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Abstract

Biopolymers are natural polymers sourced from plants and animals, which include a variety of 

polysaccharides and polypeptides. The inclusion of biopolymers into biomedical hydrogels is 

of great interest due to their inherent biochemical and biophysical properties, such as cellular 

adhesion, degradation, and viscoelasticity. The objective of this review is to provide a detailed 

overview of the design and development of biopolymer hydrogels for biomedical applications, 

with an emphasis on biopolymer chemical modifications and crosslinking methods. First, the 

fundamentals of biopolymers and chemical conjugation methods to introduce crosslinking groups 

are described. Crosslinking methods to form biopolymer networks are then discussed in detail, 

including i) covalent crosslinking (e.g., free radical chain polymerization, click crosslinking, 

crosslinking due to oxidation of phenolic groups), ii) dynamic covalent crosslinking (e.g., 

Schiff base formation, disulfide formation, reversible Diels-Alder reactions), and iii) physical 

crosslinking (e.g., guest-host interactions, hydrogen bonding, metal-ligand coordination, grafted 

biopolymers). Finally, recent advances in the use of chemically-modified biopolymer hydrogels 

for the biofabrication of tissue scaffolds, therapeutic delivery, tissue adhesives and sealants, as well 

as the formation of interpenetrating network biopolymer hydrogels, are highlighted.
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1. Introduction

Hydrogels are water-swollen polymer networks that have great utility for biomedical 

applications.1 Hydrogels can mimic features of many tissues, and there have been 

great advances in the tailoring of hydrogel properties (e.g., mechanics, degradation) for 

widespread biomedical applications. Many important advances have been made with the 

use of synthetic polymers to construct hydrogels due to precise control over chemical 

structures, low batch variability, and ease of sourcing.2 However, recent trends have included 

the fabrication of hydrogels from biological molecules, such as biopolymers, to introduce 

specific inherent biofunctionality to hydrogels.3

Biopolymers are natural polymers that are sourced from animals and plants, including a 

wide range of polysaccharides (e.g., sugars) and polypeptides (e.g., proteins). Representative 

examples of polysaccharides include hyaluronic acid, chondroitin sulfate, heparin, dextran, 

alginate, cellulose, chitin, and chitosan. Representative examples of polypeptides include 

gelatin, silk fibroin, albumin, elastin, keratin, and unique polypeptides engineered for 

specific functionality. The selection of specific polysaccharides or polypeptides introduces 

inherent properties to hydrogels, such as cell adhesion and degradability.

It is often necessary to chemically modify biopolymers to facilitate hydrogel formation. 

These modifications are performed on various chemical groups within the biopolymer repeat 

units (e.g., amines, hydroxyl groups, carboxylic acids) to allow for diverse methods of 

crosslinking (e.g., mixing, light, redox, thermal). The mechanical properties of formed 
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hydrogels are generally driven by the extent of biopolymer modification, the degree of 

crosslinking, the biopolymer concentration, and the type of crosslinking chemistry used. 

If a very stable hydrogel is desired, chemical groups that permit covalent crosslinking 

(e.g., free radical chain polymerization, click reactions) are often used (Figure 1). However, 

dynamic covalent crosslinking (e.g., Schiff base, disulfides) can also be implemented to 

combine hydrogel stability with features such as self-healing behavior (Figure 1). If a 

less-stable hydrogel is desired, physical crosslinking (e.g., hydrogen bonding, metal-ligand 

coordination) is typically used, which exhibits properties such as shear-thinning and 

disassembly over time (Figure 1). Various biopolymer networks can also be combined (e.g., 

interpenetrating networks) to further vary hydrogel properties to match the needs of specific 

applications.

The overall objective of this review is to provide the reader with an introduction to the use 

of biopolymers for the formation of biomedical hydrogels, with an emphasis on chemical 

modifications that facilitate hydrogel formation and control over hydrogel properties. There 

is great diversity in the modifications and resulting hydrogels properties, which is a strength 

to the use of biopolymers in hydrogel formation. Furthermore, specific examples of where 

biopolymer-based hydrogels are being used in biomedical applications of tissue engineering, 

biofabrication, and drug delivery are introduced, particularly where the use of a biopolymer 

and chemical modification was important to the hydrogel function.

2. Overview of biopolymers

Biopolymers are natural polymers that are derived from animals and plants. Biopolymers 

used for hydrogel formation generally fall into two classes of molecules: polysaccharides 

and polypeptides. Their repeat units consist of sugars or peptides, which guide the 

various biopolymer properties. Biopolymers inherently incorporate features that may be 

attractive in their use as biomaterials, including chemical compositions for cell interactions 

and degradation. Biopolymer hydrogels can be formed by polymer entanglement due to 

high molecular weight or high polymer concentration, by assembly (e.g., charge) due 

to the specific functionality of certain biopolymers, or by inter-polymer crosslinking 

due to chemical modifications of the biopolymer. In this section, we discuss the 

various biopolymers that are often chemically modified for hydrogel formation in the 

biomaterials field, including their general properties (e.g., molecular weight, adhesion to 

cells, degradability) and past use in commercial products.

2.1. Polysaccharides

Polysaccharides consist of monosaccharide or disaccharide repeat units and have important 

structural and biological functionality in living organisms (Table 1). For biomaterial 

applications, polysaccharides are often isolated from renewable sources such as plants and 

microorganisms. They may also be sourced from animal byproducts in the meat and fish 

industries. Many polysaccharides have been chemically modified to obtain natural hydrogels 

with a wide range of mechanical and biological properties.

2.1.1. Hyaluronic acid—Hyaluronic acid (HA) is a linear glycosaminoglycan (GAG) 

consisting of alternating D-glucuronic acid and N-acetyl-D-glucosamine repeat units that 
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are linked together by alternating β-1,4 and β-1,3 glycosidic bonds.4,5 HA is a native 

component of the extracellular matrix (ECM) and is found throughout multiple tissues in 

the body, including cartilage, muscle, skin, and vocal folds.6,7 In its naturally occurring 

state, the size of HA can range from ~100 kDa in serum to ~8000 kDa in vitreous fluid.8 

Through its structure and chemical properties, HA influences the mechanical and biological 

functionality of native tissues, as well as cellular responses in wound healing.9 HA is very 

hydrophilic, and one of its major roles is the maintenance of viscoelasticity and low-friction 

tissue interfaces, such as in synovial and vitreous fluids.5,10 Cells bind to HA through 

surface receptors such as the glycoprotein CD44.11 HA-CD44 binding interactions are 

very important in many cellular processes, such as chondrocyte proliferation and matrix 

production in cartilage tissue.12 HA can be degraded by oxidative species or enzymes such 

as hyaluronidase, glucuronidase, and hexosaminidase.5

Since the 1960s, HA has been utilized for many clinical applications including dermal 

fillers for soft-tissue augmentation,13–15 wound dressings,16 and intra-articular injections to 

manage symptoms of osteoarthritis.17 For research and clinical use, HA is either derived 

from streptococcal fermentation cultures or from animal sources, such as rooster combs.18,19 

Unmodified HA can be crosslinked with 1,4-butanediol diglycidal ether (BDDE) or divinyl 

sulfone (DVS), either loosely to increase HA solution viscosity or more extensively to 

increase the mechanical integrity of HA hydrogels.13 To increase the diversity in properties 

of HA hydrogels for biomedical applications, a range of chemical modifications have been 

introduced to HA.4,20

2.1.2. Chondroitin sulfate—Chondroitin sulfate (CS) is a linear sulfated GAG 

consisting of ~40–100 repeat units of alternating β-1,3-linked-N-acetyl-galactosamine and 

β-1,4-linked-glucuronic acid sugar residues.21 CS is the main GAG found in aggrecan, a 

proteoglycan (PG) consisting of a protein core with GAG side chains.22 Aggrecan, and 

thus CS, plays an important role in cartilage mechanics by influencing tissue hydration, 

swelling, and lubrication.23 CS and PGs in general also play an important role in injury and 

disease recovery in the central nervous system.24 PGs formed with CS interact with ECM 

and cell adhesion molecules.25 CS can be degraded by enzymes such as chondroitinase 

ABC.26 Clinically, CS has been delivered orally for management of pain in knee and 

hip osteoarthritis, as CS stimulates PG synthesis in the joint space, as well as exhibits 

anti-inflammatory properties.27,28 For use in biomedical applications, CS is isolated from 

animal sources including bovine trachea, chicken keel, shark fins, and pig nasal septa.29

2.1.3. Heparin—Heparin is a linear GAG consisting of repeat units of uronic acid and 

D-glucosamine that are linked together by β-1,4 glycosidic bonds.30 Heparin is found 

on the cell surface and in the ECM, and is known to play essential roles in tissue 

development, angiogenesis, and anticoagulation.31 Heparin and heparan sulfate (HS), a 

sulfated derivative of heparin polysaccharides, interact with proteins to form PG coatings 

around cells,31 which enable cells to interact with many signaling molecules.31 Heparin 

binds to many biomolecules such as growth factors, cytokines, and adhesion proteins, 

including fibronectin.32 The molecular weight of naturally occurring heparin can range from 

5 to 1000 kDa.30 Endothelial cells and macrophages preferentially bind to higher molecular 
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weight heparin.33 Enzymes such as heparinase can degrade heparin and HS, which is 

important in ECM maintenance and remodeling.32

Clinically, heparin is used as a blood thinner to prevent the formation of blood clots. 

Heparin is one of only a few clinically approved polysaccharide drugs, and it is one of 

the oldest drugs still in clinical use.34 The World Health Organization (WHO) identifies 

heparin as one of the world’s Essential Medicines.35 For biomedical use, heparin is isolated 

from animal sources, most often porcine intestine.34 Heparin is often classified as either 

unfractionated heparin (UFH) or purified low molecular weight heparin (LMWH). As an 

anticoagulant, clinical use has shifted from UFH to LMWH for increased efficacy, as higher 

molecular weight heparin can adhere to endothelial cells and macrophages, and impede their 

anticoagulant ability.33 As a tissue engineering scaffold, higher molecular weight heparin 

may be of interest due to its increased affinity for endothelial cell adhesion.

2.1.4. Dextran—Dextran is a highly branched polysaccharide consisting of α-1,6-linked-

glucose monomers and α-1,3 branching.36 Dextran is a major component of bacterial 

ECM, allowing for surface adhesion and biofilm formation.37 Dextran has been extensively 

researched in the dental field, as streptococci bacteria secrete dextran to form gelatinous 

plaques on teeth.38 Dextran can vary from molecular weights of ~10–150 kDa and ~5–30% 

degree of branching, depending on the bacteria and purification process used.36,39 Most 

dextran in commercial use is produced from Leuconostoc mesenteroides bacteria with ~5% 

degree of branching.39 Dextran can be degraded enzymatically by dextranase.40

Due to the ease of manufacturing and its biocompatibility, dextran has been widely used 

in many industries. Clinically, dextran is used as an antithrombotic agent to decrease 

vascular thrombosis by binding to erythrocytes, platelets, and vascular endothelium to 

reduce aggregation and make clots more easy to lyse.36 Dextran is also used as a lubricant in 

eye drops and as an additive in intravenous fluids to solubilize other factors.36 The clinical 

grades of dextran most often used include Dex-40 (40 kDa MW) and Dex-70 (70 kDa MW). 

The WHO includes Dex-70 on its List of Essential Medicines.35 In addition to its uses in 

medicine, dextran is extensively used in food and cosmetic products, as well as in waste 

water treatment processes.36 Due to the widespread availability and history of success in 

clinical use, dextran is a promising material for tissue engineering.

2.1.5. Alginate—Alginate is a linear polysaccharide consisting of repeat units of 1,4-

linked β-D-mannuronic acid (M) and α-L-guluronic acid (G) residues.41 Alginate is found 

in the cell walls of brown algae (Phaeophysceae), providing a flexible mechanical structure 

to protect seaweed from damage due to strong water motion.42 Alginate rapidly crosslinks 

in the presence of divalent cations (e.g., Ca2+) due to ionic interactions with G residues. 

This ionic crosslinking mechanism has been used as a method to encapsulate biomolecules 

and cells for decades. For biomedical applications, alginate is frequently explored due to its 

biocompatible ionic gelation mechanisms, as well as its low cost and low toxicity.43

Purified alginate can be derived from brown algae cell walls as well as some bacterial 

strains, though commercially available alginate is derived exclusively from algal sources.44 

Alginate is available across a range of molecular weights from ~30–400 kDa.43 Alginate has 
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been used in many products for clinical applications, including reduction of gastrointestinal 

reflux, accelerated wound healing, and defect filling in musculoskeletal tissues.44 In addition 

to biomedical applications, alginate has been extensively used in the food industry as a 

thickening and gelation additive, colloid stabilizer, and sausage casing material.45

2.1.6. Cellulose—Cellulose is a linear polysaccharide consisting of repeating D-glucose 

units linked together by β-1,4 glycosidic bonds.46 Cellulose is considered to be the 

most abundant organic polymer on Earth.47 In plants, cellulose is a major component of 

the cell wall, where it forms strong microfibril crystal structures, leading to impressive 

mechanical properties.48 Cellulose derived from plant sources is used extensively for the 

production of paper, lumber, and cotton textiles.48 For biomedical applications, cellulose is 

typically derived from bacterial sources.49 Some bacteria produce cellulose to form flocs 

and create a mechanically robust microenvironment.48 Microbial-derived cellulose has been 

used in therapies for burns and ulcers, as well as in dental implants.49 Cellulose is also 

commonly utilized as an emulsion stabilizer in cosmetic and food products.49 Water-soluble 

derivatives of cellulose are manufactured by etherification reactions for use in food and 

medical industries.50 The most common cellulose derivatives used in hydrogel formation are 

carboxymethyl cellulose (CMC) and hydroxypropyl cellulose (HPC).50,51

2.1.7. Chitin and Chitosan—Chitin is a linear polysaccharide with similar structure 

to cellulose, except the hydroxyl group is replaced with an acetamide group, resulting in 

N-acetyl-D-glucosamine repeat units.52 Like cellulose, chitin monomers are linked by β-1,4 

glycosidic bonds. The acetamide group allows for increased hydrogen bonding, resulting in 

increased strength in the chitin fibrillar matrix when compared to cellulose alone. Chitin is 

the primary component of exoskeletons of crustaceans and insects, and it is also found in 

fish scales, fungi cell walls, and cephalopod beaks.53 Behind cellulose, chitin is the second 

most abundant natural biopolymer on Earth.54 For biomedical applications, chitin is mostly 

sourced from shrimp and crab shells, which are waste products of the food industry.55,56 

In its native form, chitin is hydrophobic, which can be utilized to form hard materials for 

tissue engineering applications.54 The electrical properties of chitin have also been explored 

for biomedical materials that benefit from electrical conductance.54 For hydrogel formation, 

water-soluble derivatives of chitin are often used.

Chitosan is produced by either chemical or enzymatic deacetylation of chitin isolated from 

crustaceans.57 It consists of glucosamine and N-acetyl-D-glucosamine repeat units.58 The 

degradation rate and hydrophilicity of chitosan is influenced by the degree of deacetylation, 

which may range from 30–95%.58 Lysozyme is the main enzyme that degrades chitosan in 

humans.58 Clinically, chitosan has been used in chitosan-based hemostatic dressings,59 as 

well as explored for use as a vaccine adjuvant.60

2.2. Polypeptides

Polypeptides are biopolymers consisting of amino acid repeat units, which are considered 

proteins when they consist of more than 50 amino acids (Table 2). Polypeptide- and protein-

based hydrogels are of great interest in biomedical applications due to their potential to 

incorporate numerous cell interaction sites and to mimic native functions of the ECM. 
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Polypeptides may be isolated from human, animal, or plant sources, or synthetically 

engineered using recombinant protein production or peptide synthesizers. The precision and 

diversity in polypeptide materials are attractive for many biomedical applications.

2.2.1. Gelatin—Gelatin is a hydrolyzed and denatured form of collagen, which is the 

main structural protein in mammalian connective tissue ECM.61 Collagen is the most 

abundant protein in mammals, making up 25–35% of the total protein content.61 To produce 

gelatin, collagen proteins are extracted from the skin and bones of animal sources (most 

often porcine skin) by acid or alkaline treatments, followed by a thermal-driven process 

of protein separation.62,63 Due to the heterogeneity in animal sources and gelatin isolation 

methods, the molecular weight of commercially available clinical-grade gelatin can range 

from ~103-106 Da.64 Much of the triple-helix structure of native collagen is denatured in 

gelatin production; however, the chemical structure of gelatin remains similar to collagen.63 

Gelatin contains Gly-X-Y amino acid repeat sequences, where X is usually proline and Y is 

usually hydroxyproline.65 Gelatin also contains the RGD sequence (Arg-Gly-Asp), which is 

a cell adhesion site and binds to integrins.66 Adding gelatin (and thus RGD) to biomaterials 

has been shown to improve cell integration and tissue repair in many applications.66 In the 

body, gelatin can be degraded by proteases such as collagenase and metallo-proteases.67

Gelatin has been widely used in many industries, including those related to food, 

photography, and pharmaceuticals. For example, in food science, gelatin is used as a 

stabilizer, thickener, texturizer, and emulsifier,68 whereas in photography gelatin is used as 

a medium for making emulsions.68 In clinical use, gelatin is a major ingredient in hard and 

soft capsules, as well as tablet preparation,63,68 and gelatin sponges and particles have been 

widely used as hemostatic agents and to fill cartilage and bone defects.69 Towards tissue 

engineering, a major advantage to using gelatin is that it has biological functionality (RGD 

sequence) and thus mimics native ECM functions.70 Crosslinkers such as glutaraldehyde 

(GTA) and genipin can be used to directly form hydrogels with gelatin.71 To improve 

mechanical performance and increase the range of possible mechanical properties, gelatin 

can also be chemically modified with functional groups to undergo hydrogel formation.

2.2.2. Silk fibroin—Silk is produced through a series of proteins found in the glands 

of some arthropods including silkworms, spiders, scorpions, and bees.72 Silk is composed 

of two major proteins: silk fibroin, a semi-crystalline protein which provides structural 

stiffness and strength, and sericin, a glue-like protein that wraps around silk fibroin to hold 

fibers together.72 In biomedical applications, silk fibroin is of interest due to its excellent 

mechanical strength, biodegradability, and widespread availability. Silk fibroin consists of 

semi-crystalline polypeptides that have a heavy chain (MW ~390 kDa) and a light chain 

(MW ~26 kDa) linked together via a single disulfide bond.72 For clinical applications, silk 

fibroin is extracted from the Bombyx mori silkworm73 and consists mainly of Gly (43%), 

Ala (30%), and Ser (12%) amino acids.72 Silk fibroin contains hydrophobic domains that 

allow for the formation of stable anti-parallel β-sheet crystallites.72

Silk fibroin has been used in the textile industry for thousands of years.74 Towards clinical 

applications, silk has been used as a suture material for centuries.75,76 FDA-approved silk 

fibroin-based products include surgical meshes and ligament grafts.76 It has been shown that 
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silk fibroin can be engineered for attachment and growth of human and animal cells.77 In 
vivo, silk fibroin scaffolds can be degraded by enzymes and hydrolysis,77 and the β-sheet 

crystalline content can be reduced in silk fibroin scaffolds to increase degradation rates.78 

Chemically-modified silk fibroin scaffolds are being widely explored for applications in 

tissue repair and regeneration.

2.2.3. Albumin—Albumin is an endogenous protein produced mainly by the liver and 

secreted into the blood plasma.79 Human serum albumin (HSA) is the most abundant protein 

in blood plasma, accounting for 50–60% of total protein content.80 The primary role of HSA 

is the regulation of fluid distribution by providing ~80% of the total blood plasma oncotic 

pressure.81 HSA is a globular protein consisting of 585 amino acids with a molecular weight 

of 66 kDa.81 As determined by X-ray crystallography, the tertiary structure of HSA is a 

heart-shaped protein that is stabilized by 17 disulfide bridges formed between amino acids.82 

Clinically, HSA has been used as a plasma expander for decades to restore and maintain 

circulating blood volume in response to trauma, surgery, and blood loss.81,83 HSA can 

be isolated from human blood plasma by many methods, including plasma fractionation 

followed by liquid chromatography.82 For biomedical research, albumin may be sourced 

from human blood plasma; however, bovine serum albumin (BSA) is also being widely 

explored as a cheaper and more abundant alternative.82

2.2.4. Elastin—Elastic fibers are an important ECM structural component and are 

responsible for the resilience and elasticity in many vertebrate connective tissues, including 

skin and cartilage.84,85 Elastic fibers are composed of ~90% elastin protein and a complex 

microfibrillar structure made of numerous other macromolecules.84 Elastin is composed 

of tropoelastin precursors that accumulate on the microfibrillar skeleton.86 The half-life of 

human elastin is around 70 years, making it an extremely durable biopolymer with low turn-

over in healthy tissue.87 Elastic fibers can be degraded with disease or age due to proteolytic 

elastase enzymes.88 Many cell types interact with elastin, including through elastin receptors 

and integrins.84 Elastin is insoluble in water due to the presence of multiple hydrophobic 

domains; however, for hydrogel formation, water-soluble elastin-based materials have been 

explored.84

Various elastin formulations have been developed that include α-Elastin, a water-soluble 

elastin derivative that has been solubilized with oxalic acid,89 and tropoelastin, which is 

water soluble at low temperatures.90 Elastin-containing materials may be isolated from 

animal sources or human cadavers and processed into water-soluble derivatives for hydrogel 

formation.91 Using synthetic protein engineering, Elastin-like polypeptides (ELPs) have 

also been engineered for biomedical applications.92 ELPs contain the hydrophobic motif 

Val-Pro-Gly-X-Gly (VPGXG), where X is any amino acid except for Pro.93 VPGXG is one 

of the main hydrophobic motifs present in natural elastin that contributes to its unique 

mechanical properties. Elastin-based biopolymers can be crosslinked without chemical 

modification using crosslinkers such as GTA, disuccinimidyl suberate, and disuccinimidyl 

glutarate.89 Towards forming hydrogel scaffolds for tissue engineering applications, elastin-

based materials are of particular interest due to their diverse biological and mechanical 

properties, which arise from the unique resilient behavior of elastin polypeptides.84
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2.2.5. Keratin—Keratin is a fibrous protein rich in cysteine residues and is naturally 

found in hard integuments of animals, including in skin, hair, nails, wool, feathers, scales, 

and horns.94,95 Keratinous tissues serve structural and protective functions in a variety of 

animals.95 In humans, keratin is found in many epithelial tissues, including the epidermis 

and corneal epithelium, contributing to their role as a protective barrier.96 Keratin contains 

multiple cell adhesion sites, including RGD.97 The rich cysteine content allows for the 

formation of disulfide bonds, giving keratinous tissue strong and resilient mechanical 

properties.94 Keratins are often classified as either α-keratins (forming α-helices) or 

β-keratins (forming β-sheets).94 In the textile industry, keratin has been used as a raw 

material for centuries.94 For biomedical purposes, keratin may be extracted from numerous 

sources, including human hair,98 wool,99 and feathers.100 Keratin is of growing interest 

for use as a sustainable and cheap raw material in the biomedical field, as it can be 

easily sourced from the millions of tons of wool and feathers that are produced annually 

as by-products in livestock industries.94 In its native state, keratin is insoluble in most 

solvents, including water.101 Post-processing must be used to form water-soluble keratin for 

hydrogel formation, often involving the breaking of disulfide bonds with the addition of a 

reducing agent.98 Such a process results in free thiol groups on keratins that can be used for 

crosslinking or further functionalization.98,99

2.2.6. Engineered polypeptides—Advances in recombinant protein production and 

peptide synthesis have allowed for the design of engineered polypeptides that can be 

fabricated into hydrogels.102 Engineered polypeptides can be designed to mimic biological 

functions of naturally occurring peptides. For example, resilin-like polypeptides (RLPs) 

have been recombinantly engineered to fabricate hydrogel scaffolds that mimic the 

highly resilient mechanical properties of resilin protein found in arthropods.103 Using 

RLPs instead of native resilin allows for control over incorporation of other bioactive 

motifs into the polypeptide, such as MMP-sensitive and cell-binding sites.103 As another 

example, the engineered peptide poly(γ-propargyl-L-glutamate) (PPLG) has been used in 

combination with poly(ethylene glycol) (PEG) to form hydrogels.104 PPLG introduces 

cell-adhesion sites as well as nanoscale stiffness due to PPLG’s rod-like tertiary folding 

structure.104 Furthermore, self-assembling peptide hydrogels have been designed that result 

in nanofibrillar structures due to β-sheet formation.105 Other examples of hydrogels 

formed from engineered polypeptides include the use of novel pH-responsive engineered 

peptide amphiphiles for the formation of injectable nanofibrous scaffolds,106 and the use 

of engineered PEG-peptide copolymers for the formation of “Shear-thinning Hydrogels 

for Injectable Encapsulation and Long-term Delivery” (SHIELD).107 While engineered 

polypeptides may be designed for self-assembly, chemical modification of the engineered 

polypeptides may also be utilized for hydrogel formation, such as for crosslinking by azide-

alkyne cycloaddition.108,109 Ultimately, the engineering of polypeptides expands potential 

hydrogel components well beyond those that are found in natural tissues and structures.

3. Conjugation reactions to modify biopolymers

As stated above, although many biopolymers have inherent inter-molecular interactions 

that can be used to form hydrogels, chemical modification is often needed for hydrogel 
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formation or to improve upon formed hydrogel properties. Fortunately, biopolymers possess 

various chemical groups (e.g., hydroxyl, carboxyl, amine, thiol) available for modification 

through standard conjugation procedures. For example, all polysaccharides have hydroxyl 

groups (-OH), as do the amino acids serine and tyrosine, which often contribute to the 

hydrophilicity and hydrogen-bonding capabilities of biopolymers. The carboxyl group (-

COOH) is found on two amino acids, aspartic acid and glutamic acid,110 and in numerous 

polysaccharides such as HA, alginate, and CS. Amines (-NH2 or -NR2) are common on 

biopolymers such as chitosan and within the amino acid lysine as a component of proteins 

and polypeptides.110 Lastly, thiols (-SH) are found in the amino acid cysteine, and the 

oxidation of thiols can lead to formation of a disulfide bond, which is commonly used in 

biopolymer hydrogel formation and fabrication.110

The most common conjugation reactions to chemically modify biopolymers include the 

formation of esters, amides, ethers, and carbamates, which involve hydroxyl, carboxyl, 

amine, and thiol groups on biopolymers (Figure 2). Ester formation is accomplished 

via the condensation of hydroxyl and carboxyl groups, usually in the presence of 

dehydrating reagents and appropriate catalysts. A common bioconjugation method is to 

use a carbodiimide such as 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) to 

activate a carboxylic acid group for esterification, in combination with a catalyst, such 

as 4-dimethylaminopyridine (DMAP). Esterification can also be achieved by combining a 

carboxylic acid with an epoxy, resulting in a hydroxyester. In bioconjugation, it is also 

common to combine acid anhydrides with functional hydroxyl groups on biopolymers 

to form esters. For example, methacrylic anhydride can be used to chemically modify 

biopolymers containing an aliphatic hydroxyl group with a methacrylate.111 Di-tert-butyl 

decarbonate (i.e., Boc anhydride, Boc2O) combined with DMAP can also be used to 

accomplish esterification.112

Amide formation can be achieved by condensing a carboxylic acid with an amine 

group. To accomplish this, the carboxylic acid group is usually first converted into an 

activated ester compound. Carbodiimides such as EDC activate the carboxylate group, and 

molecules like N-hydroxysuccinimide (NHS),113,114 hydroxybenzotriazole (HOBt),115,116 

or benzotriazol-1-yloxytris (dimethylamino)phosphonium hexafluorophosphate (BOP)117 

form activated ester compounds. The activated esters then readily form stable amide bonds 

with amine functional groups present in the reaction. Ethers can be formed by combining 

epoxide and hydroxyl functional groups under basic conditions. For example, this method 

is used to conjugate glycidyl methacrylate (which has an epoxide functional group) to 

biopolymers containing free hydroxyl groups,118–120 often in the presence of DMAP as a 

base. Lastly, compounds containing isocyanate functional groups can form carbamate bonds 

(also referred to as urethane bonds) with hydroxyl groups or can combine with thiols to form 

thiocarbamate bonds.121,122

There are numerous other examples of modifications directly to biopolymers for hydrogel 

formation. For example, Michael addition reactions can be used to chemically modify thiols 

on biopolymers, as well as to crosslink modified biopolymers for hydrogel formation (as 

described later in Section 4).123 Specifically, under basic conditions, thiolated molecules 

(Michael donors) can be combined with electron-deficient unsaturated compounds (Michael 
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acceptors, such as maleimides, vinyl sulfones, acrylates, and acrylamides) via thiol-Michael 

addition, leading to the formation of a thioether bond.124 Polysaccharides can also be 

modified using ring-opening oxidation, resulting in free aldehyde groups on the biopolymer 

backbone, which can change degradation rates or be used for crosslinking (e.g., Schiff base 

formation).125,126 A common method to introduce aldehydes is to use sodium periodate 

as the oxidizing agent.127 Lastly, biopolymers such as keratin that have multiple disulfide 

bridges can be exposed to a reducing agent such as dithiothreitol (DTT) or mercaptoethanol 

to functionalize with free thiol groups,128 allowing for further biopolymer modification or 

crosslinking.

4. Covalent crosslinking

Hydrogels can be formed by the covalent crosslinking of functional groups attached to 

biopolymers. Covalent crosslinking mechanisms often require catalysts or initiators to 

induce covalent bond formation. Due to the general stability of covalent bonds, covalently 

crosslinked hydrogels have the potential to remain stable over long timescales both in vitro 
and in vivo, although this may be dependent on the ability of the network to undergo 

degradation. Both the mechanical and biological properties of the hydrogel formed are 

influenced by various components of the biopolymer and hydrogel design, such as the 

concentration of biopolymer, the type of crosslinking group introduced, and the degree 

of modification of the biopolymer. While there are many methods to form covalently 

crosslinked hydrogels, this review will focus on the most common approaches utilized in 

biopolymer hydrogel formation, including free radical chain polymerization, click chemistry, 

and oxidation of phenolic groups.

4.1. Crosslinking via free radical chain polymerization

Free radical chain polymerization consists of three steps: 1) initiation, 2) propagation, and 3) 

termination. During the initiation step, free radicals are generated from initiators, typically 

with changes in temperature, light, or redox conditions. During propagation, free radicals 

interact with unsaturated double bonds, and the free radical active center is transferred to 

propagate the kinetic chain, leading to crosslinking of the modified biopolymers (Figure 

3a). The crosslinking reaction is terminated by either combination, disproportionation, or 

chain transfer events that stop the radical from propagating further. There are a wide range 

of functional groups that are used for the crosslinking of biopolymers in free radical chain 

polymerization (Figure 3a).

Photoinitiation is a common method to generate free radicals in hydrogel formation.129 

In this approach, a photoinitiator molecule cleaves in response to certain wavelengths 

of light, resulting in the generation of free radicals. Examples of water-soluble, 

biocompatible photoinitiators used in crosslinking include ultraviolet (UV) light-responsive 

molecules such as 2-hydroxy-4-(2-hydroxyethoxy)-2-methylpropiophenone (e.g., Irgacure, 

I2959)120,130 and visible light-responsive molecules such as lithium phenyl-2,4,6-

trimethylbenzoylphosphinate (LAP).131 Parameters such as light intensity and exposure 

time, as well as initiator and biopolymer concentrations, will affect the rates 

of polymerization and the resulting hydrogel properties. Oxidative-reductive (redox) 
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mechanisms may also be used to generate free radicals. One of the most used redox 

initiators in biomedical applications is ammonium persulfate (APS) in combination with 

tetramethylethylenediamine (TEMED). Since radicals are generated upon mixing, injectable, 

in situ-forming hydrogels with tunable mechanical properties are possible with redox 

systems.132 Lastly, there are a number of thermal initiators in which a change in temperature 

is used to generate free radicals.133 Free radical chain polymerizations form stable 

hydrogels, as the kinetic chains formed are non-degradable, although degradable groups 

(e.g., hydrolytically degradable, enzymatically degradable) can be incorporated into the 

network to tailor erosion behaviors.

4.1.1. Meth(acrylates) and methacrylamides—To functionalize biopolymers for 

free radical chain polymerization, methacrylate groups are often conjugated to biopolymers. 

This can be accomplished through various reactions, including esterification with 

methacrylic anhydride134 and etherification with glycidyl methacrylate (GMA).135 Dextran 

was first modified with methacrylate groups by etherification between GMA and hydroxyl 

groups on the dextran backbone, forming GMA-Dex.118 GMA-Dex hydrogels were 

crosslinked in situ in the presence of APS/TEMED redox radical initiators.118 Kim et 

al. synthesized methacrylated dextran by esterification with methacrylic anhydride under 

basic conditions.136 It was demonstrated that model drugs such as fluorescently-labeled 

dextran and doxorubicin could be released in a sustained fashion from methacrylated dextran 

hydrogels crosslinked with UV light in vitro.137 To introduce micro- and macro-porous 

structures, PEG has been mixed into methacrylated dextran hydrogels, and liquid-liquid 

phase separation created different morphologies and porosities.119 In a similar approach, 

Ferreira et al. modified dextran with acrylate groups to form hydrogels containing tethered 

RGD and vascular endothelial growth factor (VEGF) encapsulated in poly(lactic-co-glycolic 

acid) (PLGA) microspheres for use as a scaffold for human embryonic stem cell vascular 

differentiation.138

HA modified with methacrylate moieties has been widely used in tissue engineering 

and drug delivery. Smeds et al. demonstrated that HA could be methacrylated (MeHA) 

using esterification with methacrylic anhydride and subsequently photocrosslinked to form 

HA hydrogels for sustained release of model drugs.134 Stiffness, swelling ratio, and 

degradation rates can be varied in HA hydrogels formed from MeHA as a function of the 

degree of substitution, polymer concentration, and photoinitiation conditions.111 In another 

chemical modification approach, Leach et al. showed that HA could be modified through 

etherification between hydroxyl groups on the polymer backbone and GMA (GMA-HA), 

and subsequently photocrosslinked using UV light.120 Furthermore, BSA was released 

as a model drug in a sustained fashion from GMA-HA for several weeks.139 Hydrogels 

from methacrylated HA have been used for a wide range of applications, including vocal 

fold tissue engineering,140 controlled human embryonic stem cell differentiation,141 and 

bioprinting.142

Numerous other polysaccharides have been modified with methacrylates for free radical 

chain polymerization, including cellulose,143 alginate,144 and CS.145 By altering reaction 

conditions, such as reagent concentrations and temperature, the degree of substitution of 

methacrylate groups on cellulose could be controlled, which later influenced hydrogel 
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mechanical properties.143 HPC has been modified with methacrylates through reaction with 

methacrylic anhydride146 and processed with photolithography to create patterned hydrogel 

structures for diagnostics and tissue engineering applications.147 Towards cartilage tissue 

engineering, methacrylated alginate, methacrylated HA, and methacrylated CS have been 

used for chondrocyte encapsulation and proliferation.148–154

Chitin has been modified with methacrylate groups via esterification between methacrylic 

anhydride and free hydroxyl groups on water-soluble carboxymethyl chitin, resulting in a 

photocrosslinkable hydrogel.155 In another approach, chitin has been functionalized with 

methacrylate groups by carbamate bond formation between hydroxyl moieties on chitin and 

2-isocyanatoethyl methacrylate.156 The modification resulted in a photocrosslinkable chitin 

hydrogel that could be micropatterned for controlled guidance of cells.

Beyond methacrylates, reactive methacrylamide groups have been used for free radical 

chain polymerization of modified biopolymers. For example, HA was modified with 

methacrylamides using amidation reactions in the presence of EDC.157 Park et al. showed 

that diacrylated PEG (PEGDA) could be incorporated into these methacrylamide-HA 

hydrogels to increase mechanical properties, and RGD could be tethered to the hydrogels 

to allow for cell adhesion and proliferation.157 Gelatin has also been used extensively after 

modification for free radical chain polymerization, mostly commonly through esterification 

with methacrylic anhydride,158 or by amidation with methacrylamide to form GelMA.159 

GelMA has been shown to be a useful material for photopatterned, cell-laden microtissues 

and microfluidic devices.160 While GelMA has been a widely explored polypeptide for 

hydrogel formation, other polypeptides have also been explored. Kim et al. demonstrated 

that hydrolyzed silk fibroin could be methacrylated to form photocrosslinked hydrogels in 

the presence of UV light and LAP photoinitiator, where crosslinking is aided by β-sheet 

formation.161

4.1.2. Styrene—Although not used extensively, styrene moieties contain alkene groups 

that can be used for free radical chain polymerization. Styrene has been introduced to 

gelatin, HA, heparin, and albumin by either esterification with 4-vinylbenzoic acid or 

amidation with 4-vinylaniline.162 Styrenated gelatin has been explored for cartilage tissue 

engineering as a hydrogel for chondrocyte delivery.163 Furthermore, styrenated gelatin 

microspheres have been fabricated in a batch emulsion and subsequently explored for 

adipose tissue engineering.164

4.1.3. Degradable hydrogels from free radical chain polymerization—For some 

applications, hydrogels with high mechanical properties and low degradability may be 

preferred; however, more rapid hydrogel degradation may be desired for other applications. 

To introduce control over hydrogel degradation, hydrolytically degradable groups (e.g., 

esters) can be incorporated in between the biopolymer backbone and conjugated reactive 

groups. For example, hydroxyethyl methacrylate (HEMA) has been conjugated to many 

biopolymers, including dextran130 and HA,132 to modulate hydrogel degradation behavior. 

To increase hydrogel degradation rates, multiple lactic acid groups can be introduced.135 

Sahoo et al. demonstrated that this could be achieved with HA, and that ECM distribution 

increases when mesenchymal stromal cells (MSCs) were cultured in these hydrolytically 
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degradable hydrogels.165 The incorporation of lactic acid can result in hydrogels that 

degrade too quickly, resulting in cell clustering and altered cell morphology.166 To overcome 

this, caprolactone can be used instead as a hydrolytically degradable group with slower 

degradation rates. It has been shown that incorporating caprolactone groups between the 

HA backbone and methacrylate moieties allows for the tuning of hydrogel degradation rates 

to match the ECM deposition rates of MSC-laden hydrogels towards superior neocartilage 

formation in vitro.166 Beyond hydrolysis as a method of degradation, Wade et al. introduced 

protease-degradable peptides between the HA backbone and methacrylates, so that formed 

hydrogels respond to proteases (Figure 3b).167 These modified HA biopolymers were 

processed into degradable electrospun fibrous scaffolds, where degradation was dependent 

on the protease-sensitivity of the peptide sequence and the protease concentration.

4.2. Crosslinking via click chemistry

Click chemistry refers to a set of often biocompatible chemical reactions that result in the 

rapid formation of covalent bonds. Click chemistry reactions occur in a one-pot system, have 

a high thermodynamic driving force (greater than 20 kcal/mol), are not disturbed by water, 

have high specificity, and generate minimal byproducts.168 Due to the biocompatibility, 

reliability, and specificity of click chemistry reactions, they are often used in biomedical 

applications such as drug discovery and biomaterials engineering.169,170 Herein, we review 

some of the most common click chemistry reactions used for crosslinking of biopolymer 

hydrogels, including thiol-ene radical additions, thiol-ene Michael additions, azide-alkyne 

reactions, and tetrazine-norbornene cycloaddition.

4.2.1. Thiol-ene radical addition—Thiol-ene radical additions form a covalent 

thioether bond between an alkene and a thiol in the presence of a radical initiator. 

This click reaction is a powerful biomaterials tool due to its high yield, mild reaction 

conditions, regiospecificity and stereospecificity, and biorthogonality.171 Radical initiators 

convert thiols into thiyl radicals, which subsequently form thioether bonds with electron-

deficient or strained enes (e.g., norbornene) and can be used to form hydrogels (Figure 4a). 

Although methacrylates, acrylates, styrenes, and maleimides can undergo both thiol-ene step 

growth and radical chain growth homopolymerization, norbornenes and vinyl ethers only 

undergo thiol-ene step growth, which permits better control over hydrogel formation.171 

Thus, towards biopolymer hydrogel formation, the thiol-ene radical addition of thiols and 

norbornenes is most commonly used.

Norbornene is a bridged cyclic hydrocarbon with a strained carbon-carbon double 

bond. Many biopolymers have been functionalized with norbornene groups to undergo 

thiol-norbornene radical addition crosslinking, including HA,112,117,131,172 alginate,173,174 

cellulose,114,175,176 gelatin,177–180 and silk fibroin.181 Biopolymers can be functionalized 

with norbornene derivatives using esterification112,177 or amidation117,174 reactions. 

DTT,112,181 multi-functional PEG dithiols,178 and enzymatically degradable dithiols114,173 

have been explored as crosslinkers. While photoinitiator systems are commonly employed, 

redox-mediated radical initiators such as APS/TEMED can also be utilized for radical 

generation and thiol-norbornene crosslinking.176 Biopolymer, crosslinker, and initiator 

concentrations can be used to tune hydrogel mechanical properties across orders of 
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magnitudes (~1–100kPa);112,114 however, the range of hydrogel stiffnesses that can be 

achieved may be hindered by limited chain mobility as the reaction progresses, resulting in 

“maximum possible” stiffnesses despite increased polymer or crosslinker concentrations.175

Gramlich, et al. demonstrated that HA could be functionalized with norbornene (NorHA) 

using esterification between 5-norbornene-2-carboxylic acid and the secondary alcohol 

group on HA.112 NorHA hydrogels could be spatiotemporally patterned by conjugating 

thiolated peptides to remaining free norbornenes using photomasks, demonstrating the 

ability to independently tune biochemical and mechanical properties.112 Vega, et al. 

further demonstrated the photopatterning capabilities of NorHA (synthesized through BOP 

coupling of 5-norbornene-2-methalamine to carboxylic acid via amidation) by encapsulating 

MSCs in a NorHA hydrogel with photopatterned gradients of thiolated- RGD and other 

peptides created using a sliding opaque photomask.117 In a single hydrogel, over 100 

distinct biochemical formulations could be formed and screened for cartilage formation, 

demonstrating the promising application of thiol-norbornene radical addition in screening 

potential hydrogel formulations for tissue engineering.117 NorHA can also be utilized with 

other scaffold biofabrication techniques, including bioprinting131 and microgel formation.172

Other biopolymers have been modified with norbornenes for hydrogel formation. 

For example, norbornene-functionalized alginate hydrogels have been explored for 

many applications, including tissue engineered implantable constructs. Leuckgen et 

al. showed that norbornene-modified alginate hydrogels crosslinked with dithiolated 

enzymatically degradable crosslinkers allowed for cell and tissue infiltration in vivo 
after 8 weeks in a subcutaneous mouse study.173 Furthermore, Ooi, et al. demonstrated 

that norbornene-functionalized alginate could be used as a cell-laden bioink for 

bioprinting of tissue engineering scaffolds.174 CMC functionalized with norbornenes for 

thiol-ene radical addition crosslinking has also been explored for tissue engineering 

applications.114,175,176,182 Ji et al. showed that CMC can be modified with norbornene 

groups using either amidation or esterification reactions.182 Norbornene-modified CMC was 

combined with DTT to undergo thiol-ene photocrosslinking, and subsequently used as a 

cell-laden bioprinting ink (Figure 4b). Furthermore, Dadoo et al. showed that norbornene-

modified CMC could be crosslinked with a thermally responsive dithiol-terminated poly(N-

isopropyl acrylamide) crosslinker for spatiotemporal control over hydrogel swelling upon 

targeted temperature regulation.114 In another strategy, cellulose nanofibrils could be 

functionalized with norbornene to allow for conjugation with different thiolated molecules to 

create nanofibril hydrogel suspensions with a wide range mechanical properties.176 Lastly, 

Ryu, et al. demonstrated that silk fibroin modified with norbornenes could be combined 

with 4-arm PEG norbornene and DTT to create PEG hydrogels with embedded silk fibroin 

microgels, including with adenocarcinomic human alveolar basal epithelial cells.181

Gelatin can also be functionalized with norbornene groups using amidation between amines 

on the collagen backbone and carbic anhydride.177–179 Munoz, et al. demonstrated that 

norbornene-modified gelatin hydrogels supported more rapid and extensive cell spreading 

of encapsulated human MSCs (hMSCs) when compared to GelMA.177 This may be due 

to radical-mediated damage to proteins and cells due to kinetic chain growth in GelMA 

hydrogels, as well as the limited control over mesh size and molecular transport within 
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GelMA hydrogels.177 Greene et al. demonstrated temporal control over crosslinking and 

thus mechanical properties of norbornene-modified gelatin hydrogels using intermittent light 

exposure, which was used to study hepatocellular carcinoma cell fate as a function of 

hydrogel matrix properties in vitro.178 While functionalizing biopolymers with norbornene 

groups is a common approach, biopolymers can also be functionalized with thiols 

and subsequently crosslinked with multi-arm norbornene crosslinkers. Holmes, et al. 

functionalized amine groups on collagen with thiols using 2-iminothiolane in the presence 

of DTT as a reducing agent.180 Thiolated collagen was then crosslinked with a multi-arm 

norbornene crosslinker for hydrogel formation. In another example, Yue et al. used thiol-

modified keratin, along with a multi-arm PEG norbornene and Eosin Y photoinitiator, to 

create hydrogel constructs upon exposure to visible light.98 The keratin hydrogels could 

encapsulate cells with high viability and exhibited tunable compressive moduli up to 45 kPa.

In addition to norbornene modification, biopolymers including gelatin,183 chitosan,184 and 

starch185 have been modified with allyl groups through reaction with allyl glycidyl ether 

(AGE) or allyl chloride186 for thiol-ene radical addition crosslinking. AGE-modified gelatin 

(Gel-AGE) hydrogels crosslinked with DTT have been explored for bioprinting tissue 

engineered scaffolds for the encapsulation of chondrocytes.187 Kiliona et al. demonstrated 

that chitin nanocrystals and nanofibrils (nanochitin) could be functionalized with allyl 

groups by reaction with 10-undecenoyl chloride.188 When mixed with thiolated PEG, 

allyl-modified nanochitin was used to form organogels in the presence of UV light and 

photoinitiators.188 Hilderbrand et al. demonstrated that allyl-functionalized collagen mimetic 

peptides (CMPs) can be combined with thiolated PEG to fabricate a photocrosslinkable 

hydrogel for 3D cell culture.189 In another approach, biopolymers can be modified with 

pentenoate to functionalize with ene groups in order to undergo thiol-ene radical addition. 

For example, Mergy et al. modified both dextran and HA with pentenoate groups via 

esterification with pentenoic anhydride to undergo thiol-ene photocrosslinking in the 

presence of thiol crosslinkers.190 Further, pentenoate-modified gelatin and thiolated gelatin 

have been combined to form a photocrosslinkable hydrogel for cell encaulstion.191

4.2.2. Thiol-ene Michael addition—In Michael addition crosslinking, thiol-ene 

reactions can occur readily between thiols (Michael donors) and electron-deficient enes 

(Michael acceptors) without the need for radical initiators (Figure 5a).171 Thiol-ene Michael 

addition reactions can be either base-catalyzed or nucleophile-catalyzed.124 Common 

ene groups used for hydrogel crosslinking include maleimides, vinyl sulfones, acrylates, 

and methacrylates, in order of decreasing reactivity towards thiol-ene Michael addition 

(Figure 5b).124 Variations in the ene group, the pH, and the biopolymer and crosslinker 

concentrations allow for tuning of gelation times from a few seconds to several hours. 

Biopolymers may be functionalized with ene or thiol groups for crosslinking using 

esterification or amidation reactions. Biopolymer hydrogels crosslinked using Michael 

addition reactions are commonly utilized as injectable, in situ forming hydrogels due to 

the ability to tune gelation kinetics to clinically relevant timescales.

Thiol-ene Michael addition reactions have been used for in situ crosslinking of injectable 

HA hydrogels for drug delivery and tissue engineering applications.192–194 Hahn et al. 

showed that MeHA crosslinked through Michael addition with DTT could be used as an 
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injectable hydrogel for sustained release of erythropoietin.192 Gelation time varied from 

30 minutes to 3 hours, and erythropoietin could be released over a 7 day period in a rat 

in vivo model.192 Vanderhooft et al. also demonstrated a wide range of gelation times 

(30 seconds – 2 hours) for hydrogels consisting of thiolated HA, thiolated gelatin, and 

various ene-functionalized PEG crosslinkers, including PEGDA and PEG-dimaleimide.193 

Furthermore, the storage modulus of thiolated HA hydrogels crosslinked with PEGDA by 

Michael addition ranged from tens to thousands of Pa.195 Forgoing the need for small 

molecules or synthetic polymer crosslinkers, HA has been modified with methacrylates, 

acrylates, vinyl sulfones, and maleimides, and subsequently mixed with thiolated HA to 

crosslink via a Michael addition reaction, with gelation times ranging from instantaneous 

(maleimide) to ~45 minutes (methacrylate) as a function of the ene group present, pH, 

and polymer concentration.196 Towards cardiac tissue engineering, MeHA and thiolated HA 

were selected as an in situ crosslinking, injectable hydrogel formulation for mechanical 

stabilization of myocardial tissue after infarction.196 Michael addition crosslinking in 

HA hydrogels has been used for numerous applications, including cartilage tissue 

engineering197,198 and neural tissue engineering.199,200

A range of chemical modifications have been applied to dextran hydrogels for thiol-ene 

Michael addition hydrogel formation. Injectable, in situ crosslinking hydrogels consisting 

of thiolated dextran and either acrylated PEG or vinyl-sulfonated dextran have been 

developed with a wide range of mechanical and degradation properties.201 Degradation 

timescales can vary significantly (days to weeks) as a function of polymer concentration, 

Michael donors and acceptors selected, and spacing between conjugated functional groups 

and biopolymer backbone.201,202 For spatiotemporal control over degradation, Peng et al. 

chemically modified dextran with an acrylate functional group that contained a photolyzable 

o-nitro-benzyl moiety between the acrylate and dextran backbone.203 The hydrogel was 

crosslinked with a dithiolated PEG crosslinker using Michael addition, and subsequent 

exposure to UV light resulted in controlled degradation and release of model drugs.203

Many other biopolymers have been modified with thiols and/or ene functional groups 

for thiol-ene Michael addition crosslinking. For example, an injectable, thiolated chitosan 

hydrogel was developed by crosslinking with an acrylated PEG, resulting in tunable 

gelation times between ~10 seconds to 20 minutes.204 Cell attachment and spreading was 

demonstrated in vitro upon addition of an RGD peptide.204 Kim et al. showed that thiolated 

heparin could be mixed with PEGDA for Michael addition crosslinking to form a hydrogel 

useful for the encapsulation and in vitro culture of primary hepatocytes (Figure 5c).205 

Furthermore, thiolated gelatin hydrogels mixed with PEGDA are promising for the rapid 

encapsulation of MSCs for wound repair applications.206 Xu et al. showed that, when 

applied to a full thickness wound rat model, these hydrogels supported accelerated wound 

closure, re-epithelialization, and vascularization.206 In another example, Zhang et al showed 

that thiolated keratin can be mixed with 4-arm PEG-vinyl sulfone (PEG-VS) to undergo 

Michael Addition crosslinking.99 The keratin hydrogel showed promise as a flexible strain 

sensor for future applications in wearable electronics.

4.2.3. Azide-alkyne [3+2] cycloaddition—Azide-alkyne [3+2] cycloaddition, also 

called Huisgen 1,3-dipolar cycloaddition, is a powerful click chemistry tool that is widely 
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used in bioconjugation to form strong covalent bonds in a one-pot reaction.207 To perform 

the reaction under physiologically relevant conditions, the reaction is often catalyzed by 

Cu(I) or Cu(II).208 Towards hydrogel formation, biopolymers can be modified with azide 

or alkyne moieties to undergo [3+2] cycloaddition crosslinking, potentially in the presence 

of copper catalysts (Figure 6a). Li et al. fabricated a thermo-responsive albumin hydrogel 

by conjugating propargyl maleimide to thiol groups on BSA cysteine residues.209 The 

combination of alkyne-functionalized BSA with poly(N-isopropylacrylamide) (PNIPAAm) 

end-terminated with azide groups in the presence of Cu(II) catalysts yielded an azide-alkyne 

hydrogel.209 Gelatin hydrogels formed via azide-alkyne reactions have been engineered by 

conjugating propolic acid to lysine residues to add azide functionality and crosslinking 

with either 4,4′-diazido-2,2′stilbenedisulfonic acid or 1,8-diazidooctane, both of which are 

di-functionalized with alkyne groups.210 Upon exposure to Cu(II) catalysts, the gelatin 

hydrogels reached compressive moduli between 50 and 390 kPa.210 Other biopolymers 

that have been crosslinked by copper-catalyzed azide-alkyne cycloaddition reactions include 

HA,170,211,212 cellulose,213 and alginate.214

Copper-catalyzed azide-alkyne cycloadditions allows for rapid gelation; however, copper 

catalysts are often cytotoxic, limiting the ability for copper-catalyzed reactions to be used 

in cellular systems.215 To overcome this, strain-promoted [3+2] azide-alkyne cycloaddition 

(SPAAC) can be utilized by combining azides with strained cyclooctynes (Figure 6b).215 

Wang et al. engineered metal-free, azide-alkyne crosslinked, injectable dextran hydrogels by 

modifying dextran with either azadibenzocyclooctyne (ADIBO-Dex) or azides (Dex-N3).216 

Upon mixing the two components, gelation occurred within 1 to 10 minutes, resulting 

in hydrogels with storage moduli between 2 and 6 kPa.216 The hydrogels supported 

chondrocyte growth and cartilaginous tissue formation in vitro.216 In another approach 

to fabricate metal-free azide-alkyne hydrogels, chitosan was functionalized with azides by 

modification with azidopentanoic acid and subsequently mixed with 3-arm PEG-propiolate, 

a multifunctional alkyne crosslinker.217 The resulting hydrogel formed crosslinks within 5 

to 60 minutes and reached compressive moduli between ~40 and 80 kPa.217 Lastly, ELPs 

have been functionalized with either azide or bicyclononyne moieties to undergo SPAAC 

crosslinking (Figure 6c).109 SPAAC-ELP hydrogels crosslinked within minutes.108,109 

These hydrogels were used to rapidly encapsulate hMSCs and murine neural progenitor 

cells in vitro with high viability and phenotypic maintenance.

4.2.4. Tetrazine-norbornene—Tetrazine-norbornene reactions are useful to rapidly 

form irreversible covalent bonds. Hydrogels can be crosslinked by tetrazine-norbornene 

mechanisms for the encapsulation of cells and therapeutics (Figure 7a).218 Tetrazine-

norbornene click chemistry offers similar advantages to metal-free azide-alkyne 

cycloaddition without the burden of the high cost of strained cyclooctyne groups.218 

Biopolymers can be functionalized with tetrazine and norbornene groups to engineer 

injectable hydrogels that undergo in situ crosslinking.219,220 Desai et al. demonstrated 

that alginate could be functionalized with either benzylamino tetrazine or norbornene 

methylamine groups by EDC/NHS amidation.221 Cytocompatible alginate hydrogels 

could then be formed via tetrazine-norbornene click chemistry, with gelation times 

of approximately a few minutes and storage moduli between ~0.5 and 3 kPa.221,222 
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Furthermore, Lueckgen et al. showed that tetrazine-norbornene biopolymer networks 

containing oxidized alginate allowed for cell infiltration in an in vivo subcutaneous injection 

mouse model.222 HA has also been modified with tetrazine and norbornene moieties using 

EDC/NHS amidation mechanisms.219 The resulting HA hydrogels were engineered as an 

injectable delivery vehicle for the sustained release of protein therapeutics.219 Gelatin 

modified with tetrazine and norbornene groups has been explored for tissue engineered 

scaffold formation and as a delivery vehicle for contrast agents.220,223 For example, Koshy 

et al. developed a tetrazine-norbornene crosslinked gelatin hydrogel that supported cell 

growth and matrix remodeling in vitro, as well as cell infiltration in an in vivo subcutaneous 

mouse model (Figure 7b).223

4.3. Crosslinking via oxidation of phenolic groups

Phenols are aromatic hydrocarbons that contain one or more hydroxyl groups. Oxidative 

environments lead to the generation of phenolate radicals that form covalently bonded 

phenol dimers.224 This mechanism can be used to form crosslinks between biopolymers 

modified with phenolic moieties. Two of the most common approaches for hydrogel 

formation include the enzymatically driven crosslinking of tyramine and oxidation of 

catechol groups.

4.3.1. Tyramine—Tyramine is a naturally occurring amine derived from the tyrosine 

amino acid. In the presence of horse radish peroxidase (HRP) and hydrogen peroxide 

(H2O2), tyramine groups are converted into phenolate radicals that form either carbon-

carbon bonds or di-tyramine adducts which can be used for hydrogel crosslinking. For 

example, radical photoinitiators can be combined with keratin, which contains tyrosine 

amino acids, to form a photocrosslinkable hydrogel upon exposure to UV light.225

Biopolymers can be modified with tyramine functional groups, usually by amidation 

between tyramine and carboxyl groups on biopolymer backbones, and subsequently 

covalently crosslinked by the addition of HRP and H2O2. (Figure 8a). Tyramine-based 

enzymatic crosslinking occurs rapidly within a few seconds to minutes, but can be tuned 

by varying concentrations of tyramine, HRP, and H2O2 in solution.116,226 While enzymatic 

crosslinking of tyramine moieties is most common, it has also been shown that tyramine can 

be crosslinked using visible light and a photoinitiator.227,228

Using carbodiimide chemistry, tyramine groups can be conjugated to HA (HA-Tyr) by 

amidation with free carboxyl groups.116,229 Simultaneous injection of two solutions, one 

containing HA-Tyr and H2O2 and one containing HRP, can be used for rapid gelation in vivo 
upon mixing.116 It has been demonstrated that HA-Tyr hydrogels can be used for sustained 

delivery of proteins and anticancer therapeutics.230,231 For example, Ueda, et al. showed 

that HA-Tyr hydrogels could be used to rapidly encapsulate interferon-alpha (IFN-α) for 

sustained release as an immunotherapy treatment (Figure 8b).231 The HA-Tyr hydrogel was 

able to prolong the biological half-life of IFN-α and improve anticancer effects in vivo when 

evaluated in a human renal cell carcinoma xenograft mouse study.

Towards tissue engineering applications, Loebel et al. demonstrated the versatility of 

HA-Tyr hydrogels, comparing the influence of enzymatic crosslinking and visible light 
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photocrosslinking on encapsulated MSCs.227 It was found that when HA-Tyr hydrogel 

stiffness was constant, enzymatically crosslinked biopolymer networks resulted in increased 

cell spreading and greater focal adhesion strength when compared to photocrosslinked 

hydrogels; however, photocrosslinked hydrogels resulted in increased cellular tractions.227 

This highlights the importance of considering how crosslinking methods influence cell 

behavior. Furthermore, it has been shown that additional biopolymers, such as silk fibroin232 

and tyramine-modified CS,233 can be added to enzymatically crosslinked HA-Tyr hydrogels 

to create multifunctional hydrogels for tissue engineering.

Using amidation, alginate can also be modified with tyramine groups (Alg-Tyr) for 

enzymatic crosslinking.234 It has been shown that enzymatically crosslinked Alg-Tyr 

hydrogels can retain their ability to undergo additional ionic crosslinking upon exposure 

to calcium (Ca2+).234,235 Furthermore, enzymatic crosslinking of Alg-Tyr hydrogels results 

in more stable hydrogels, overcoming the potential dissolution that occurs with ionic 

crosslinking during long-term cultures. In addition to Alg-Tyr, alginate modified with 

catechol moieties allow for HRP/H2O2 enzymatic crosslinking.236 Hou et al. showed that 

enzymatically crosslinked alginate hydrogels with catechol moieties results in improved 

tissue adhesiveness when compared to Alg-Tyr hydrogels.236

One method to functionalize dextran with tyramine groups is to first modify 

dextran with p-nitrophenyl chloroformate and to subsequently conjugate tyramines by 

urethane bond formation.121,226 In an alternative strategy, dextran can be modified 

with di-glycolic anhydride and subsequently functionalized with tyramine groups by 

amidation.121 Both synthesis methods result in tyramine-modified dextran hydrogels that 

can undergo enzymatic crosslinking; however, the latter method results in a hydrogel 

with increased hydrolytic degradability.121 Tyramine-modified dextran hydrogels have been 

promising towards cartilage repair, especially when combined with tyramine-modified 

heparin.226,237,238

Many other biopolymers have been modified with tyramine groups for enzymatic 

crosslinking, including cellulose derivatives,228,239 CS,240 pullulan,240 and chitin.241 Many 

polypeptides, such as silk fibroin, contain tyrosine residues for HRP/H2O2 enzymatic 

crosslinking.232,242 However, polypeptides can also be further modified with additional 

tyramine groups for increased enzymatic crosslinking in hydrogel formation.243,244

4.3.2. Catechol—Catechol, the ortho isomer of benzene diol, is a versatile functional 

group that can undergo crosslinking by the formation of covalent bonds, metal-ligand 

coordination, and hydrogen bonding.245 Catechol moieties occur widely in nature, with 

the famous example being mussel adhesion to dynamic wet surfaces due to the secretion 

of fluids rich in catechol groups.245,246 Inspired by mussels, tissue adhesive hydrogels 

containing catechol groups have been explored.246,247 Under oxidative conditions, catechol 

groups can form covalently crosslinked catechol dimers, which have been widely used in 

hydrogel formation (Figure 9a).245 Dopamine contains a catecholic moiety and has been 

conjugated to many biopolymers by EDC/NHS amidation reactions.248,249
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Alginate,247 chitosan,250 and HA249 have all been modified with dopamine functional 

groups for hydrogel formation and tissue-adhesive applications. Lee et al. developed a 

catechol-modified alginate hydrogel that covalently crosslinks upon exposure to sodium 

periodate (NaIO4).248 The storage modulus could be tuned from 300 to 6000 Pa, depending 

on polymer concentration and degree of substitution.248 Furthermore, catechol-alginate 

hydrogels exhibited increased cytocompatibility when compared to ionically crosslinked 

alginate.248 Hong et al. demonstrated that catechol-modified HA (HA-CA) hydrogels 

exhibited strong adhesion to wet surfaces in acidic environments and increased mechanical 

stability due to the formation of covalent crosslinks in basic environments.249 Covalently 

crosslinked HA-CA hydrogels have been shown to adhere to both wet and beating tissues in 
vivo.251 Shin et al. engineered an HA-CA hydrogel for tissue adhesion applications (Figure 

9b).251 The hydrogel adhered to liver and heart tissue for at least 1 month in an in vivo 
rat model. While exposing catechol-modified biopolymers to basic conditions yields rapid 

covalent crosslinking, Sato et al. showed that HA-CA hydrogels can undergo auto-oxidation 

and covalent crosslinking under physiological conditions (pH ~7.4) over a period of a few 

hours.252

5. Dynamic covalent crosslinking

Dynamic covalent crosslinking consists of a subset of reactions that allow for the 

formation of reversible covalent crosslinks between biopolymers. The dynamic nature of the 

covalent bonds may introduce shear-thinning and self-healing properties into the hydrogel 

while maintaining high mechanical moduli for structural integrity. Furthermore, dynamic 

covalent bonds can introduce stimuli-responsiveness in hydrogel assembly and disassembly. 

Gelation via dynamic covalent crosslinking may be achieved by one-pot mixing of reactive 

components. When compared to covalently crosslinked biopolymer networks, biopolymer 

networks crosslinked via dynamic covalent chemistries may experience faster degradation 

times and increased cell infiltration both in vitro and in vivo. Mechanical and biological 

properties of dynamic covalent biopolymer networks will be influenced by biopolymer and 

crosslinking group concentrations, as well as bond strength and bond formation kinetics. 

Dynamic covalent crosslinking in hydrogels has been explored for many applications, 

including tissue engineered scaffolds, drug delivery vehicles, and bioprinting inks. This 

review will focus on dynamic covalent crosslinking mechanisms commonly used towards 

biomedical applications, including Schiff base reactions, disulfide formation, and reversible 

Diels-Alder reactions.

5.1. Schiff base crosslinking

The Schiff base reaction was discovered by Hugo Schiff in 1864 and has been widely 

used as a click chemistry tool.253–255 Schiff bases are a type of imine, which has the 

structure R2C=NR’ and are either secondary aldimines or ketimines, where R’≠H. The 

condensation of carbonyl and primary amine groups results in Schiff base formation, with 

water as the only byproduct. The reversible reaction can proceed under mild conditions and 

is pH-responsive.253 For hydrogel formation, Schiff base crosslinks are formed by mixing 

aldehyde-functionalized and amine-functionalized biopolymers.254,255 Crosslink stability 

can be influenced by the neighboring atoms attached to the primary amine groups used in 
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Schiff base formation. Imine crosslinks are formed when a carbonyl group condenses with 

a primary amine group attached to a hydrocarbyl group (Figure 10a). Hydrazone crosslinks, 

which are more stable than imine crosslinks, are formed when a carbonyl group condenses 

with a primary amine group attached to a nitrogen atom (Figure 10b).127,253 Oxime 

crosslinks are formed when a carbonyl condenses with a primary amine group attached to an 

oxygen atom and are more stable than both hydrazone and imine crosslinks.256,257 Hydrogel 

degradation can be tuned by selecting the type of Schiff base used in crosslinking (e.g., 

imine, hydrazone, oxime).127,256 For biopolymer hydrogel formation, imine and hydrazone 

functionalities are most commonly utilized to achieve dynamic crosslinking behavior.

5.1.1. Imine crosslinks—Imine crosslinking is widely used in biopolymer hydrogel 

formation (Figure 10a).255 Sugar rings in polysaccharide backbones can be oxidized 

with sodium periodate to form dialdehyde-functionalized biopolymers. Furthermore, many 

biopolymers, such as chitosan and gelatin, have primary amine groups that can be used 

for imine crosslinking.258–260 Qu et al. developed an injectable N-carboxyethyl chitosan 

hydrogel crosslinked by imine formation between amino groups on chitosan and dialdehyde 

PEG crosslinkers (Figure 10c).258 The hydrogels were self-healing and showed promise as 

drug delivery vehicles for hepatocellular carcinoma therapy. In other examples, chitosan 

has been combined with many oxidized polysaccharides including cellulose,261,262 CS,263 

and HA126,264 for hydrogel formation. Gelatin has been combined with many oxidized 

polysaccharides including alginate265,266 and pectin260 for hydrogel formation. The number 

of amine groups available for imine crosslinking can be increased by coupling gelatin 

with ethylenediamine using carbodiimide chemistry.265 Hydrolysis of the imine crosslinks 

results in hydrogel degradation.126 The dynamic nature of the imine crosslink formed can 

result in injectable hydrogels with shear-thinning and self-healing properties.126,259,263 To 

improve mechanical properties, imine-crosslinked hydrogels have also been reinforced with 

methacrylate-based covalent photo-crosslinking265 or with the incorporation of microgels 

into the hydrogel structure.263

5.1.2. Hydrazone crosslinks—Hydrazone crosslinks are more stable than imine 

crosslinks, and thus can be used to increase hydrogel stability.253 Hydrazone crosslinks 

can be formed by mixing oxidized polysaccharides with hydrazide-modified biopolymers 

(Figure 10b). Hydrazide modification is often accomplished using carbodiimide chemistry 

to conjugate adipic dihydrazide (ADH) to free carboxylic acid groups on biopolymer 

backbones.267,268 Due to the ease of chemical modification, HA has been extensively 

explored for hydrazone-based crosslinking.269–271 Wang et al. demonstrated that oxidized 

HA (HA-ALD) could be combined with adipic dihydrazide-modified HA (HA-ADH) to 

form a shear-thinning, self-healing hydrogel for bioprinting applications.271 Furthermore, 

combining HA-ALD/HA-ADH networks with a thiol-ene crosslinkable NorHA increased 

hydrogel storage moduli 3-fold, and allowed for thiol-norbornene photo-patterning of 

thiolated peptides within the bioprinted scaffolds.271 Domingues et al. demonstrated that 

injectable hydrazone-crosslinked HA networks could be strengthened by incorporating 

aldehyde-modified cellulose nanocrystals into the network.272 Hydrazone crosslinking has 

been explored for many other biopolymers in addition to HA, including alginate,270 

cellulose,273 dextran,268 and xanthan gum.274
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The oxidization of polysaccharide sugar rings using sodium periodate is a simple way to 

functionalize biopolymers with aldehydes; however, it can result in decreased biopolymer 

molecular weight. To improve hydrogel mechanical properties and stability, it may be 

desired to functionalize biopolymers with pendant aldehydes rather than oxidizing sugar 

rings in the polymer backbone. Biopolymers can be modified with pendent aldehydes 

using carbodiimide coupling of 3-amino-1,2-propanediol to carboxylic acid groups on 

the biopolymer backbone, followed by brief (~5 min) exposure to sodium periodate 

in order to oxidize the pendant diol for aldehyde formation.115 To further improve 

stability, biopolymers can be modified with carbohydrazide (CDH) instead of ADH for 

hydrazone-crosslinked hydrogel formation.127 Hozumi et al. showed that hydrogels formed 

by combining pendant aldehyde-modified HA and CDH-gelatin were stable for ~30 days, 

whereas hydrogels formed from combining ADH-gelatin and oxidized HA degraded within 

~5 days.127

5.2. Disulfide crosslinking

Disulfide bonds (i.e., SS-bonds, disulfide bridges) are dynamic covalent interactions that 

can be cleaved and reformed in response to chemical or physical stimuli.275 Protein 

folding and structure rearrangement rely on the formation and shuffling of disulfide bonds, 

mostly involving cysteine residues containing thiol groups, which can undergo disulfide 

bond formation under oxidative conditions.276 Hydrogels crosslinked by disulfide bonds 

can exhibit shear-thinning, self-healing properties, while maintaining increased crosslink 

stability when compared to physical supramolecular interactions.275,277

Biopolymers have been functionalized with thiol groups for the formation of dynamic 

covalent disulfide crosslinks (Figure 11a). For example, HA has been modified with 

dithioiso(propanoic dihydrazide) (DTP) using carbodiimide amidation and subsequent 

reduction with DTT to result in HA-DTPH biopolymers for hydrogel formation.278 Shu 

et al. demonstrated that HA-DTPH hydrogels could be oxidized by exposure to ambient air 

for the formation of dynamic covalent disulfide crosslinks.278 In a later study, HA-DTPH 

and Gel-DTPH were combined to form a synthetic ECM hydrogel scaffold crosslinked 

by disulfide bonds for in vitro cell culture.279 Bermejo-Velasco et al. demonstrated that 

disulfide bond formation kinetics and stability could be increased by modifying HA with 

thiol moieties containing electron-withdrawing groups at the β-position (Figure 11b).280 

HA modified with either cysteine or N-acetyl-cysteine groups formed disulfide biopolymer 

networks at neutral pH within minutes to hours, whereas thiolated HA was unable to form 

stable disulfide crosslinks at neutral pH within 24h.280 Alginate hydrogels crosslinked 

with disulfide bonds have been fabricated by modifying carboxyl groups on alginate 

with either cysteine or cysteamine via amidation.281 Zhao et al. demonstrated that these 

alginate hydrogels were pH responsive and underwent disassembly of disulfide crosslinks 

in the presence of DTT.281 In another strategy, self-healing cellulose hydrogels have been 

fabricated by chemically modifying cellulose nanocrystals to enable dynamic disulfide bond 

formation.282

Polypeptide hydrogels can be crosslinked by forming disulfide bridges between cysteine 

amino acids. Sun et al. showed that injectable albumin hydrogels could be easily fabricated 
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by combining BSA with H2O2.283 Wang et al. used a similar approach by combining keratin 

from chicken feathers with H2O2 to induce disulfide bond formation between free thiols 

on keratin.100 The resulting keratin hydrogel was explored for wound healing applications. 

To increase crosslinking, polypeptides can also be modified with excess thiol groups. Thi 

et al. fabricated a gelatin-based hydrogel with dual crosslinking functionality by mixing 

hydroxyphenyl propionic acid-modified gelatin (GH) with thiolated gelatin (GS).284 GH 

was crosslinked with HRP/H2O2, and the adhesive strength of the hydrogel increased 6-fold 

upon addition of GS due to the formation of disulfide crosslinks within the hydrogel and at 

the hydrogel-tissue interface.284 Engineered polypeptides have also been designed to form 

hydrogels via disulfide bonds. Shen et al. designed am artificial protein crosslinked by 

leucine zipper domains.285 It was shown that incorporating thiol groups within the leucine 

zipper structures allowed for the stabilization of crosslinks due to the formation of disulfide 

bonds.285

5.3. Reversible Diels-Alder crosslinking

Diels-Alder reactions, which are [4+2] cycloadditions between dienes and a dienophiles, are 

a widely used class of click chemistry tools (Figure 12a).286 For biomedical applications, 

the dynamic Diels-Alder reaction between furan and maleimide is of particular interest 

due to its reversibility at 100°C (i.e., retro-Diels-Alder).287 Hydrogels crosslinked with 

furan-maleimide Diels-Alder reactions degrade via hydrolysis of the maleimide groups 

as well as occurrence of the retro-Diels-Alder reaction.288 Synthetic polymers and 

crosslinkers containing furan and maleimide functionalities have been explored to engineer 

dynamic hydrogels with thermo-responsive behavior.289,290 To engineer hydrogels, many 

biopolymers have been modified with furan moieties and subsequently crosslinked with 

multifunctional maleimide crosslinkers.

Amidation reactions have been used to conjugate furfurylamine groups onto many 

biopolymers including alginate,291 cellulose,292 chitosan,293 HA,294 and gelatin.295 

Etherification and imine formation have also been explored to conjugate furan moieties to 

chitin296 and chitosan,297 respectively. Furan-modified biopolymers can then be crosslinked 

by synthetic bismaleimide crosslinkers to form hydrogels.291,296,298 These hydrogels 

can be thermo- and pH- responsive, and have been explored for tissue engineering 

scaffolds, drug delivery, and anti-microbial coatings.296,297,299–301 By tuning concentrations, 

furan-maleimide crosslinked biopolymer hydrogels can be injectable and undergo in situ 
crosslinking within minutes-to-hours.295,296 While synthetic bismaleimide crosslinkers are 

commonly used, maleimide groups can also be conjugated to the biopolymer backbone. For 

example, hydrogels consisting of HA modified with both furan and maleimide groups have 

been explored for sustained drug release.302

Bi et al. showed that chitin could be modified with furfuryl glycidyl ether to engineer a 

unique dual-gelation system (Figure 12b).296 At 37°C, physical interactions between chitin 

molecules result in immediate gelation. When combined with a PEG-based maleimide 

crosslinker, further gelation occurs over the period of hours-to-days due to long-term Diels-

Alder formation. In another strategy, Yu et al. showed that HA could be modified with both 

furan and tyramine functional groups.303 Subsequent addition of HRP/H2O2 and a PEG-
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based maleimide crosslinker resulted in immediate gelatin due to enzymatic crosslinking, 

followed by further gelatin due to the Diels Alder reaction over 24 hours. Bai et al. created 

a dual-crosslinking system consisting of furan-modified CS, maleimide-modified Pluronic 

F127, and PEG-based maleimide.300 The formulation underwent rapid gelatin at 37°C due 

to Pluronic, followed by long-term gelation due to furan-maleimide Diels Alder reactions. 

The hydrogel showed promise in the field of bone tissue engineering.

6. Physical crosslinking

Physical crosslinking can be achieved by physical interactions between biopolymer chains 

modified with crosslinking groups. The reversible nature of physical interactions often leads 

to hydrogels with shear-thinning and self-healing properties, which may allow for injectable 

hydrogels. While mechanical moduli may be lower relative to hydrogels crosslinked with 

covalent bonds, utilizing physical crosslinks may allow for increased cell migration and 

diffusivity within a hydrogel system. Hydrogel assembly through physical interactions often 

occurs through one-pot mixing of two or more components, allowing for rapid gelation and 

facile encapsulation of cells or drugs. Such systems also typically do not require catalysts 

or initiators, which may improve cytocompatibility. Furthermore, some physical interactions 

can be designed to be stimuli-responsive in order to allow for controlled hydrogel assembly 

and disassembly or to bind to drugs to control their release from hydrogels. The mechanical 

and biological properties of physically crosslinked hydrogels depend on the concentrations 

of biopolymers and crosslinking groups, as well as the binding affinity between chemical 

groups. In this section, various types of physical crosslinking mechanisms that have been 

utilized with chemically-modified biopolymers are discussed, including the introduction 

of guest-host interactions, hydrogen bonding, metal-ligand coordination, and interactions 

between synthetic polymers grafted to biopolymers.

6.1. Guest-host interactions

Guest-host interactions involve the formation of inclusion complexes between a “host” 

macrocycle with a hydrophobic interior and one or more hydrophobic “guest” moieties 

(Figure 13).304 For biopolymer hydrogel formation, naturally-derived cyclodextrins and 

synthetic cucurbit[n]urils are the most commonly utilized host molecules due to their water-

solubility, chemical diversity, low toxicity, cytocompatibility, and history of use.255,305,306 

Numerous guest moieties have been explored for hydrogel assembly, some of which include 

stimuli-responsive properties to allow for controlled assembly and disassembly of the guest-

host inclusion complex.305

6.1.1. Cyclodextrins—Cyclodextrin (CD) is a cyclic macromolecule formed from either 

6 (α-CD), 7 (β-CD), or 8 (γ-CD) glucopyranoside units, which has a long history of use for 

solubilization of drugs.307 The hydrophobic inner cavity of CD forms guest-host inclusion 

complexes with a variety of guest molecules including adamantane (Ad), cholesterol, 

azobenzene (Az), and ferrocene (Fc).255 CDs have been incorporated into hydrogels to 

act as host molecules for the sustained delivery of hydrophobic drugs.308–311 To form 

shear-thinning, self-healing hydrogels, many biopolymers have been modified with either 

CDs or guest moieties and subsequently mixed to allow for rapid guest-host mediated 
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assembly (Figure 13a). Examples of biopolymers that have been chemically modified with 

CD groups include alginate,312,313 cellulose,314,315 chitosan,316 dextran,123 HA,317,318 and 

keratin.319 Furthermore, gelatin has been mixed with synthetic polymers containing β-CD to 

form hydrogels due to the guest-host interactions between β-CD and aromatic amino acid 

residues.320

Ad-CD guest-host interactions have been widely investigated and are known to have 

an association constant of about 105 M−1, which is relatively high for guest-host 

complexation.304 HA has been modified with either Ad (AdHA) or CD (CDHA) to form 

shear-thinning, self-healing guest-host hydrogels upon mixing for injectable tissue scaffolds, 

drug delivery, and bioprinting inks.321 Many methods have been utilized to conjugate Ad 

or CD to HA. For example, Rodell et al. demonstrated that carboxylic acid-derivatives 

of Ad can be conjugated to HA via esterification, and amine-derivatives of CD can be 

conjugated to HA via amidation.318 Once combined, AdHA and CDHA form injectable, 

self-healing guest-host hydrogels. Properties of AdHA-CDHA hydrogels depended on the 

concentration of modified HA, degree of modification, and the molar ratio of guest and 

host functional groups.318 Furthermore, Ad-CD guest-host networks can be combined with 

secondary covalent crosslinking to increase network mechanics and stability.196 There are 

many other guest-host pairings for CD that have been explored for hydrogel formation. In 

one example, alginate modified with β-CD has been combined with Pluronic F108, forming 

inclusion complexes between β-CD and the hydrophobic poly(propylene glycol) (PPG) 

block on the Pluronic.322 The resulting hydrogel had shear-thinning, self-healing properties 

in addition to increased thermo-responsive gelation due to the presence of the Pluronic.322

To increase the functionality of CD-containing guest-host hydrogels, stimuli-responsive 

guest molecules have also been explored. Az acts as a guest molecule for CD and undergoes 

trans-to-cis isomerization in response to UV light. While trans-Az has a high affinity 

for CD, cis-Az has a low affinity.323 Thus, hydrogels crosslinked with Az-CD inclusion 

complexes can undergo UV light-responsive disassembly, and subsequent re-assembly upon 

removal of the UV light.324 For biomedical applications, this system can be used to 

control scaffold degradability and drug release. UV-responsive Az-CD hydrogels have been 

formed with chemically-modified alginate,325 dextran,123 and HA.326 For example, Peng 

et al. showed that dextran can be modified with either β-CD or trans Az for guest-host 

hydrogel formation (Figure 13c).123 Upon exposure to UV light, Az undergoes a trans to 

cis isomerization, resulting in hydrogel disassembly and photoresponsive protein release. Fc 

can also be used as a stimuli-responsive guest molecule for CD.327 Tan et al. demonstrated 

that β-CD modified alginate could be mixed with Fc modified Pluronic F127 for hydrogel 

formation.328 NaOCl was used to oxidize Fc to form Fc+, which resulted in disassembly of 

guest-host complexes.328

6.1.2. Cucurbit[n]urils—Cucurbit[n]urils (CB[n]) are a class of cyclic macromolecules 

consisting of n glycoluril units that form a hydrophobic cavity with two openings.329 

The strength of guest-host interactions between CB[n] and guest molecules depends on 

the binding affinity and CB[n] cavity size.329 For biomedical applications, CB[6], CB[7], 

and CB[8] are most often used,330 which have cavity sizes of 164, 279, and 479 Å, 
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respectively.331 CB[8] host molecules provide a large enough cavity to bind two aromatic 

guest molecules simultaneously.331

Biopolymers have been modified with CB[n] derivatives and guest moieties for hydrogel 

formation. Park et al. developed an HA hydrogel crosslinked by guest-host complexation 

between CB[6] and polyamine chemical modifications for application as a tissue scaffold.332 

Both diaminohexane (DAH) and spermine modifications were explored as guest molecules 

due to their high binding affinity with CB[6] (1010-1012 M−1).332 In a follow up study, 

CB[6]/DAH-HA hydrogels were used to encapsulate MSCs for potential use as an artificial 

ECM.154 CB[6]/DAH-HA guest-host hydrogels exhibited increased cell viability and 

retention when compared to Matrigel after 60 days in vivo in an subcutaneous mouse 

model.154 Furthermore, Sohail et al. engineered a tunable photoluminescent guest-host 

hydrogel consisting of CB[7] derivatives and alginate modified with dequalinium chloride 

hydrate guest moieties.333

CB[8] host molecules can accommodate two guest molecules due to the relatively large 

cavity size. Towards hydrogel formation, biopolymers can be chemically modified with 

guest moieties and subsequently mixed with free CB[8] compounds to form shear-thinning, 

self-healing hydrogels (Figure 13b).122,334 For example, cellulose derivatives have been 

modified with naphthalene and phenylalanine guest molecules for hydrogel formation with 

CB[8] hosts.122,335 HA modified with phenylalanine has also been shown to form injectable 

guest-host hydrogels with CB[8].334 Rowland et al. conjugated phenylalanine to HA using 

Michael addition between methacrylate-functionalized HA and free thiols on a cysteine-

phenylalanine compound to form biopolymer hydrogels that showed promise for injectable 

drug delivery to the brain.336

6.2. Hydrogen bonding

Hydrogen bonding is a physical attractive interaction between hydrogen atoms and 

electronegative atoms such as oxygen and nitrogen. Many biological processes such as 

protein folding and DNA base-pairing are driven by hydrogen bonding interactions.337 

For hydrogel formation driven by hydrogen bonding, biopolymers can be modified with 

functional groups such as ureidopyrimidone or gallol (Figure 14).

6.2.1. Ureidopyrimidone—Ureidopyrimidone (UPy) is a quadruple hydrogen bonding 

motif that has been used as a dynamic crosslinker to prepare pH- and temperature-

responsive injectable hydrogels (Figure 14a).338,339 The quadruple binding motif allows 

for transient network formation independent of stoichiometry.339 Injectable dextran 

hydrogels crosslinked by UPy hydrogen bonding have been developed for application in 

musculoskeletal tissue engineering, where isocyanate-functionalized UPy was conjugated 

to the hydroxyl groups on dextran (Figure 14c).340 The UPy-dextran hydrogel was able to 

sustain doxycycline drug release for a week and BSA release for more than a month.340 

Gelatin has also been functionalized with UPy through urethane bond formation between 

isocyanate-modified UPy and amino groups on gelatin to create injectable hydrogels.341,342 

Alavijeh et al. developed a UPy-modified gelatin hydrogel that demonstrated shape memory 

behavior for applications as a controlled drug delivery matrix.341 Furthermore, hydrogels 
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have been formed using UPy-modified cellulose nanocrystals as well as UPy-modified 

heparin binding peptides.343,344

6.2.2. Gallol—Gallol is an aromatic ring structure with three hydroxyl groups that is 

associated with fruit browning.345 Gallol moieties can be conjugated to biopolymers for the 

formation of dynamic hydrogen bonds resulting in shear-thinning, self-healing injectable 

hydrogels (Figure 14b).346,347 Upon exposure to oxidative conditions (i.e., NaIO4), gallol 

moieties can convert to quinones for covalent stabilization of networks. Shin et al. 

developed an ECM-mimetic bioink by modifying both gelatin and HA with gallol moieties 

via EDC/NHS coupling between biopolymer carboxyl groups and hydroxydopamine.347 

Hydrogen bonding between gallol functional groups resulted in a printable hydrogel ink, 

whereas slow spontaneous oxidation post-printing resulted in covalent stabilization of gallol 

crosslinks.347

6.3. Metal-ligand coordination

Metal-ligand coordination complexes consist of a central metallic atom surrounded 

by bounded molecules referred to as ligands. Many biological processes such as self-

assembly and adhesion rely on the formation of metal-ligand complexes.348 For example, 

mussels make use of reversible metal-ligand complexes between catechol moieties and 

metal ions to form a self-healing protective fluid coating capable of protection against 

turbulent tidal motion.349 Hydrogel biomaterials inspired by reversible mussel adhesive 

chemistry have been explored for many applications, including engineered hydrogel 

actuators and bioprinting.350,351 The reversibility of metal-ligand complexation allows for 

the formation of shear-thinning, self-healing supramolecular hydrogels.352 Furthermore, 

hydrogels crosslinked via metal-ligand coordination can have pH-responsive behaviors and 

reach mechanical moduli near that of covalently bonded hydrogels.353

One of the most common approaches to introduce metal-ligand complexation into 

biopolymer hydrogels is to first conjugate catechol to the biopolymer backbone, which 

can then form metal-ligand complexes with many metallic atoms including Fe(III), Cu(II), 

and Al(III) (Figure 15a).352,354 Chitosan has been modified with catechol moieties and 

subsequently crosslinked via metal-ligand coordination to form shear-thinning, self-healing 

hydrogels.352 Injectable, self-healing catechol-chitosan hydrogels crosslinked by Fe(III) 

metal complexation have been developed as a promising drug delivery vehicle for breast 

cancer, showing capabilities of sustained release of anti-cancer drugs in vivo in a mouse 

model for more than 40 days (Figure 15b).355 Furthermore, catechol-modified chitosan 

hydrogels crosslinked with Fe(III) exhibit pH-responsiveness, adding another degree of 

tunability to hydrogel functionality.356,357

HA hydrogels crosslinked with metal-ligand coordination chemistry have also been 

developed.351,358 Lee et al. modified HA with catechol moieties using amidation between 

amino groups on dopamine and carboxyl groups on HA (HA-CA).358 HA-CA was 

crosslinked by the addition of Fe(III), as well as by oxidative conversion of catechol groups 

to covalently crosslinked quinones.358 Furthermore, HA-CA/Fe(III) crosslinks exhibited 

pH-responsiveness.358 Shin et al. developed granular hydrogels by jamming covalently 
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crosslinked HA microgels containing gallol moieties.351 The microgels were mixed with 

silver nanoparticles (AgNPs) and the gallol groups formed metal-ligand coordination 

complexes between microgels with the AgNPs351. The resulting injectable hydrogel was 

conductive due to the presence of AgNPs, with potential applications in bioprinting of 

electroactive tissue constructs.351

6.4. Grafted biopolymers

To increase the range of functionalities in biopolymer hydrogels, synthetic polymers 

may be grafted to biopolymer backbones so they may interact with each other for 

assembly into hydrogels (Figure 16). For biomedical applications, two of the most common 

synthetic polymers grafted to biopolymers are poly(N-isopropylacrylamide) (PNIPAAm) 

and Pluronic.

6.4.1. PNIPAAm—PNIPAAm is a synthetic polymer that is characterized by having both 

hydrophilic amide moieties and hydrophobic propyl moieties.359 PNIPAAm undergoes a 

reversible low critical solution temperature (LCST) around 34°C. At low temperatures, the 

amide groups are solvated by water, allowing for the existence of a PNIPAAm aqueous 

solution.359 Upon exposure to elevated temperature (e.g., >34°C), interactions between 

propyl hydrophobic groups strengthen, leading to the formation of a physically crosslinked 

network.359

PNIPAAm has been grafted to many biopolymers including alginate,360 HA,361 CS,362 

chitosan,363 silk fibroin,364 and gelatin365 for the formation of thermo-responsive hydrogels 

(Figure 16a). For example, Zhu et al. grafted PNIPAAm onto keratin by first using thiol-ene 

radical addition to conjugate NIPAAm monomers onto free thiol groups on keratin, and 

subsequently polymerizing PNIPAAm off the keratin backbone using free radical kinetic 

chain polymerization.366 The resulting thermo-sensitive keratin-g-PNIPAAm hydrogel 

exhibited gelation around 28–32°C, depending on the grafting ratio (Figure 16c).366 The 

keratin-g-PNIPAAm hydrogel was explored for brain injury repair applications in vivo. In 

another approach, PNIPAAm has been grafted to HA by amidation between PNIPAAm 

end-terminated with carboxyl groups (PNIPAAm-COOH) and aminated HA.367 Tan et al. 

demonstrated that the injectable AHA-g-PNIPAAm hydrogels exhibited rapid gelation above 

30°C.367 The hydrogel showed promise for adipose tissue engineering applications both in 
vitro and in vivo.367 Chitosan has also been functionalized with PNIPAAm using amidation 

between PNIPAAm-COOH and amine groups on chitosan using EDC/NHS carbodiimide 

chemistry.368 Yuan et al. combined chitosan-g-PNIPAAm with PEG to fabricate electrospun 

nanofibers for drug delivery and tissue engineering applications.363 In another example, 

gelatin-g-PNIPAAm hydrogels have been explored for use as an injectable delivery vehicle 

for intracameral delivery of the antiglaucoma drug, pilocarpine, in a rabbit glaucoma in vivo 
model.369

6.4.2. Pluronics—Pluronics are A-B-A triblock copolymers consisting of PEG-PPG-

PEG that are manufactured by BASF.370 Pluronics have a critical micelle temperature 

(CMT) between 25–40°C, forming micelles with a hydrophobic core.370 Biopolymers 

grafted with Pluronics can form injectable hydrogels that undergo thermo-responsive 
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gelation upon exposure to physiological temperatures (Figure 16b).371 The most common 

Pluronic used in hydrogel formation is Pluronic F127 (PEG100-PPG65-PEG100) due to 

its hydrophilicity at low temperatures.370,371 Many biopolymers have been modified with 

Pluronics for scaffold formation and drug delivery, including HA,372 chitosan,373 heparin,374 

and gelatin.375 Lee et al. demonstrated that Pluronic F127 capped with amine groups could 

be grafted to carboxyl groups on HA using EDC/HOBt amidation.372 Bovine chondrocytes 

were encapsulated in the HA-g-F127 hydrogel for application as an injectable cell carrier for 

cartilage regenartion.372 Chitosan-g-F127 hydrogels have also been explored as an injectable 

hydrogel for cartilage repair.376 Park et al. showed that chitosan-g-F127 hydrogels reached 

gelation at a temperature of 25°C and could reach a storage modulus of 104 Pa.376

7. Recent applications of biopolymer hydrogels to biomedicine

Biopolymer hydrogels from chemically-modified biopolymers have been widely used across 

biomedical applications for several decades. In previous sections, we briefly mentioned 

some of these applications in the context of specific biopolymer modifications and 

crosslinking methods. In this section, we review representative recent advances (last 5 

years) that have been made using chemically-modified biopolymer hydrogels, including for 

the biofabrication of tissue scaffolds, therapeutic molecule delivery, tissue adhesives and 

sealants, and the formation of interpenetrating network hydrogels. Although it is not possible 

to be comprehensive with all of the biomedical examples of biopolymer hydrogels, the 

studies discussed throughout this section were selected to highlight diverse biopolymers and 

chemical modifications and to emphasize examples where these biopolymer modifications 

were integral to the application.

7.1. Biofabrication of hydrogel scaffolds

7.1.1. Bioprinted scaffolds—Bioprinting has rapidly evolved as a widely adopted 

biofabrication technique to engineer tissue constructs with complex microarchitectures. 

Chemically-modified biopolymer hydrogels have been developed as bioinks to embed cells 

and bioprint tissue constructs, particularly with photocrosslinkable biopolymers to obtain 

stable tissue constructs.377

Traditional extrusion-based bioprinting utilizes viscous, shear-thinning photocrosslinkable 

bioinks to print constructs that are crosslinked by light exposure post-deposition.377 GelMA 

has been widely explored as a bioink for extrusion-based bioprinting. For example, Bejleri 

et al. bioprinted a cardiac patch composed of GelMA, decellularized cardiac ECM, and 

human cardiac progenitor cells.378 The addition of cardiac ECM to the GelMA bioink 

improved printability and the pro-angiogenic potential of embedded cells. The bioprinted 

patches were evaluated in an in vivo rat model and supported vascularization after 14 

days. Towards musculoskeletal tissue engineering applications, Cidonio et al. engineered a 

bioink composed of GelMA, Laponite® nanoclay, and hMSCs for bone defect repair.379 The 

incorporation of nanoclay improved print fidelity when compared to GelMA alone, and the 

addition of VEGF in the scaffold resulted in increased vascularization in an ex vivo chick 

chorioallantoic model.
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HA bioinks have also been widely adopted in bioprinting. For example, Petta et al. 

developed bioinks from HA-Tyr for extrusion-based bioprinting.380 Various cell types, 

including hMSCs and bovine chondrocytes, were encapsulated in HA-Tyr bioinks that 

were lightly enzymatically crosslinked with HRP/H2O2 before printing. After deposition, 

constructs were stabilized by secondary photocrosslinking and supported high cell viability 

with culture. In another approach, Kuss et al. combined MeHA, GelMA, polycaprolactone 

(PCL), and hydroxyapatite to engineer an extrusion bioprinted scaffold for craniofacial 

defect repair.381 Hybrid scaffolds were fabricated with layers of PCL/hydroxyapatite and 

then MeHA/GelMA containing embedded stromal vascular fraction of adipose tissue. 

After short-term culture in hypoxic conditions in vitro, the scaffolds were subcutaneously 

implanted into an in vivo mouse model and demonstrated microvasculature formation 4 

weeks post-implantation. In another approach, Kesti et al. combined HA-g-PNIPAAm with 

MeHA to create a dually-crosslinked hydrogel.382 The rapid gelation of printed constructs 

occurred upon contact with a substrate at 37°C, providing immediate structural support 

for the constructs. Subsequent free radical chain polymerization of methacrylate groups 

provided long-term mechanical stability.382

Numerous other biopolymers have been chemically modified for use as extrusion-based 

3D printing bioinks. For example, methacrylated alginate, methacrylated chondroitin 

sulfate, and GelMA have been combined with a graphene oxide nanofiller for use as 

a multicomponent photocrosslinkable bioink, which was explored for cartilage tissue 

engineering.383 Recently, norbornene-modified cellulose bioinks were engineered by 

functionalizing cellulose with a norbornene group using either amide or ester bond 

formation (Figure 4).182 The bioink was photocrosslinkable by thiol-ene radical addition 

and showed high cell viability for cell-laden bioprinted scaffolds.

One of the challenges with traditional extrusion-based bioprinting is the need for high bioink 

viscosity or rheological additives to ensure high print fidelity, which limits the use of many 

materials.377 To combat this, extrusion bioprinting with in situ crosslinking has emerged 

as a promising technique to permit extrusion-based printing of non-viscous bioinks.131,384 

In this approach, bioinks are cured by photocrosslinking during the deposition process 

through the use of photopermeable capillary tubes. Ouyang et al. demonstrated that a wide 

variety of non-viscous bioinks, including GelMA, MeHA, and NorHA, could be printed 

using in situ crosslinking.384 Fibroblasts embedded in the non-viscous biopolymer inks 

exhibited high viability (>90%) post-printing. Galarraga et al. later showed that MSCs could 

be encapsulated in non-viscous NorHA bioinks to fabricate bioprinted constructs with in 
situ crosslinking for cartilage tissue engineering.131 Bioprinted constructs were cultured in 

chondrogenic media for 56 days, allowing for the formation of cartilaginous tissue. In a 

recent study, gelatin additives were used to process a wide variety of modified biopolymer 

bioinks, where the gelatin could be subsequently removed through heating after the printing 

was complete.385 This approach was used to bioprint soft hydrogels that were favorable for 

cell culture, but that would have been challenging to print otherwise. In another approach, 

Heo et al. developed a carbohydrazide-modified gelatin (Gel-CDH) bioink that was extruded 

into an oxidized alginate (OAlg) bath.386 Upon deposition of the bioink, hydrazide bonds 

formed in situ to stabilize the construct, allowing for good mechanical integrity of the 

scaffold as well as high cell viability when a cell-laden Gel-CDH bioink was used.
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Beyond extrusion-based printing, lithography-based bioprinting has emerged as a promising 

biofabrication technique for printing constructs with non-viscous bioinks.387 Lithography-

based bioprinting allows for the fabrication of constructs with high accuracy and precise 

spatial patterning.387 Dynamic light processing (DLP) is a technique that uses a digital light 

projector to selectively photocrosslink a bioresin on a computerized stage.377 The stage 

moves stepwise in the z direction to allow for layer-by-layer fabrication of constructs with 

significantly higher spatial resolution that extrusion-based techniques.

Biopolymers with photocrosslinkable groups have been explored as non-viscous bioinks for 

DLP-based biofabrication of tissue constructs. Zhu et al. engineered a bioink consisting of 

GelMA and GMA-HA with embedded human umbilical vein endothelial cells (HUVECs) 

and MSCs.388 DLP biofabrication was used to create prevascularized constructs by 

patterning complex microarchitectures into the HA/gelatin scaffold. Scaffolds exhibited 

high cell viability over 1 week in vitro. Constructs were subcutaneously implanted in vivo 
in a mouse model, and significantly improved vascular density was observed 2 weeks 

post-implantation when compared to a non-prevascularized control. In another example, 

Bertlein et al. developed a thiol-ene clickable Gel-AGE scaffold.187 The Gel-AGE bioink 

was used to bioprint constructs with high print fidelity using both extrusion-based and DLP 

bioprinting.

Kim et al. engineered a methacrylated silk fibroin bioink for scaffold formation using DLP 

biofabrication (Figure 17a).389 By tuning bioink composition, bioprinted scaffolds with a 

compressive modulus greater that 120 kPa were achieved. The use of DLP biofabrication 

allowed for the printing of precise, complex structures, including brain, ear, trachea, lung, 

and heart-shaped scaffolds. It was shown that fibroblasts could be encapsulated in the 

silk-based bioink and maintained with high viability throughout cultures up to 14 days. In 

another approach, Placone et al. engineered a photocrosslinkable keratin hydrogel scaffold 

using DLP biofabrication, which showed good print resolution and high biocompatibility.390

Stereolithography (SLA) is another lithographic printing approach that uses a focused 

laser light to crosslink specific areas in a resin vat in order to build a 3D structure.377 

Smith et al. used methacrylated BSA (MA-BSA) to form an albumin-based scaffold via 

SLA biofabrication that demonstrated high fibroblast cell viability.391 Further, the albumin 

constructs were subject to thermal incubation in order to disrupt native albumin structure 

and introduce physical crosslinks between denatured albumin chains in addition to chemical 

crosslinks between methacrylate groups.

7.1.2. Granular hydrogel scaffolds—Granular hydrogels consist of hydrogel 

microparticles that are agglomerated into a jammed state.392 Hydrogel microparticles 

may be fabricated by various methods, including microfluidic devices, batch emulsions, 

lithography, and mechanical fragmentation.392 Granular hydrogels are injectable, 

microporous, and modular, making them a promising tool for engineering tissue 

scaffolds.392 Furthermore, interparticle crosslinks can be introduced between hydrogel 

microparticles to further stabilize granular hydrogel scaffolds.392 Granular hydrogel 

scaffolds fabricated from PEG have been explored for multiple applications, including 

wound closure.393,394 Recently, hydrogel microparticles fabricated from chemically-
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modified biopolymers have shown promise for the fabrication of granular hydrogel 

scaffolds.

HA microparticles have been widely explored for the fabrication of granular hydrogels. 

For example, acrylated HA microparticles have been formed by Michael addition in 

the presence of MMP-degradable dithiol crosslinkers using a microfluidic device.200,395 

The HA microparticles could be annealed by enzymatic crosslinking, free radical chain 

polymerization, or amidation reactions between microparticles.395 The resulting granular 

hydrogel is termed a microporous annealed particle (MAP) scaffold: a granular hydrogel 

consisting of hydrogel microparticles annealed by interparticle crosslinking.393 HA MAP 

scaffolds annealed by enzymatic interparticle crosslinking have been shown to decrease 

scar formation and inflammation when injected into an in vivo mouse stroke model.200 

MAP scaffolds have also been fabricated by NorHA microparticles with tetra-PEG-

tetrazine, resulting in tetrazine-norbornene crosslinks between microparticles.396,397 The 

microparticles were fabricated in a water-in-oil batch emulsion and subsequently filtered 

to obtain a narrow size distribution. These tetrazine-norbornene annealed granular hydrogel 

scaffolds have been used to study polyplex-mediated gene delivery in vitro and have shown 

promise in stroke recovery applications.396,397

To fabricate injectable HA granular hydrogels, NorHA modified with Ad (AdNorHA) has 

been used to fabricate microparticles in a microfluidic device.398 AdNorHA microparticles 

were subsequently jammed by vacuum filtration in the presence of CDHA to create a 

shear-thinning, self-healing granular hydrogel with guest-host interparticle crosslinks.398 

The hydrogel was used to study the disease-dependent behavior of hydrogel degradation in 

the myocardial infarction microenvironment using an in vivo rat model.398 Furthermore, it 

has been shown that granular hydrogels formed from jamming NorHA microparticles can be 

used as bioinks for bioprinting of microporous tissue structures.172

Many other biopolymers have been explored for granular hydrogel formation. Injectable 

granular hydrogels fabricated from cell-laden, norbornene-modified gelatin microparticles 

have been explored for hyaline cartilage tissue engineering.399 It was shown that the 

incorporation of 4-arm PEG-NHS between microparticles led to interparticle crosslinking 

for scaffold stabilization due to the formation of amide bonds.399 GelMA microparticles 

have been fabricated in a microfluidic device and subsequently annealed following 

additional UV light-mediated free radical crosslinking between microparticles.400 Within 

the granular hydrogels, stiffness and porosity could be tuned independently.400 It was 

shown that HUVEC cell migration into the GelMA granular hydrogel in vitro was 

significantly higher than for bulk GelMA controls.400 Furthermore, granular hydrogels have 

been fabricated by mixed microparticles formed from GelMA and methacrylated chitosan 

(ChitoMA), where ionic interactions between negatively-charged GelMA microparticles 

and positively-charged chitosan microparticles increased scaffold stability and mechanical 

properties (Figure 17b).401 The GelMA-ChitoMA granular hydrogels were used to support 

Schwann cell migration and axon growth in an in vivo sciatic nerve defect rat model.401

In another strategy, bulk hydrogels made from crosslinked cellulose nanofibrils (CNFs) were 

extruded through a microscale mesh to create granular gels with microscale porosity.402 
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The granular CNF gel exhibited increased fibroblast migration throughout the scaffold when 

compared to the control bulk hydrogel.402 In a recent study, granular hydrogels were formed 

by extruding bulk hydrogels through a mesh to create hydrogel microstrands, which were 

combined with cells for use as a cell-laden bioink.403 The microstrand fabrication process 

was explored using multiple biopolymers, including HA, gelatin, and carrageenan, a linear 

sulfated polysaccharide extracted from red seaweed.

7.1.3. Electrospun hydrogel scaffolds—Electrospinning is a method to fabricate 

fibrous materials by ejecting charged polymer solutions through a spinneret under a high-

voltage electric field. The polymer solution solidifies through solvent evaporation, resulting 

in a stable nanofiber filament. Towards biomedical applications, electrospun biopolymers 

are of interest due to their ability to mimic the native fibrillar properties of the ECM.404 

Hydrogels can be formed by crosslinking electrospun biopolymer fibers to form cellular 

scaffolds and drug delivery vehicles.404,405 There are many examples of hydrogels formed 

by crosslinking electrospun fibers made from non-modified biopolymers. For example, 

alginate fibers can be ionically crosslinked by immersion in Ca2+ solutions,406 fibrin fibers 

can be enzymatically crosslinked in the presence of thrombin,406 and silk fibroin fibers can 

be crosslinked by β-sheet formation.407

Towards the fabrication of chemically-modified biopolymer scaffolds made from 

electrospun fibers, GelMA and MeHA have been widely used to form fibrous scaffolds 

via free radical chain polymerization for crosslinking within and between fibers.152,408–412 

For example, Sun et al. fabricated electrospun GelMA fibers that were subsequently 

photocrosslinked to form a fibrous hydrogel scaffold.410 The scaffold was evaluated in vivo, 

demonstrating increased microvasculature formation when compared to controls. In another 

example, Chen et al. fabricated an electrospun GelMA fibrous hydrogel scaffold for spinal 

cord repair and regeneration.411 Song et al. fabricated electrospun MeHA hydrogel scaffolds 

to investigate the influence of fibrous matrix stiffness on meniscal cell migration.412 Fibers 

were electrospun from MeHA with different degrees of modification to make soft (30% 

modification) and stiff (97% modification) MeHA fibrous hydrogel networks.412 The stiffer 

MeHA scaffolds supported enhanced cell invasion and collagen deposition when compared 

to the softer MeHA scaffolds. In another approach, Zhou et al. fabricated an electrospun 

scaffold from methacrylated chitosan that could be post-crosslinked using UV light to form 

a stable construct for potential use as a skin repair matrix.413

Other crosslinking chemistries have been explored to create biopolymer hydrogels from 

electrospun fibers. Zhang et al. fabricated electrospun fibers from solutions of alginate 

and thiolated-HA.406 The fibers were subsequently dually crosslinked by immersing in a 

solution of CaCl2 (ionic crosslinking) and PEGDA (for Michael addition crosslinking). 

Furthermore, NorHA has been electrospun and crosslinked with thiol-ene radical addition to 

form hydrogels.414 Davidson et al. developed a multifiber hydrogel network consisting of 

electrospun NorHA that was further modified with either hydrazide groups (NorHA-Hyd) 

or aldehyde groups (NorHA-Ald) (Figure 17c).415 NorHA-Hyd and NorHA-Ald were co-

electrospun to create a multifiber network. Post-electrospinning, norbornene groups were 

crosslinked within and between fibers through thiol-ene radical addition in order to stabilize 

the fibrous scaffolds. Dynamic covalent interactions due to hydrazone crosslink formation 
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between fibers resulted in increased scaffold stiffness and plastic deformation, permitting 

scaffold self-adhesion and the formation of layered and tubular constructs.

7.2. Therapeutic delivery

Injectable hydrogels have been widely used for localized and sustained delivery of 

therapeutics, including small molecules, nucleic acids, and proteins.416,417 To achieve 

sustained delivery by limiting passive diffusion, therapeutic molecules are often either 

physically bound to a hydrogel or encapsulated in nano- or microparticles within a hydrogel. 

However, larger therapeutic molecules, such as proteins, may be directly encapsulated within 

hydrogels for localized and sustained delivery.

CD guest-host complexation has been explored for sustained release of hydrophobic 

molecules.418 In addition, therapeutics such as nucleic acids can be modified with 

hydrophobic groups such as cholesterol to undergo guest-host complexation with CD.419 

The reversible physical association between CD and hydrophobic therapeutic molecules 

allows for sustained release over days to weeks. Injectable HA hydrogels with β-CD 

moieties have been engineered for sustained release of cholesterol-modified RNAs.420,421 

For example, shear-thinning, self-healing guest-host HA hydrogels were formed by 

mixing CDHA and AdHA, and cholesterol-modified miRNA formed guest-host inclusion 

complexes with unoccupied CD hosts.420 The injectable hydrogel sustained the delivery of 

miRNA to promote cardiomyocyte proliferation in an in vivo mouse myocardial infarction 

(MI) model. In another approach, dynamic covalent HA hydrogels were formed by mixing 

hydrazide-modified HA (HA-ADH) with aldehyde-modified HA (HA-ALD).421 The HA-

ALD polymers also contained a CD (CD-ALD-HA) moiety for guest-host complexation 

with cholesterol-modified siRNA for sustained release. The hydrogel was used to deliver 

siRNA against MMP2 in order to prevent pathological remodeling in a rat MI model. 

Towards sustained release of small molecule drugs, Thi et al. engineered a tyramine-

modified gelatin hydrogel that underwent enzymatic crosslinking in the presence of HRP/

H2O2.422 Oxidized β-CD molecules were encapsulated within the hydrogel, as well as 

model hydrophobic drugs including dexamethasone and curcumin. The hydrophobic model 

drugs formed inclusion complexes with the oxidized β-CD, and the aldehyde groups on 

the oxidized β-CD formed dynamic imine crosslinks with free amino groups on gelatin. 

Furthermore, incorporation of aldehyde groups from oxidized β-CD resulted in significantly 

increased tissue adhesion.

In another approach to achieve sustained delivery, therapeutics may be entrapped within a 

nanoparticle, which is then encapsulated in a biopolymer hydrogel. Segovia et al. developed 

a dextran-based hydrogel for nanoparticle-mediated delivery of siRNA as an anticancer 

therapeutic.423 The siRNA formed nanoparticles by aggregation with poly(amidoamine) 

(PAMAM) dendrimers. The nanoparticles were mixed with oxidized dextran to form a 

dynamic covalent hydrogel with imine linkages between aldehyde groups on dextran 

and amine groups on the PAMAM nanoparticles. The hydrogel was used to deliver 

anti-luciferase siRNA in an in vivo xenograft mouse model of human breast cancer that 

contained luciferase-expressing tumor cells. Sustained release of anti-luciferase siRNA 

resulted in 70% luciferase silencing after 6 days, reaching improved transfection efficiencies 
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when compared to commercially available siRNA-delivery agents. In a later study, the 

injectable aldehyde-dextran hydrogel was used to complex miRNA-PAMAM nanoparticles 

for sustained release of miRNA, leading to nearly 90% tumor shrinkage 2 weeks post-

implant in a triple negative murine breast cancer model.424

To facilitate sustained delivery, therapeutic molecules may be encapsulated in a hydrogel 

microparticle. Chen et al. demonstrated that interleukin 10 (IL-10) could be encapsulated 

in NorHA microgels formed in a microfluidic device by photo-mediated thiol-ene radical 

addition.425 The NorHA microgels were incorporated into a CDHA-AdHA guest-host 

hydrogel to form a composite injectable delivery vehicle for sustained release of IL-10 

in an in vivo rat MI model. Reduced macrophage density, as well as improved scar thickness 

and ejection fraction, were observed 4 weeks post-injection.

As an example of encapsulating and releasing molecules directly from hydrogels, Schirmer 

et al. engineered a heparin-based hydrogel for sustained delivery of interleukin 4 (IL-4) 

to facilitate improved wound healing.426 The hydrogel was formed via Michael addition 

by mixing maleimide-modified heparin with thiol-modified 4-arm star PEG. Heparin 

was selected due to the physical complexation that occurs between heparin and IL-4. 

Heparin acts as a stabilizer to protect IL-4 against thermal and proteolytic degradation, 

resulting in more sustained delivery of the therapeutic. In an in vitro study, primary 

murine macrophages adopted the pro-wound healing M2 phenotype upon exposure to the 

heparin hydrogels containing IL-4. In another example of hydrogel-based protein delivery, 

Turabee et al. developed a novel polypeptide triblock copolymer that undergoes thermal- 

and pH-responsive gelation.427 The polypeptide triblock copolymer contained a PEG block, 

a temperature-sensitive poly(γ-benzyl-L-glutamate) polypeptide block, and a pH-responsive 

oligo(sulfamethazine) block. The triblock copolymer formed a viscoelastic hydrogel upon 

subcutaneous injection into a rat model. Sustained release of lysozyme, a model protein, was 

demonstrated over a 1-week period in vivo.

7.3. Tissue adhesives and sealants

Hydrogel-based tissue adhesives and sealants have been researched for decades as 

alternatives to staples and sutures in order to promote improved wound closure and incision 

sealing.428 These hydrogels must be able to adhere to wet surfaces, withstand dynamic 

forces, and exhibit biocompatibility.428,429 Ideally, adhesives and sealants should be 

engineered to meet the needs of specific tissue and wound types.429 Many tissue adhesives 

fabricated from biopolymers have had clinical success, such as Tisseel (fibrin), Evicel 

(fibrin), PreveLeak (BSA), BioGlue (BSA), and LifeSeal (gelatin).429 Recent advances in 

hydrogels fabricated from chemically-modified biopolymers have furthered research into 

new tissue adhesives and sealants.

Adhesives and sealants fabricated from gelatin hydrogels show promise in research and 

clinical settings. It has been shown that photocrosslinked GelMA hydrogels can be used 

as tissue adhesives and sealants that exhibit a low inflammatory response, degrade quickly, 

and allow for rapid wound healing in vivo.430 In an in vivo rat lung incision model, 

GelMA sealant was able to recover healthy lung burst pressures 7 days after application.430 

Tayafoghi et al. showed that combining GelMA with methacrylated alginate resulted 
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in an injectable, photo-crosslinkable tissue adhesive hydrogel.431 The incorporation of 

an ionically crosslinked alginate network resulted in a 600% improvement in hydrogel 

toughness when compared to GelMA alone.431 Wei et al. engineered a mussel-inspired 

gelatin adhesive hydrogel, where gelatin was modified with isothiocyanate-functionalized 

dopamine by thiocarbamate bond formation.432 The resulting gelatin hydrogel contained 

both catechol and thiourea functional groups, where the thiourea groups crosslinked catechol 

moieties and also reduced oxidized quinone groups on catechol.432 The mussel-inspired 

gelatin hydrogel achieved the same adhesion strength as commercially available Tisseel 

adhesives in a T-peel porcine pericardium tissue assay.432

Chemically-modified HA has also been researched for applications in tissue adhesives 

and sealants. Kim et al. engineered an injectable and sprayable HA-Tyr hydrogel tissue 

adhesive.433 The hydrogel was biocompatible in an in vivo mouse subcutaneous model, 

and strong adhesion strengths were observed in an ex vivo mouse skin adhesion assay.433 

In another approach, Bermejo-Velasco et al. modified HA with either enolizable or 

non-enolizable aldehyde groups to form a tissue adhesive hydrogel.434 Combining the 

two biopolymers resulted in rapid gelation due to the formation of aldol crosslinks.434 

Residual aldehydes remaining after crosslinking resulted in tissue adhesive properties, as 

demonstrated by successful bonding of bone tissues ex vivo.434

Other biopolymers are being explored for fabrication of tissue adhesives and sealants. Hong 

et al. recently demonstrated that alginate could be modified with boronic acid derivatives 

to undergo pH-responsive curing and adhesion.435 The hydrogel showed strong adhesive 

strength to mouse intestinal tissue in an ex vivo study.435 Azuma et al. demonstrated that 

methacrylated chitin combined with chitin nanofibers could achieve faster tissue adhesion 

than some commercially available tissue adhesives in vivo.436 Annabi et al. engineered a 

methacrylated tropoelastin tissue adhesive from human recombinant tropoelastin.437 The 

hydrogel successfully sealed rat arteries and lungs in an in vivo model.437 Rat lungs 

sealed by the hydrogel exhibited higher burst pressure over lungs sealed with Evicel and 

Cosseal.437 In another approach, Wang et al. fabricated an adhesive, photocrosslinkable 

hydrogel by modifying chitosan with both methacryloyl and catechol groups.438 The 

hydrogel was explored for use as an antibacterial wound dressing.

7.4. Interpenetrating network biopolymer hydrogels

Most of the hydrogels discussed above consisted of single networks of biopolymers that 

are crosslinked together. Although different biopolymers may have been combined (e.g., 

CDHA and AdHA to form a guest-host network), the resulting hydrogel was formed from 

a single network. To build additional complexity into biopolymer hydrogel design, the 

development of interpenetrating polymer networks (IPNs) allows for further modulation of 

hydrogel behavior by combining properties of more than one network (Figure 18a). Utilizing 

IPNs increases the range of possible chemical, mechanical, and biological behaviors within 

a single hydrogel material. IPN hydrogels involve the combination of multiple independent 

polymer networks to form hydrogels, where the individual networks are inter-mixed, but not 

linked together. IPN hydrogels from biopolymers are reviewed in detail elsewhere.439
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Biopolymers and synthetic polymers may be combined in an IPN hydrogel to take advantage 

of favorable properties from both networks. For example, Gan et al. engineered an IPN 

for nucleus pulposus replacement with both natural and synthetic polymer components.440 

The primary network consisted of oxidized dextran mixed with amine-modified gelatin 

crosslinked by imine bond formation, which allowed for hydrogel bioactivity. The 

secondary network consisted of photocrosslinkable acrylated PEG, which allowed for 

increased mechanical stability. In another approach, Zhao et al. combined a synthetic 

catechol-modified polymer network that crosslinked by metal-ligand coordination with UPy-

modified gelatin, which crosslinked by quadruple hydrogen bonding, to create an adhesive 

wound dressing with fast shape adaptability and self-healing properties.441 The catechol-

modified synthetic polymer network allowed for strong adhesion, and the UPy-modified 

gelatin allowed for integration of biological signals and rapid self-healing behavior. As 

a last example, Abandansari et al. fabricated an IPN consisting of bis-maleimide-PEG, 

furan-modified gelatin (Gel-Furan), and Chitosan-g-Pluronic (CP) (Figure 18b).442 The 

physically-crosslinked CP network allowed for immediate stabilization of the injected 

hydrogel as well as thermo-responsive behavior, while the Mal-PEG-Mal and Gel-Furan 

network allowed for long-term covalent stabilization due to Diels-Alder crosslinking after 

multiple hours. The hydrogel showed promise for use as a thermosensitive, injectable cell 

delivery vehicle.

IPNs can also be designed such that both networks are formed from biopolymers. For 

example, Suo et al. combined photocrosslinkable GelMA and physically crosslinked 

chitosan into a single network.443 In another strategy, Chen et al. combined a modified 

collagen network crosslinked by azide-alkyne cycloaddition with a modified HA network 

crosslinked by Michael addition for use as an injectable, in situ-forming corneal defect 

filler.444

IPNs have been useful for the formation of complex stimuli-responsive hydrogels. In 

this approach, one network provides the responsiveness to stimuli, whereas the other 

network maintains hydrogel stability or controls hydrogel properties. For example, heparin 

was incorporated into IPN hydrogels with PNIPAAm to allow the formation of thermo-

responsive hydrogels for the controlled release of growth factors.445 As another example, 

protease-sensitive crosslinks can be introduced into one network of an IPN hydrogel to allow 

for enzyme-responsive behavior.446,447

One specific class of IPN hydrogels are double network (DN) hydrogels, which consist 

of two networks that have asymmetric and contrasting properties and where the molar 

concentration of the secondary network is often >20 times that of the primary network. The 

first network is sacrificial and brittle, while the second network is ductile, allowing for the 

formation of hydrogels with high strength and toughness. This is due to the protection of the 

secondary network from fracture by the first network via energy dissipation. Although not 

with biopolymers, the first reports of DN hydrogels were from Gong and colleagues.448

A wide range of biopolymers have been processed into DN hydrogels, using the chemical 

modifications described above. For example, HA has been modified with either catechol 

or methacrylate groups and processed into DN hydrogels, through mussel-inspired and 
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reversible Fe3+-catechol interactions and free-radical chain polymerization, respectively.449 

In another strategy, Xiao et al. combined silk fibroin and methacrylated HA to fabricate 

a DN hydrogel for cell encapsulation.450 In another example, chitosan networks were 

combined with GelMA networks to form DN hydrogels that were explored for cartilage 

repair.443 There is significant potential to increase the diversity of properties in biopolymer 

hydrogels through the formation of IPNs.

8. Concluding remarks and future outlook

Our intent with this review was to motivate the use of biopolymers, their chemical 

modifications, and their crosslinking to form hydrogels for various biomedical applications. 

Numerous conjugation techniques have been utilized to introduce a range of chemical 

modifications onto biopolymers, where the type of modification, extent of modification, 

and concentration of components drive the resulting hydrogel properties. For example, we 

classify the types of crosslinking as covalent, dynamic covalent, and physical, with generally 

reduced mechanics and stability across these classifications.

Biopolymer hydrogels have been implemented in diverse biomedical applications, and we 

provide examples throughout on their use as cell culture substrates, scaffolds for tissue 

engineering, drug delivery vehicles, and tissue adhesives, where the selection of biopolymer 

and chemical modification drives the hydrogel utility. Evolution in biopolymer hydrogel 

complexity and control will advance their usefulness in these applications, as well as expand 

their utility into other applications. As one example, IPN biopolymer hydrogels are allowing 

for the combination of features of independent hydrogel networks. Further, the engineering 

of new polypeptides may introduce new properties that are not attainable with sourced 

biopolymers.

Despite these advances, we must pay attention to the balance between complexity 

and simplicity in biopolymer hydrogel design, particularly with regards to translational 

use. Bearing this in mind, there are a number of factors that should be considered 

when designing a chemically-modified biopolymer hydrogel for biomedical applications, 

particularly with translation in mind. For example, when selecting a biopolymer for 

biomedical hydrogel formation, one may consider whether cell adhesion sites are required 

for successful hydrogel function. If so, biopolymers such as HA, gelatin, and keratin that 

contain native cell adhesion sequences may be favorable. While cell adhesion peptides such 

as RGD may be easily conjugated to other biopolymers in a laboratory setting, such a step 

would require more elaborate processing on a larger scale, potentially hindering translation.

Batch variability is another important factor to consider when selecting a biopolymer for 

hydrogel formation. When extracting biopolymers from any natural source, either plant 

or animal, there is concern for batch-to-batch variability between sources. Biopolymers 

that can be mass-produced from microbial manufacturing, such as dextran, HA, and 

cellulose, may mitigate concerns over batch variability. In addition, one may consider 

the environmental sustainability of the biopolymer source. Biopolymers such as cellulose, 

chitin, keratin, and alginate are naturally abundant, providing plentiful green resources for 

hydrogel raw materials. In contrast, biopolymers isolated from animal sources are viewed 
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as less sustainable. For example, commercial gelatin is mostly isolated from porcine and 

bovine sources and relies heavily on production in the meat industry. There is growing 

concern over the unsustainable nature of meat production.451 Thus, there is a need to 

develop alternate sustainable methods for manufacturing biopolymers that are traditionally 

obtained from animal sources.452,453

Another aspect to consider is the water solubility of the biopolymer. For example, some 

biopolymers such as cellulose, chitin, silk fibroin, and keratin are hydrophobic in their native 

states. Thus, extensive processing is required to create water-soluble biopolymer derivatives 

that can be processed into a hydrogel. While some of these processes have been successfully 

implemented on a large scale, there is growing concern over the environmental impact 

of these processes, motivating the need for the eco-friendly synthesis of water-soluble 

derivatives of such biopolymers.454,455

When selecting a chemical modification, it is important to consider the simplicity 

of the chemical modification process. For example, many reactions to functionalize 

hydrophilic biopolymers with methacrylates can be completed in a one-step aqueous 

reaction by addition of water-soluble molecules such as methacrylic anhydride or glycidyl 

methacrylate.145,456 In contrast, the functionalization of hydrophilic biopolymers with 

hydrophobic groups, such as norbornenes or β-CD, currently require additional processing 

steps, which may hinder production scale-up.322,457

As another consideration, the crosslinking mechanism used must be evaluated for feasibility 

in the application of interest. For instance, covalent crosslinking techniques that require 

a radical photoinitiator may work well for the fabrication of implantable, pre-formed 

scaffolds. However, injectable hydrogels requiring the application of light within the body 

for hydrogel formation may raise concerns over cytotoxicity, considering the generation of 

free radicals and potential damage to native cells. As such, hydrogels formed by mixing 

two components (e.g., guest-host interactions, hydrazone formation) may be more favorable 

for applications requiring injection. In another approach, advanced delivery systems can be 

developed for in situ application of light in order to photocrosslink hydrogels.458 However, 

translation of such an approach requires production scale-up of both the hydrogel and 

delivery device.

Storage and sterilization are important to consider in the design of biopolymer hydrogels 

for clinical translation. For example, temperature-sensitive biopolymers and crosslinking 

chemistries may require additional storage procedures. Further, the application of FDA-

approved sterilization treatments, such as autoclaving and γ-irradiation, can have adverse 

effects on the biological and mechanical behavior of chemically modified hydrogel 

properties,459 and thus, must be considered and characterized.

Most biopolymer-based hydrogels that have been implemented in clinical applications 

involve either unmodified biopolymers or very simple modifications and at low levels.460 

Chemical modifications introduce added scrutiny during translation. For successful clinical 

translation, it is important to consider that every component of a hydrogel system must 

be able to meet current good manufacturing practices (cGMP), including biopolymers, 
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crosslinkers, initiators, and encapsulated therapeutics.460 Thus, when engineering a hydrogel 

for clinical translation, it is vital for a researcher to consider how each added complexity 

in a chemically-modified biopolymer hydrogel system is essential for successful hydrogel 

function.

With these considerations in mind, there is still great potential for the field of biomedical 

hydrogels to grow and succeed. In the past few decades, there have been nearly 30 

injectable hydrogels that were FDA- and/or EMA-approved for clinical use.460 Of those 

injectable hydrogel products, 11 contain HA, 7 contain collagen, 4 contain CMC, and 1 

contains alginate.460 Further, there are hundreds of hydrogels in clinical trial for biomedical 

applications ranging from injectable therapeutic delivery, wound dressings, regenerative 

medicine, and tissue sealants, many of which are formed from biopolymers.460 Ultimately, 

the next decades are likely to see increased translation of new biopolymer hydrogels to 

clinical use.
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Glossary

Biopolymers
natural polymers that are sourced from animals and plants, including a wide range of 

polysaccharides (e.g., sugars) and polypeptides (e.g., proteins).

Click chemistry
a set of biocompatible chemical reactions that result in the rapid formation of covalent 

bonds.

Covalent crosslinking
the process of chemically linking polymer chains together via covalent bonds, primarily to 

form a polymer network.

Dynamic covalent crosslinking
a subset of crosslinking reactions that allow for the formation of reversible covalent 

crosslinks between biopolymers.

Free radical chain polymerization
a reaction in which either a polymer or crosslinks between polymers are formed via the 

propagation of radical species in the form of a growing kinetic chain.

Guest-host assembly
the formation of physical inclusion complexes between a “host” macrocycle with a 

hydrophobic interior and one or more hydrophobic “guest” moieties

Interpenetrating network (IPN)
the combination of multiple independent polymer networks, where the individual networks 

are inter-mixed, but not linked together.

Metal-ligand coordination
the formation of complexes consisting of a central metallic atom surrounded by bounded 

molecules (e.g., ligands).

Michael addition
an addition reaction that can occur readily between thiols (e.g., Michael donors) and 

electron-deficient enes (e.g., Michael acceptors) without the need for radical initiators.

Photocrosslinking
the use of light to facilitate a crosslinking reaction between polymers, primarily to form a 

polymer network.
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Photoinitiator
a molecule that cleave in response to certain wavelengths of light, resulting in the generation 

of free radicals.

Physical crosslinking
the process of forming a polymer network by physical (e.g., non-chemical) interactions 

between polymer chains.

Abbreviations

Ad adamantane

APS ammonium persulfate

BSA bovine serum albumin

CB[n] cucurbit[n]uril

CD cyclodextrin

CMC Carboxymethyl cellulose

CS chondroitin sulfate

DMAP 4-dimethylaminopyridine

DN double network

DTT dithiothreitol

ECM extracellular matrix

EDC 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide

ELP elastin-like peptide

GAG glycosaminoglycan

GelMA methacrylated gelatin

GMA glycidyl methacrylate

HA hyaluronic acid

HA-CA catechol-modified hyaluronic acid

HA-Tyr tyramine-modified hyaluronic acid

HOBt hydroxybenzotriazole

HRP horse radish peroxidase

I2959 Irgacure, 2-hydroxy-4′-(2-hydroxyethoxy)-2-methylpropiophenone

IPN interpenetrating network
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LAP lithium phenyl-2,4,6-trimethylbenzoylphosphinate

MeHA methacrylated hyaluronic acid

MSCs mesenchymal stromal cells

NHS N-hydroxysuccinimide

NorHA norbornene-modified hyaluronic acid

PEG poly(ethylene glycol)

PEGDA diacrylated poly(ethylene glycol)

PG proteoglycan

PNIPAAm poly(N-isopropylacrylamide)

TEMED tetramethylethylenediamine

UPy ureidopyrimidone

UV ultraviolet

β-CD β-cyclodextrin
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Figure 1. General hydrogel properties as a function of crosslink type.
Schematic illustrating representative images of hydrogels formed from different crosslinking 

mechanisms (i.e., covalent [blue], dynamic covalent [pink], physical [yellow]).
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Figure 2. Common chemical reactions for modification of biopolymers.
Schematic representation of chemically modifying biopolymers using common mechanisms. 

From top to bottom: esterification, amidation, etherification, and carbamate formation. The 

green circle denotes various chemical groups introduced onto biopolymers for potential use 

in hydrogel formation.
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Figure 3. Crosslinking via free radical chain polymerization.
a) Schematic representation of the general crosslinking of modified biopolymers in the 

presence of an initiator to induce the formation of kinetic chains through the propagation of 

radical species (top), as well as common reactive groups used for biopolymer modification 

and hydrogel formation (bottom). b) Hyaluronic acid (HA) modified with maleimide groups 

to react with thiolated fluorophores and thiolated protease-degradable peptides capped with 

methacrylate groups for free radical chain polymerization. Peptide sequences are designed 

to be either protease degradable (blue) or non-degradable (yellow). Adapted with permission 

from Wade, et al.167 Copyright, 2015 Springer Nature.
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Figure 4. Crosslinking via a thiol-ene radical addition.
a) Schematic representation of norbornene-modified biopolymers (black) crosslinked with 

a dithiol crosslinker (pink) in the presence of a radical initiator. b) Thiol-norbornene 

crosslinked CMC hydrogels for bioprinting, showing (top) schematic representation of 

amidation reaction to synthesize norbornene-modified CMC (NorCMC), (middle) schematic 

representation of photocrosslinking reaction, and (bottom) bioprinted NorCMC scaffolds 

(clear) filled with Pluronic (red). Scale bars represent 5mm. Adapted with permission from 

Ji, et al.182 Copyright, 2020 Elsevier.
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Figure 5. Crosslinking via thiol-ene Michael addition.
a) Schematic representation of methacrylate-modified biopolymers (black) crosslinked with 

a dithiol crosslinker (blue) under Michael addition conditions. b) Schematic representation 

of a biopolymer modified with multiple ene groups that can undergo thiol-ene Michael 

addition. From left to right, in decreasing order of Michael addition reactivity: maleimide, 

vinyl sulfone, acrylate, and methacrylate. c) Thiolated heparin is crosslinked with 

diacrylated PEG (PEGDA) via a thiol-ene Michael addition reaction, which was used for 

the culture of primary rat hepatocytes and hepatocyte growth factor (HGF). Adapted with 

permission from Kim, et al.205 Copyright, 2010 Elsevier.
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Figure 6. Crosslinking via azide-alkyne cycloaddition.
a) Schematic representation of copper-catalyzed azide-alkyne cycloaddition crosslinking of 

biopolymers. Biopolymers are modified with either azide or alkyne functional groups and 

upon combination in the presence of a copper catalyst, crosslinks form by azide-alkyne 

cycloaddition. b) Schematic representation of strain-catalyzed azide-alkyne cycloaddition 

crosslinking of biopolymers. Biopolymers are modified with either azide or strained 

alkyne (i.e., cyclooctyne) groups and upon combination, crosslinks form by azide-alkyne 

cycloaddition. c) Elastin-like polypeptides (ELPs) functionalized with either azide or 

bicyclononyne (BCN) groups for bio-orthogonal crosslinking due to the strain-promoted 

[3+2] azide-alkyne cycloaddition (SPAAC) reaction. Adapted with permission from Madl, et 

al.109 Copyright, 2017 American Chemical Society.
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Figure 7. Crosslinking via tetrazine-norbornene reactions.
a) Schematic representation of biopolymers modified with either norbornene or tetrazine 

groups. Upon combination, crosslinks form by a tetrazine-norbornene reaction. b) Gelatin 

modified with either norbornene (GelN) or tetrazine (GelT) are mixed to form a tetrazine-

norbornene click biopolymer network, which was cell-adhesive and degradable for use in 

cell encapsulation. Adapted with permission from Koshy, et al.223 Copyright 2016, Wiley.
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Figure 8. Crosslinking via tyramine enzymatic reactions.
a) Schematic representation of biopolymers modified with tyramine that crosslink in 

the presence of HRP and H2O2 to form dityramine adducts. b) HA is modified with 

tyramine and subsequently exposed to horse radish peroxidase (HRP) and H2O2 to undergo 

enzymatic crosslinking by oxidation of tyramine groups, forming covalent dityramine 

adducts. Interferon-α (IFN-α) is encapsulated in the hydrogel for use as a prolonged-release 

delivery vehicle for renal carcinoma treatment. Adapted with permission from Ueda, et 

al.231 Copyright, 2016 Elsevier.
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Figure 9. Crosslinking via catechol reactions.
a) Schematic representation of biopolymers modified with catechol and crosslinking in the 

presence of NaIO4 to form dicatechol adducts. b) A mussel-inspired, HA hydrogel is formed 

by modifying HA with catechol moieties (HA-CA). HA-CA is covalently crosslinked in the 

presence of sodium periodate (NaIO4). Image shows HA-CA hydrogel before (clear) and 

after (red) gelation. Adapted with permission from Shin, et al.251 Copyright, 2015 Wiley.
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Figure 10. Crosslinking via Schiff base formation.
a) Schematic representation of imine dynamic covalent crosslinking by combining 

biopolymers modified with either primary amine or aldehyde groups. b) Schematic 

representation of hydrazone dynamic covalent crosslinking by combining biopolymers 

modified with either hydrazide or aldehyde groups. c) N-carboxyethyl chitosan (CEC) is 

combined with dialdehyde PEG (PEGDA, blue), where imine dynamic covalent crosslinks 

are formed between the amine groups on CEC and the aldehyde groups on PEGDA. Images 

show the self-healing (a-d) and shear-thinning (e-h) properties of the hydrogel. Adapted 

from Qu, et al.258 Copyright, 2017 Elsevier.
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Figure 11. Crosslinking via disulfide bond formation.
a) Schematic representation of thiolated biopolymers forming dynamic covalent crosslinks 

by disulfide bond formation (blue) under oxidative conditions. Upon the addition of a 

mono-thiolated component, disulfide exchange can result in disassembly of the hydrogel. 

b) Various thiolated HA biopolymers are synthesized for disulfide dynamic covalent 

crosslinking, including: HA-thiol (HA-SH, green), HA-acetyl cysteine (HA-ActCys, red), 

and HA-cysteine (HA-Cys, blue). Among the thiol groups, HA-Cys has the strongest 

electron-withdrawing group in the β-position, resulting in the most disulfide bond formation 

under neutral conditions. Adapted with permission from Bermejo-Velasco, et al.280 

Copyright, 2019 American Chemical Society.
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Figure 12. Crosslinking via reversible Diels-Alder reactions.
a) Schematic representation of dynamic covalent crosslinks formed by combining 

biopolymers modified with either furan or maleimide groups. b) Hydroxypropyl chitin 

(HPC, black) modified with furan groups and combined with PEG-bismaleimide crosslinks 

for hydrogel formation. Immediately, a thermo-responsive physical hydrogel forms due to 

interactions between HPC molecules, and over time, reversible Diels-Alder crosslinks form 

to stabilize the hydrogel structure. Adapted from Bi, et al.296 Copyright, 2019 Elsevier.
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Figure 13. Crosslinking via guest-host complexation.
a) Schematic representation of biopolymers (black) modified with either host β-cyclodextrin 

(β-CD, pink) or guest (blue) functional groups to undergo reversible crosslinking due to 

guest-host complexation. Common guest groups for β-CD include adamantane (Ad) and 

azobenzene (Az). b) Schematic representation of biopolymers (black) modified with guest 

groups (yellow) and combined with host cucurbit[8]uril (CB[8]) to undergo reversible 

crosslinking due to guest-host complexation. CB[8] has a large host cavity to accommodate 

two guest groups, which commonly include naphthalene and phenylalanine. c) Dextran 

(green) is modified with either β-CD (blue) or trans Az (red). Upon mixing, hydrogel 

formation occurs due to guest-host complexation between β-CD and trans Az. Upon 

exposure to UV light, Az groups convert from trans to cis state, resulting in hydrogel 

disassembly and photoresponsive release of encapsulated proteins. Adapted from Peng, et 

al.123 Copyright, 2010, Royal Society of Chemistry.
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Figure 14. Crosslinking via hydrogen bonding.
a) Schematic representation of biopolymers modified with ureidopyrimidone (UPy) and 

crosslinking due to hydrogen bonding. b) Schematic representation of biopolymers modified 

with gallol groups and crosslinking due to hydrogen bonding. c) Dextran is modified with 

UPy (Dex-UPy) to undergo hydrogel formation due to hydrogen bonding. The resulting 

hydrogel is shear-thinning and self-healing. Images show self-healing behavior of Dex-UPy 

hydrogels. Adapted with permission form Hou, et al.340 Copyright, 2015 Wiley.
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Figure 15. Crosslinking via metal-ligand complexation.
a) Schematic representation of biopolymers modified with catechol groups forming metal-

ligand complexes with Fe(III). As pH increases, bis- and tris-complexation occurs, resulting 

in crosslink formation. b) Chitosan (green) is modified with catechol groups and forms a 

hydrogel metal-ligand complexation with Fe(III). The injectable hydrogel was used as a 

localized delivery vehicle for multiple chemotherapeutics. An increase in median survival 

rate was observed in murine lung and breast cancer models upon localized delivery of 

anticancer drugs from the hydrogel. Adapted with permission from Yavvari, et al.355 

Copyright, 2017 American Chemical Society.
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Figure 16. Crosslinking via interactions between synthetic polymers grafted to biopolymers.
a) Schematic representation of poly(N-isopropylacrylamide) (PNIPAAm, pink) grafted 

to a biopolymer (black) (left). The grafted biopolymer can undergo reversible physical 

crosslinking above the lower critical solution temperature (LCST) (~30°C) of PNIPAAm 

due to hydrophobic interactions between PNIPAAm groups (right). b) Schematic 

representation of Pluronic grafted to a biopolymer (black). Pluronic is an A-B-A triblock 

copolymer consisting of poly(ethylene glycol) (PEG) blocks (blue) and poly(propylene 

glycol) (PPG) blocks (red) (left). The grafted biopolymer can undergo reversible physical 

crosslinking above the critical micelle temperature (CMT) (~25–40°C) of Pluronic due 

to hydrophobic interactions between PPG blocks. (right) c) A biopolymer of PNIPAAm 

grafted to keratin (keratin-g-PNIPAAm) exhibited an LCST around 28–32°C, resulting in 

thermo-responsive hydrogel formation due to hydrophobic interactions between PNIPAAm 
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groups. Keratin-g-PNIPAAm was explored for applications in brain injury repair. Adapted 

with permission from Zhu, et al.366 Copyright 2019, Elsevier.
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Figure 17: Representative examples of biofabricated hydrogel scaffolds made from chemically-
modified biopolymers.
a) Silk modified with GMA (Sil-MA) is photocrosslinked using LAP as a photoinitiator 

(left). Scaffolds that mimic the shape of trachea, heart, lung, and vessel are printed using 

dynamic light processing (DLP) (right). Adapted with permission from Kim et al.389 

Copyright, 2018 Springer Nature. b) GelMA (red) and ChitoMA (gray) microgels are 

fabricated using a microfluidic device and then mixed to form a self-healing granular 

hydrogel scaffold with ionic interparticle interactions. The scaffold is combined with 

human adipose-derived stem cells (hADSCs) to form a cell-laden network. Adapted with 

permission from Hsu, et al.401 Copyright 2019, Wiley. c) HA modified with norbornene 

(NorHA) and either hydrazides (NorHA-Hyd, red) or aldehydes (NorHA-Ald, green) are 

electrospun to create a multifiber network with dynamic covalent inter-fiber crosslinks (left). 

Luminal scaffolds are created by wrapping the multifiber network around a needle and 

visualized i) while removing the scaffold from the needle and ii) while extruding rhodamine-
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labeled dextran dye through the lumen. Adapted with permission from Davidson et al.415 

Copyright, 2020 Wiley.
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Figure 18. Interpenetrating network (IPN) biopolymer hydrogels.
a) IPN hydrogels are formed through various synthesis techniques, including the sequential 

(swelling of first network in a secondary monomer/macromer) or simultaneous (orthogonal 

crosslinking of both first and second networks) introduction of networks. Adapted with 

permission from Dhand, et al.439 Copyright 2020, Elsevier. b) An IPN is formed by 

combining bis-maleimide-PEG, furan-modified gelatin (Gel-Furan), and chitosan grafted 

with Pluronic F127 (Chitosan-g-Pluronic). Initially, Chitosan-g-Pluronic formed a physically 

crosslinked, thermosensitive hydrogel network. After 2 h, Diels-Alder crosslinks between 

bis-maleimide-PEG and Gel-Furan covalently stabilize the hydrogel. Adapted with 

permission from Abandansari, et al.442 Copyright 2018, Elsevier.
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Table 1.
Polysaccharide-based biopolymers.

Representative chemical structures, function, and sources of various polysaccharide biopolymers that have 

been modified to form biomedical hydrogels.

Polysaccharides

Name Hyaluronic Acid (HA) Chondroitin Sulfate (CS) Heparin Sulfate (HS) Dextran

Chemical 
structure

Type Linear GAG Linear GAG Linear GAG Branched

Native 
function

Major component of ECM 
in human connective tissue

Major component of ECM in 
human connective tissue

Stored in mast cells in 
humans and secreted into 
vasculature upon injury

Component of some 
bacterial ECM

Source for 
biomedical 

applications

Bacterial culture; rooster 
comb19

Animal sources (e.g., bovine 
trachea, porcine nasal 

septa)29

Animal sources (e.g., porcine 
intestines)34 Bacterial culture39

Name Alginate Cellulose Chitin Chitosan

Chemical 
structure

Type Linear Linear Linear Linear

Native 
function

Structural support in 
seaweed

Structural support in plant 
cell walls; component in 

some bacterial ECM

Structural support in insect 
and crustacean exoskeletons n/a

Source for 
biomedical 

applications
Brown algae42 Bacterial culture49

Shrimp and crab shells 
from food industry waste 

products56

Deacetylated derivative of 
chitin57
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Table 2.
Polypeptide-based biopolymers.

Representative structures, function, and sources of various polypeptide biopolymers that have been modified to 

form biomedical hydrogels.

Polypeptides

Name Gelatin Silk Fibroin Albumin Elastin Keratin

Structure

Contains RGD motif 
for cell adhesion

Contains sequences 
that form crystalline β-

sheets

Heart shaped, globular 
protein

Contains hydrophobic 
domains (i.e., VPGXG) 

for mechanical 
resilience

Contains high cysteine 
content for disulfide 

bond formation

Native 
function

Denatured derivative 
of collagen (structural 

component of 
mammalian ECM)

Structural component 
of silk fibers produced 

by some arthropods

Modulates fluid 
distribution and 
provides oncotic 
pressure in blood 

plasma

Responsible for 
recoiling response 

when stress is applied 
in vertebrate connective 

tissue

Structural and 
protective component 
of hard tissues such 
as skin, hair, nails, 

horns, wool, feathers, 
and hooves

Source for 
biomedical 

applications

Animal sources (e.g., 
porcine skin)63

Bombyx mori 
(silkworm)73

Human (HSA) or 
bovine (BSA) blood 

plasma82

Human donors or 
animal sources (e.g., 

bovine, murine)91

Human hair,98 animal 
sources (e.g., feathers, 

wool)99,100
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