cells, as dis-
cussed below.

The biophysical mechanisms responsible for the observed
changes in the dynamical behavior involve changes in the
cell-substrate coupling forces, which could occur through
different cellular processes. Growth cones are filled up with
actin filaments, which polymerize at their leading edge
(1–7). At the same time, myosin II motors pull on actin fila-
ments and generate traction forces via point contacts (e.g., in-
tegrins, viniculin, talin). Furthermore, interactions between
actin filaments and microtubules modify the distribution of
mechanical stress in the growth cone and affect its adhesion
properties, and its ability to navigate and turn. In consequence,
both microtubules and actin filaments inside the growth cone
act as stiff load-bearing structures that generate surface adhe-
sion and traction forces (1,2,4). Inhibition of microtubule or
actin dynamics will therefore result in a decrease in cell-sub-
strate interactions and cellular adhesion. Our experiments are
consistent with these predictions: we have demonstrated that
disruption of the cytoskeletal dynamics for cells treated with
Taxol (inhibitor of microtubule dynamics), and Y-27632
(disruption of actin filaments) results in a decrease in the de-
gree of alignment and a reduction in cell-substrate interac-
tions (Figs. 4, 5 b, d, S8 b, d; Table S1).

These results support previous work that has shown that
neurons follow geometrical patterns through a contact-guid-
ance mechanism (12,21,53). Contact guidance is the
behavior displayed by many different types of cells that
can change their motion in response to geometrical cues
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present in the surrounding environment. This property has
been observed for several types of cells, including neurons,
fibroblasts, and tumor cells (12,17,21,53). Previous work
(17,53–55) has shown that growth cones develop several
different types of curvature-sensing proteins, such as amphi-
pathic helices and bin-amphiphysin-rvs (BAR) domains,
that act as sensors of geometrical cues and are involved in
the generation of traction forces. Moreover, the degree of
directional alignment of cellular motion is increasing with
the increase in the density of curvature sensing proteins
(17,53–55). In our experiments, the growth cone filopodia
and lamellipodia wrap around the ridges of the PDMS
micropatterns (18), which results in a minimal contact
area with the surface, and thus a maximum density of
curvature-sensing proteins. Consequently, high-curvature
geometrical features such as ridges on PDMS substrates
will impart higher forces to the focal contacts of filopodia
wrapped over these features, compared with the low-curva-
ture patterns. This means that the contact-guidance mecha-
nism leads to an increase in the traction force along the
direction of the surface pattern (defined as the y direction
in Fig. 1), which ultimately results in the observed direc-
tional alignment of axons on these surfaces.

Proper wiring of the nervous system in vivo is carried out
precisely and robustly as growth cones respond to their envi-
ronment by integrating external cues.While the fundamental
stochastic nature of self-wiring obscure the details of how it is
achieved, it is likely that there are general emergent rules that
apply across large patterns of connections (56,57). Previous
growth models have simulated multiple axons growing in
complex domains with multiple guidance factors (56,57).
However, many of the parameters that control axonal dy-
namics have not been quantified. In previous work we have
investigated axonal growth on substrates with different
geometrical patterns, and have measured speed and acceler-
ation distributions as a function of substrate geometry (21),
axonal alignment as a function of time (18), as well as axonal
angular distributions, angular drift, and diffusion coefficients
(12,18,21). In this paper, we show that axonal stiffness and
substrate curvature can act together to direct axonal growth
on filamentous surfaces. This work also opens up several
important directions for future investigations of surface-
driven axonal growth. For example, the ability to control
and direct biomechanical responses in vitro has important
consequences for neural repair and tissue engineering, along
with in vitro-in vivo device interfaces. Such control is critical,
for example, to repair nerve damage, to guide and optimize
nerve interfaces to prosthetics, and to integrate medical de-
vices for physiological functions.

The role played by curvature-sensing proteins and other
cellular processes, such as changes in expression of BAR
proteins, or the opening of stress activated ion channels,
which could lead to changes in the cell-substrate coupling
forces, will be investigated in future experiments. This
future work will involve the measurement of both cell-sur-
face coupling forces using traction-force microscopy and
the density of cell-surface receptors and curvature-sensing
proteins using fluorescence techniques. The effect that these
biomolecules have on the generation of traction forces can
be determined in experiments where their activity is selec-
tively inhibited while simultaneously measuring cell-sub-
strate interactions and the axonal dynamics. Furthermore,
combined with traction-force experiments, the automatic
controller model presented here could be further extended
to account for the explicit dependence of the growth param-
eters on the mechanical and biochemical guidance cues,
such as changes in the geometry or stiffness of the growth
substrate, or external chemical gradients. This general
model could also be applied to other types of cells to give
new insight into the nature of cellular motility. In principle,
these future investigations will enable researchers to quan-
tify the influence of environmental cues (geometrical, me-
chanical, biochemical) on cellular dynamics, and to relate
the observed cell motility behavior to cellular processes,
such as cytoskeletal dynamics, cell-surface interactions,
and signal transduction.
CONCLUSION

In this paper, we have performed a detailed analysis of
axonal growth on micropatterned PDMS surfaces. We
have demonstrated that the axonal dynamics on these sur-
faces is described by a theoretical model based on the mo-
tion of a closed-loop automatic controller in a periodic
external potential imparted by the surface geometry. We
have used this model to measure the parameters that charac-
terize the axonal growth. Our results show that the motion of
the growth cone is mediated by a contact-guidance mecha-
nism, which originates from cellular feedback in an external
periodic potential: the growth cone responds to geometrical
cues by directing its motion along the surface micropatterns.
This work implies that the cues that guide the axonal dy-
namics result from the interplay between the geometrical
features of the substrate and the physical properties (stiff-
ness) of the nerve process. The general model presented
here could be applied to describe the dynamics of other
types of cells in different environments, including external
electric fields, substrates with various mechanical proper-
ties, and biomolecular cues with different concentration
gradients.
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