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Abstract

In machine learning for image-based medical diagnostics, supervised convolutional neural 

networks are typically trained with large and expertly annotated datasets obtained using high-

resolution imaging systems. Moreover, the network’s performance can degrade substantially when 

applied to a dataset with a different distribution. Here, we show that adversarial learning can 
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be used to develop high-performing networks trained on unannotated medical images of varying 

image quality. Specifically, we used low-quality images acquired using inexpensive portable 

optical systems to train networks for the evaluation of human embryos, the quantification of 

human sperm morphology and the diagnosis of malarial infections in the blood, and show that 

the networks performed well across different data distributions. We also show that adversarial 

learning can be used with unlabelled data from unseen domain-shifted datasets to adapt pretrained 

supervised networks to new distributions, even when data from the original distribution are not 

available. Adaptive adversarial networks may expand the use of validated neural-network models 

for the evaluation of data collected from multiple imaging systems of varying quality without 

compromising the knowledge stored in the network.

Image analysis, which is a fundamental component of medical diagnostics, has undoubtedly 

benefited from human- or super-human levels of feature recognition, anomaly detection 

and localization due to advances in supervised deep learning over the past decade1–3. 

However, supervised learning models—the most widely used deep learning approach in 

medical image analysis—are often dependent on large expertly annotated datasets and are 

usually limited to the training data distribution4 (Fig. 1a). In medicine, such limitations 

can have dire consequences where, for example, networks that were developed using one 

brand of an instrument can observe substantial decreases in performance when tested 

on data that were collected using a different brand/instrument of imaging system to the 

one used during training5–8. Furthermore, high-quality medical images are critical for 

human interpreters to annotate, limiting most of the current supervised machine learning 

approaches to cost-prohibitively expensive state-of-the-art imaging hardware, making the 

use of these technologies considerably more challenging particularly in low- and middle-

income countries9.

In this Article, we present a deep learning framework for achieving unsupervised domain 

adaptation between various microscopy imaging systems in medical image analysis 

tasks without the need for any additional domain-specific information, including explicit 

annotations of the domain-shifted images, the magnifications and fields-of-view of the 

imaging system, optical and image resolutions, lighting and exposures, and optical image 

corrections (Fig. 1a). To achieve this, we made use of adversarial learning, a powerful 

learning technique that is most popular for its generative-variant capable of realistic image 

synthesis10. For domain adaptation, these adversarial learning schemes can be repurposed 

to refine the neural network’s learning process such that common features specific to 

each target class, across the different domains, are prioritized in its decision making11,12. 

Here, we used the gamified learning technique to achieve adaptation across unseen 

shifted distributions of potentially impossible-to-annotate microscopy cellular images with 

diagnostic applications in medicine (Fig. 1b). To demonstrate the success of the network’s 

decisions for medical image analysis tasks, we compared the network’s inferences using 

shifted data against a human interpreter’s overall decisions made using conventional 

imaging systems (for example, benchtop high-resolution microscopy).

We evaluated the performance of the developed medical domain adaptive neural network 

(MD-net) framework in cellular image analysis of biological samples with applications in 
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infertility and infectious diseases as clinical models. First, we used datasets of non-shifted 

and shifted embryo images for semisupervised learning and unsupervised adaptation and 

compared the performance of MD-nets with models learned through supervised training, and 

alternative domain adaptation strategies. Second, we evaluated MD-net’s ability to quantify 

morphological defects among sperm cells in smeared semen samples across shifted domains, 

where individual sperm annotations on the shifted datasets cannot be established by human 

readers, to evaluate its performance against conventional clinical analyses. Finally, we used 

models that were originally trained under supervision to achieve unsupervised adaptation

—even in the absence of data from the original domain that was used during supervised 

training—through MD-nets, on shifted datasets of whole-blood slides in qualitatively 

identifying the presence of malaria-infected cells in thin whole-blood smears, evaluating the 

network’s suitability in point-of-care clinical applications. We demonstrated the versatility 

of MD-nets by achieving adaptation to new domains with and without the need to access 

the original medical image data used for training the network in the original domain (that 

is, source data) and with relatively higher image processing performance compared with 

conventional supervised convolutional neural networks (CNNs) and other domain adaptation 

strategies in both shifted and non-shifted datasets.

Results

Comparison of supervised and domain adaptation methods in medical image analysis.

To effectively evaluate the performance of MD-nets as a suitable alternative to supervised 

methods for medical image analysis, a clinically relevant medical image analysis task for 

which supervised networks have shown promising results was selected. Supervised neural 

networks have been studied in evaluating human embryos on the basis of their morphology 

for applications in in vitro fertilization (IVF)5,13–16. These supervised neural networks 

have shown very high efficiencies and, in some cases, have outperformed highly trained 

embryologists in embryo assessment14. Deep supervised neural networks are currently being 

evaluated in IVF for their applicability in clinical settings and have the potential to improve 

and standardize clinical assisted reproductive practices. Most previously developed neural 

networks were evaluated using datasets collected using a single instrument17. However, one 

study indicated a drop in performance when evaluated using data collected through the 

same model of the imaging systems from different fertility centres, although, in that case, 

the effect of domain shift was not very well studied5. Thus, to evaluate the performance 

of MD-net compared to supervised networks, we classified embryo images on the basis of 

their developmental status (two classes; blastocyst/non-blastocyst) recorded at 113 h after 

insemination (fifth day of embryo development) using different microscopy instruments 

operated by different users at multiple fertility centres15. Blastocysts have fluid-filled 

cavities and two distinguishable cell lineages—the trophectoderm and the inner cell mass. 

Advanced-staged blastocysts, based on the expansion of the blastocoel cavity and the quality 

of the trophectoderm and inner cell mass, are preferred for transfer during a clinical IVF 

cycle18.

Embryos were imaged using a commercial time-lapse imaging system (ED4), various 

clinical microscopic systems (ED3), an inexpensive and portable 3D-printed microscope 
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(ED2) and a smartphone-based microscope (ED1) (Fig. 2a). The collected data were of 

varying quality and, in an effort to highlight the shift in image quality with regard to 

computational image analysis, we measured the average number of interest points available 

in each dataset and class through scale-invariant feature transform (SIFT) measurements 

(Fig. 2a,b). The mean SIFT values for blastocyst images recorded using ED4, ED3, ED2 and 

ED1 were 193.8 (95% confidence interval (CI) = 189.9–197.8; n = 491), 551.8 (95% CI = 

498.7–604.8; n = 117), 165.1 (95% CI = 134.7–195.6; n = 56) and 4.9 (95% CI = 4.4–5.4; 

n = 197), respectively (Fig. 2b). The mean SIFT values for non-blastocyst images recorded 

using ED4, ED3, ED2 and ED1 were 169.5 (95% CI = 164.2–174.9; n = 251), 607.8 (95% 

CI = 476.2–748.3; n = 141), 57.1 (95% CI = 28.3–85.8; n = 13) and 0.4 (95% CI = 0.2–0.5; 

n = 99), respectively (Fig. 2b).

Using 1,698 ED4 embryo images, we trained and validated five CNN architectures (de 

novo multilayer CNN, Inception v3, ResNet-50, Xception and Inception-ResNet v2) through 

supervised learning and the Xception-based MD-net through semisupervised learning. 

Domain adaptation to ED3, ED2 and ED1 using MD-nets was achieved in an unsupervised 

manner. The networks were initially tested with a hold-out test set of 742 ED4 embryo 

images, followed by tests with 258, 69 and 296 embryo images from the ED3, ED2 and 

ED1 datasets, respectively (Supplementary Fig. 1). As with all test sets, the annotations were 

performed blinded to networks during evaluation.

The best MD-net model was able to classify ED4 images into blastocysts and non-

blastocysts with a high accuracy of 92.32% (95% CI = 90.16–94.13%; n = 742) (Fig. 

2c). The sensitivity, specificity, positive predictive value (PPV) and negative predictive 

value (NPV) were 92.67% (95% CI = 89.99–94.81%), 91.63% (95% CI = 87.50–94.75%), 

95.59% (95% CI = 93.50–97.03%) and 86.47% (95% CI = 82.32–89.76%), respectively 

(Supplementary Fig. 2a and Supplementary Table 1). When evaluating domain-shifted 

embryo images (ED3, ED2 and ED1), MD-net was able to adapt itself without supervision 

to new and unseen data recorded using different imaging systems. Once adapted, the 

performance of MD-nets was excellent with classification accuracies of 98.84% (95% CI 

= 96.64–99.76%; n = 258) for the ED3 dataset, 95.65% (95% CI = 87.82–99.09%; n = 

69) for the ED2 dataset and 97.63% (95% CI = 95.19–99.04%; n = 296) for the ED1 

dataset (Fig. 2c). The sensitivity, specificity, PPV and NPV were 100% (95% CI = 96.90–

100%), 97.87% (95% CI = 93.91–99.56%), 97.50% (95% CI = 92.72–99.17%) and 100% 

for the ED3 dataset; 94.64% (95% CI = 85.13–98.88%), 100% (95% CI = 75.29–100%), 

100% and 81.25% (95% CI = 59.04–92.87%) for the ED2 dataset; 98.48% (95% CI = 

95.61–99.68%), 95.96% (95% CI = 89.98–98.89%), 97.98% (95% CI = 94.89–99.22%) and 

96.94% (95% CI = 91.15–98.98%) for the ED1 dataset, respectively (Supplementary Fig. 

2b–d and Supplementary Table 1).

The performance of the evaluated supervised CNNs and MD-net in assessing/classifying the 

source (ED4) embryo image dataset was similar (Fig. 2d and Supplementary Table 2). MD-

net performed with an average accuracy of 91.51% with a coefficient of variation (%CV) 

of 0.77% and the supervised CNNs, de novo multilayer CNN, Inception v3, ResNet-50, 

Xception and Inception-ResNet v2, performed with average accuracies of 83.72% (%CV = 

1.59%), 82.99% (%CV = 0.78%), 89.27% (%CV = 0.85%), 89.78% (%CV = 0.65%) and 
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84.80% (%CV = 2.60%), respectively (n = 742 ED4 embryo images, n = 5 seeds) (Fig. 

2d and Supplementary Table 2). However, in contrast to MD-nets, the supervised networks 

performed worse in analysing domain-shifted target data (ED3, ED2 and ED1). MD-net 

performed with an average accuracy of 98.68% (%CV = 0.35%) whereas de novo multilayer 

CNN, Inception v3, ResNet-50, Xception and Inception-ResNet v2 performed with average 

accuracies of 56.05% (%CV = 12.70%), 88.29% (%CV = 7.64%), 86.51% (%CV = 5.75%), 

80.78% (%CV = 13.05%) and 87.75% (%CV = 2.80%), respectively, when the ED3 embryo 

dataset was used (n = 258 images and n = 5 seeds; Fig. 2d and Supplementary Table 

2). When the ED2 dataset was analysed, MD-net performed with an average accuracy of 

93.91% (%CV = 1.69%) and the supervised CNNs de novo multilayer CNN, Inception 

v3, ResNet-50, Xception and Inception-ResNet v2 performed with average accuracies of 

48.12 (%Cv = 35.85%), 80.58% (%CV = 5.49%), 80.29% (%CV = 3.74%), 83.19 (%CV 

= 4.87%) and 81.16% (%CV = 14.06%), respectively (n = 69 images and n = 5 seeds; 

Fig. 2d and Supplementary Table 2). Finally, with the ED1 dataset, MD-net performed 

with an average accuracy of 96.28% (%CV = 1.38%) and the supervised CNNs de novo 

multilayer CNN, Inception v3, ResNet-50, Xception and Inception-ResNet v2 performed 

with average accuracies of 42.91% (%Cv = 16.59%), 71.55% (%CV = 15.25%), 54.26% 

(%CV = 24.25%), 70.27 (%CV = 9.70%), and 74.05% (%CV = 4.45%), respectively (n 
= 296 images and n = 5 seeds; Fig. 2d and Supplementary Table 2). In addition to the 

decrease in accuracy of the tested supervised networks, we also observed large variances 

in the performance of such networks when tested with domain-shifted data for different 

initialization seeds used during training with the source data (ED4), although no substantial 

deviance in the loss and accuracies was observed during the evaluations with ED4 for these 

models (Fig. 2d and Supplementary Table 2).

We also evaluated the effect of adversarial training on the performance of MD-net in 

analysing the source test data and compared it to the effect of traditional transfer learning in 

supervised models when using the Xception architecture. The supervised networks showed 

a substantial reduction in performance on source data (ED4) after transfer learning, whereas 

MD-net showed a minimal decrease in classification performance using the source data. 

Xception performed with an accuracy of 89.78% with a s.d. of 0.58% (n = 5 seeds) on 

the ED4 test set (n = 742 images) when trained with the ED4 data, but its performance 

significantly dropped to 69.40% (t = 78.21, P < 0.001), 85.18% (t = 17.67, P < 0.001) and 

77.22% (t = 48.21, P < 0.001) after transfer learning with ED3, ED2 and ED1, respectively 

(two-sided one-sample t-tests with d.f. = 4; Supplementary Fig. 3a). By contrast, MD-net 

(Xception) performed with an average accuracy of 91.51% (s.d. = 0.71%; n = 5 seeds) on 

ED4, while adaptive training with ED3, ED2 and ED1 led to average accuracies of 91.64% 

(t = 0.41, P = 0.70), 88.41 (t = 9.81, P < 0.001) and 89.08 (t = 7.67, P = 0.002) on the ED4 

test set (n = 742), retaining most of the relevant weights (two-sided one-sample t-tests with 

d.f. = 4; Supplementary Fig. 3a). These adversarial networks perform well across different 

domains and are more robust than supervised learning networks owing to their ability to 

continuously adapt to different distributions, even with unlabelled datasets. We evaluated 

whether MD-nets can perform equally well on a target data distribution when they are not 

continuously adapting to the unlabelled test data by freezing the network weights after an 

initial set of examples. For this purpose, we truncated our test sets and used a portion of 
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the data as an initial set of examples (approximately 50% training and 50% test) to train 

and fix the final weights. We compared the performance of a network trained as such on 

the target datasets with and without fixing weights. When evaluating MD-nets trained on 

ED4, ED3, ED2 and ED1 with fixed weights, the networks performed with accuracies of 

90.35% (n = 373), 90.77% (n = 130), 91.67% (n = 36) and 90% (n = 150), respectively 

(Supplementary Fig. 3b). The networks performed with the same accuracies when allowed 

to update themselves for all datasets except ED1, where the network benefitted from the 

additional training, with an accuracy gain of 5.33% (Supplementary Fig. 3b). Furthermore, 

we probed MD-nets by visualizing the distribution of the network-utilized features using 

t-distributed stochastic neighbour embedding (t-SNE) and using saliency maps in identifying 

activations. The t-SNE plots indicated that the adapted MD-net made use of features that 

were more class specific and similar across domains (Supplementary Fig. 4). Saliency maps 

of the feature activations helped to confirm that the features used by the neural networks in 

their decision-making are associated with key embryonic features and were relevant to the 

classification task (Fig. 2a).

Thus far, our experiments evaluated the advantages of domain adaptation methods, such 

as MD-nets, over traditional supervised methods that are commonly used in medical 

image analysis. Although MD-net was developed specifically to assist in medical image 

analysis tasks, it was also important to evaluate its domain adaptation performance using 

well-known datasets to benchmark and compare the network against other high-performance 

unsupervised domain adaptation strategies that exist in the literature. We made use of the 

Office-31 dataset for a comparative analysis of different domain adaptation strategies19. 

All of the implemented networks were trained with the ResNet-50 architecture to make 

comparisons with previously reported results. All six Office-31 domain adaptation tasks 

were evaluated, and the average performance values were compared. The mean values 

of three experiments with random seeds were used for the comparison of all of the 

domain adaptation methods implemented in this study. We compared the strategies 

of Adversarial Discriminative Domain Adaptation (ADDA), Domain-Adversarial Neural 

Networks (DANN), Deep Adaptation Networks (DAN), Pixel-level Domain Adaptation 

(PixelDA), Conditional Domain Adversarial Networks (CDAN), Generative Adversarial 

Guided Learning (GAGL), and the current state-of-the-art Contrastive Adaptation Network 

(CAN) and were able to confirm the relatively high performance of MD-nets in adaptation to 

new domains11,12,20–24.

MD-nets (ResNet-50) achieved an overall average accuracy of 90.7% for all six adaptation 

tasks available using the Office-31 dataset (Supplementary Table 3). For individual tasks, 

A → W, D → W, W → D, A → D, D → A and W → A, MD-nets achieved adaptation 

performance accuracies with s.e.m. values of 95.2 ± 0.5%, 99.2 ± 0.04%, 100 ± 0%, 94.2 

± 0.3%, 77.2 ± 0.3% and 78.2 ± 0.2%, respectively. By contrast, ADDA, DANN, DAN, 

PixelDA, CAN, CDAN and GAGL achieved average accuracies of 82.9%, 82.2%, 80.4%, 

10.6%, 90.6%, 87.7% and 77.7%, respectively (Supplementary Table 3). We observed that 

MD-nets showed a marginal improvement over the evaluated methods in four out of the six 

tasks (A → W, D → W, W → D, W → A), placing the evaluated approach among the 

highest performing domain adaptation strategies reported to date.
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Although Office-31 served as a valuable benchmarking dataset, it does not capture the 

complexity of the real-world medical image analysis tasks addressed in our study. Medical 

image analysis tasks usually involve images that share a high degree of feature overlap 

across classes (for example, high-quality blastocyst versus blastocyst), in contrast to the 

Office-31 natural image dataset, in which the classes are well-defined (for example, 

laptop versus table). Thus, we used some of the evaluated high-performance domain 

adaptation alternatives in another comparative analysis using our embryo datasets, which 

we originally used to emphasize the benefits of MD-nets over supervised networks. All of 

the implemented domain adaptation methods were trained with the ResNet-50 architecture. 

All four domain adaptation tasks were evaluated, and the average performance values were 

compared. The mean values of five experiments with random seeds were used for the 

comparison of all domain adaptation methods implemented in this study. We compared 

MD-nets, which makes use of feature space adaptation, against other approaches that 

utilize strategies for adaptation at the image space (PixelDA), the feature space (DANN, 

ADDA, CAN) and both image and feature spaces (GAGL)25. The relative performances of 

ADDA, DANN, PixelDA, GAGL, CAN and MD-nets on the embryo datasets highlighted 

through example images from the datasets of ED4, ED3, ED2 and ED1 are provided 

in the Supplementary Information (Supplementary Figs. 5–8). In our evaluations, we 

observed that MD-nets outperformed all of the other networks, with MD-net (ResNet-50) 

models achieving an average accuracy of 92.2% for embryo developmental quality-based 

classification tasks15 (Fig. 2d and Supplementary Table 4). By contrast, DANN, PixelDA, 

CAN, ADDA and GAGL performed with average accuracies of 78.4%, 64.3%, 84.0%, 

82.1% and 85.1%, respectively (Fig. 2d and Supplementary Table 4). The Xception variant 

of MD-nets was relatively more stable and was able to achieve further gains in the 

developmental quality-based classification task with an average accuracy of 95.1%. Overall, 

these results highlight the suitability of the MD-net-based approach for unsupervised domain 

adaptation, especially in medical image analyses.

Evaluation of MD-net in quantitative morphological assessments of human biological 
samples.

Quantification of the target cellular morphologies, which is usually performed with some 

form of a contrast enhancer, is a crucial task in applications involving medical image 

analysis, such as in pathology. Relative-frequency estimates are often used for the diagnosis 

of diseases and in the determination of a treatment regimen. Many such estimations are 

performed through manual microscopy analyses that are subjective and time-consuming. 

For example, the morphology of individual sperm cells is routinely assessed clinically 

as part of semen analysis, the primary test in evaluating male factor of couples who 

experience difficulties in conceiving. Grading criteria used in assessing sperm morphology 

are extremely tedious and take into consideration the size and shape of head, neck and 

tail, along with the presence or absence of different cellular features within the head such 

as the acrosome and vacuoles in defining the morphological quality of each individual 

cell26. Manual image-based sperm morphology assessment continues to be the gold-standard 

modality in clinical analysis, and all of the proposed alternative technologies have been 

either too expensive or too inaccurate for clinical cost-effectiveness27,28. Unsurprisingly, 

sperm morphology evaluations using such grading criteria are time-consuming, subjective 
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and labour intensive. Although supervised deep learning-based approaches have shown 

promise in automated morphological analyses of sperm, they have been limited to only 

high-quality images, as reliable manual interpretation in noisy data is not possible29,30.

To perform automated sperm morphology assessment, we used MD-net (Xception-based) 

trained with sperm images collected by the American Association of Bioanalysts 

(AAB) Proficiency Testing Service (PTS) and annotated by trained andrologists (SD4) 

(Supplementary Fig. 9). Sperm cells were extracted from microscopy images during sample 

preprocessing (Methods) and were filtered using a CNN trained to identify sperm with 

90.07% accuracy (n = 1,340) (Supplementary Fig. 10a). The network, in separating sperm 

and non-sperm images, performed with a PPV of 84.42% (95% CI = 81.56–87.00%) and 

NPV of 96.62% (95% CI = 94.88% to 97.89%) (n = 1,340). The sensitivity and specificity 

of the network were 96.66% (95% CI = 94.99–97.78%) and 84.27% (95% CI = 81.87–

86.40%), respectively (n = 1,340). Extracted sperm images were classified into normal 

and abnormal morphological quality sperm using the MD-net trained with 2,899 annotated 

sperm images. In our evaluations, the network performed with an accuracy of 86.99% 

(95% CI = 83.37–90.07%) in classifying sperm on the basis of their morphology (n = 415; 

Supplementary Fig. 10b).

We randomly selected 200 sperm images from each slide to estimate the morphological 

score of the tested sample. The measured score was compared against the national averages 

reported by AAB PTS for each sample. The morphological scores measured for samples 

1–10 by MD-net were 2.895%, 9.782%, 5.1%, 8.3%, 4.7%, 10.0%, 7.0%, 9.3%, 8.2% 

and 5.1%, respectively, while the national average scores reported through the AAB PTS 

were 3.4%, 10.1%, 4%, 8.6%, 6%, 7.6%, 6.8%, 6%, 8.3% and 3.4%, respectively. A high 

correlation coefficient of 0.82 (95% CI = 0.38–0.95) was observed between the two methods 

of measurements (P = 0.004) (Fig. 3a). Overall, the morphological quality measures 

obtained through MD-net were not largely different from the average score measured by 

the different technicians who have participated in the AAB PTS across the United States 

with an average absolute difference of 0.6% (s.d. = 1.5%; Fig. 3b).

Once a high-performance model that was trained and tested with SD4 was available, we 

adapted the network to classify images of sperm collected using a benchtop microscope 

(SD3), a 3D-printed inexpensive and portable microscope (SD2) and a portable smartphone-

based imaging system (SD1) (Supplementary Fig. 9). We collected data from over 40 

clinical semen samples by imaging them with different imaging systems. Conventionally, 

sperm morphology assessments involve manual evaluation of individual sperm cells after 

staining and fixing using a ×100 objective (SD4)26. The low-cost imaging systems produced 

images at much lower magnifications, poorer optical resolutions and with higher distortions 

and aberrations compared with the laboratory-grade microscopes (Supplementary Fig. 11). 

The clinical experts who were involved in this study were unable to annotate such low-

resolution images and, therefore, the annotations for individual sperm samples across all 

systems were not available. SIFT scores were also measured in an effort to describe the 

images collected using the different imaging systems. The mean SIFT features recorded in 

sperm images amounted to 11.68 (95% CI = 11.61–11.75), 2.33 (95% CI = 2.31–2.35), 
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14.56 (95% CI = 14.35–14.77) and 4.69 (95% CI = 4.64–4.74) for SD4 (n = 86,440), SD3 (n 
= 18,972), SD2 (n = 19,668) and SD1 (n = 20,554), respectively (Fig. 3c).

In our evaluations with sperm samples, the network’s predictions for each isolated sperm 

cell (at least 200 sperm cells for most samples) were taken into account to measure an 

overall morphology score for the semen sample. As individual sperm annotations through 

manual assessment were not possible, a clinical expert manually evaluated replicate slides 

of each semen sample under a benchtop microscope to estimate the morphology score for 

each semen sample, which was used in a comparative analysis to establish the network’s 

performance. Bland–Altman analyses were used to compare the overall agreement between 

the two approaches (Fig. 3d–f). For SD3, the analysis showed a mean bias of 3.43% (s.d. 

= 4.77%) with limits ranging from −5.91% to 12.77% (n = 40) (Fig. 3d). Bland–Altman 

tests for SD2 showed a mean bias of 2.47% (s.d. = 5.52%) with limits ranging from −8.36% 

to 13.29% (n = 46) (Fig. 3e). For SD1, the Bland–Altman test showed a mean bias of 

−0.30% (s.d. = 7.84%) with limits ranging from −15.66% to 15.06% (n = 47) (Fig. 3f). 

The tests revealed that, for SD3, SD2 and SD1, MD-nets did not possess any systematic 

biases. SD3 did not suffer from proportional biases either; however, SD2 and SD1 possessed 

proportional biases. Sufficient adaptation was verified through t-SNE plots and saliency 

maps (Fig. 3g,h). Additional example images of sperm cells from the different domain-

shifted datasets, which the developed networks consider to be cells of normal and abnormal 

morphologies, are provided in the Supplementary Information (Supplementary Fig. 12). 

Sperm morphology testing at the point-of-care using such systems has remained an unsolved 

challenge for years even after the advent of mobile-based sperm testing methods31,32. 

The results suggest that MD-nets, which emphasize retaining source information through 

unsupervised domain adaptation, can enable the development of inexpensive and portable 

image analysis-based screening tools for such point-of-care clinical applications.

Using pretrained supervised models for unsupervised adaptation in the absence of source 
data.

Although supervised networks can be adapted to different distributions through transfer 

learning using additional annotated data from the target domain, the adapted supervised 

networks may not necessarily utilize clinically relevant features that were identified by the 

original supervised network (Supplementary Fig. 3a). Furthermore, the additional annotation 

required for network adaptation can be both time-consuming and expensive. Adversarial 

networks can be used to develop frameworks that are capable of working sufficiently well 

across shifted domains that share relevant features. In the above sections of this Article, we 

demonstrated the performance of MD-nets trained from scratch across different domains. 

Here, we intended to investigate the possibility of using saved weights obtained from a 

pretrained supervised model for unsupervised domain adaptation (Figs. 1b and 4a). To 

evaluate the suitability of MD-nets for such medical use cases, we used the diagnosis of 

the blood samples of patients infected with malaria (Plasmodium falciparum) as a clinical 

model. The original supervised network was developed using a large expertly annotated 

clinical dataset (27,558 images) and was designed to differentiate between parasitized and 

non-parasitized blood cells33.
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Malaria is a major public health problem in countries of the tropical and subtropical 

areas of the world, affecting an estimated population of 219 million people worldwide 

and causing nearly half a million deaths annually34. There is a substantial social and 

economic cost due to malaria infection management in the affected countries, with an 

estimated direct cost reaching US$12 billion per year in Africa alone, due to disease 

morbidity, mortality and treatment35. P. falciparum, which is one of the deadliest parasites 

to humans, is usually the cause of severe malarial parasitaemia (>5% parasitized red 

blood cells)36,37. Early detection of malaria can help to rapidly identify individuals with 

or at risk of malaria infection, which can lead to a dramatic reduction in morbidity and 

mortality rates worldwide. Furthermore, the United States Centers for Disease Control and 

Prevention (CDC) recommends aggressive intravenous treatment interventions for severe 

parasitaemia36. The availability of quality-assured microscopy at the point-of-care within 

the first 2 h of a patient presenting for treatment can contribute to a reduction in the 

time-to-initiation of antimalarial treatment based solely on clinical grounds, meeting current 

World Health Organisation (WHO) recommendations34,38. However, owing to limitations on 

the availability of skilled technicians at the point-of-care, it has recently been proposed that 

a reliable, low-cost and simple solution for malaria diagnosis in resource-poor settings could 

be a portable microscopy system associated to powerful machine-learning-based analysis to 

classify and quantify parasites and blood cells39. In brief, the previous research made use of 

CNNs in classifying images of parasitized and non-parasitized blood cells, computationally 

segmented from thin blood smear data collected through a smartphone-attached light 

microscope (MD1_s)33. We have used a model equivalent to the previously best-reported 

model to evaluate isolates of blood cell images with and without malarial infections and that 

were recorded using different imaging hardware.

Thin blood smears were imaged using a desktop microscope (MD3), an inexpensive 3D-

printed microscope (MD2) and a smartphone-attached microscope similar to the original 

reported work (MD1_t) (Supplementary Fig. 13). The SIFT features recorded in non-

parasitized cell images, on average, amounted to 50.77 (s.d. = 41.74), 3.23 (s.d. = 2.80), 

1.15 (s.d. = 1.42) and 7.83 (s.d. = 8.22) for MD3 (n = 601), MD2 (n = 688), MD1_t (n = 

1,896) and MD1_s (n = 12,401), respectively (Fig. 4b). SIFT features recorded in infected 

cell images, on average, amounted to 54.53 (s.d. = 40.86), 4.65 (s.d. = 2.91), 1.81 (s.d. = 

1.88) and 16.84 (s.d. = 11.55) for MD3 (n = 601), MD2 (n = 688), MD1_t (n = 1896) 

and MD1_s (n = 12,401), respectively (Fig. 4b). To showcase the transferability of learning 

through unsupervised adaptive scheme, we made use of the previously published dataset 

and developed a supervised CNN (ResNet-50) model (Methods) for the analysis of malaria 

infections in red blood cells33. The ResNet-50 network (source only) developed with the 

supervised learning scheme using MD1_s performed with an area under the curve (AUC) 

of 0.994 (95% CI = 0.991–0.997) (P < 0.001) in differentiating between parasitized and non-

parasitized cells when evaluating MD1_s test images (n = 2,756), similar to the originally 

reported AUC measure (0.990 ± 0.004) (Supplementary Fig. 14a). Without adaptation, the 

network experienced a performance drop, as expected, in all shifted datasets with AUCs 

of 0.751 (95% CI = 0.719–0.782), 0.815 (95% CI = 0.768–0.855), 0.785 (95% CI = 0.736–

0.829) for datasets MD3 (n = 766), MD2 (n = 330) and MD1_t (n = 321), respectively (Fig. 

4c–e).
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Initially, in an effort to minimize the dependence on source dataset requirements, we tried 

evaluating the original MD-net approach using a limited source dataset (source validation 

and source test data) (Fig. 1b). The weights of the source-only model were used to 

initialize an MD-net (ResNet-50) model. The initial layers of the network were frozen, 

and the network was retrained with the limited source data and target data to adapt the 

neural network to the target dataset without supervision (Supplementary Fig. 14b). We 

compared the performance of the network, initialized with the source-only model weights 

(MD-nets SW), on the target’s test dataset before and after adaptation to evaluate the gain in 

performance. On the domain-shifted datasets MD3 (n = 766), MD2 (n = 330) and MD1_t (n 
= 321), the adapted MD-nets (SW) performed with higher AUCs of 0.945 (95% CI = 0.927–

0.960), 0.974 (95% CI = 0.951–0.988) and 0.870 (95% CI = 0.828–0.905) in differentiating 

blood cells on the basis of the infection status (Supplementary Fig. 14c–e) compared with 

the network that was not adapted (source-only) (Fig. 4c–e). Adaptation to all three domains 

was also confirmed through t-SNEs, which revealed the ability of the network to separate the 

common classes from the different domains sufficiently well even with the limited dataset 

(Supplementary Fig. 14f). We also confirmed that there is no target performance drop 

due to the source weight initialization, limited dataset and frozen layers during adaptation. 

The modified MD-net approach (MD-nets SW) achieved classification performances on the 

target datasets that were not inferior to the unmodified MD-net approach, which was trained 

from scratch. The unmodified MD-nets approach achieved AUCs of 0.952 (95% CI = 0.935–

0.966), 0.932 (95% CI = 0.899–0.956) and 0.848 (95% CI = 0.804–0.886) for the MD3 (n = 

766), M2 (n = 330) and MD1_t (n = 321) datasets, respectively (Supplementary Fig. 14c–e).

Although we have shown that MD-nets can also be used with minimal source data when 

the source weights are available, one limitation, especially for medical image analysis 

tasks, is still the need for getting access to an annotated source dataset during adaptation. 

A suitable solution for the medical domain would involve the complete removal of any 

dependence on the regulated clinical source data while using unlabelled target data collected 

from different centres/instruments for adaptation. We therefore expanded the framework 

MD-nets to include a clustering element to generate pseudolabels during adaptation (Fig. 

4a). The updated framework utilized pretrained and frozen weights loaded onto one feature 

extractor and adapted an MD-net model, which was also preloaded with the source weights, 

to the target distribution. The updated MD-nets framework, MD-nets no-source (MD-nets 

(NoS)), used only unlabelled target distribution data for network adaptation and did not use 

any data from the source distribution. To verify and benchmark the adaptation ability of 

MD-nets (NoS) to shifted distributions, we evaluated the network for its domain adaptation 

performance using Office-31 (Supplementary Table 3). MD-net (NoS), with ResNet-50 as 

the feature extractor, achieved a relatively high average adaptation accuracy of 88.4%.

In the experiments involving malaria datasets, when preloaded with the network weights 

from the source-only ResNet-50 model and trained with the shifted datasets, the resultant 

models were able to classify parasitized and non-parasitized red blood cells with AUCs 

of 0.952 (95% CI = 0.935–0.966), 0.954 (95% CI = 0.926–0.974) and 0.920 (95% CI = 

0.885–0.947) using the MD3 (n = 766), M2 (n = 330) and MD1_t (n = 321) datasets, 

respectively (Fig. 4c–e). Example images of parasitized and non-parasitized cells from the 

different domain-shifted datasets that were categorized by the developed network have been 
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provided (Fig. 4f and Supplementary Fig. 15). While these results showcase the advantage 

of adversarial training for network adaptation across domains and distributions, without 

the need for source data, the cell-wise classification performance does not provide a clear 

perspective on the clinical benefit of adapting the network to the target domain distribution.

To evaluate the efficacy of MD-nets (NoS) for clinical use-cases of such a system, we used 

the supervised source-only model and MD-nets (NoS) models, to identify simulated samples 

on the basis of the presence of parasitized cells. A total of 40 sample sets of annotated 

images was prepared (Methods) such that the ratio of parasitized to non-parasitized cells in 

each set reflected clinically relevant ranges (0–15%)36,37. For image sets of MD3 (benchtop 

microscope), the adapted MD-net (NoS) model performed with a diagnostic accuracy of 

90%, whereas the non-adapted network performed with 65% accuracy (Fig. 4g). For MD2 

image sets (Portable microscope), the adapted MD-net (NoS) model performed with an 

overall diagnostic accuracy of 90%, and the non-adapted network performed with a 77.5% 

accuracy (Fig. 4g). For MD1_t image sets (Smartphone microscope), the adapted MD-net 

(NoS) model performed with an overall diagnostic accuracy of 95%, and the non-adapted 

network performed with 75% accuracy (Fig. 4g). In this evaluation using the 120 prepared 

sample sets, the adapted networks were able to identify all cases of severe parasitaemia 

(>5% infected cells) correctly across all datasets, while the performance of non-adapted 

networks was variable.

Discussion

Data available at different medical clinics can be skewed or may be divergent from the 

overall distribution due to localization of disease prevalence, practice-dependent technical 

procedures, variations in the quality and model of data acquisition systems, and variations 

in patient populations. As most deep learning models are limited by their confinement 

to the training data domain, the data collected from a single clinical centre may not 

be generalizable across different facilities or instruments40. Most studies using artificial 

intelligence (AI) for image-based medical diagnoses do not evaluate performance across 

centres, let alone provide solutions for adaptation at different centres41. Furthermore, clinical 

data are highly regulated and are therefore not easily available for research or AI-based 

product development. The development of highly robust machine learning models that are 

suitable for multiple centres is therefore more difficult due to logistical constraints. Although 

networks can be adapted to different distributions under supervision through additional 

training using transfer learning with site-specific data, the lack of control on features used 

by the new network may not be well suited for medical image analysis tasks6,7,42. Such 

networks would need additional stringent validations that require resources and experts in 

machine learning and clinical staff, making it difficult for most and impossible for some 

centres. Even when training using the same dataset, different supervised models, trained 

identically, tend to perform unpredictably when tested on a shifted distribution (Fig. 2d 

and Supplementary Table 2). A recent study has also identified this problem and has 

indicated that this unpredictability is due to underspecification—the availability of numerous 

equivalent solutions for a given task and dataset43. Thus, although such networks might 

perform very well during development and initial validation, they may not hold up well 

when handling shifted or real-world distributions. This problem is likely to worsen with 
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both larger networks and smaller datasets, as is the case with most medical image analysis 

tasks. The reported MD-nets approach presents a promising solution for such problems with 

domain dependence in medical image analysis tasks, where reliability is paramount.

The adversarial network scheme utilized by MD-nets uses feature alignment between the 

source and target datasets during its training phase. This aspect of the network allows for 

the validation of models, developed using site-specific target data, with known standardized 

datasets that can be used as a part of the source dataset. It also helps the network to 

minimize overfitting on either source or target-specific features and, in theory, mostly limits 

feature utilization by the network to shared features between the two domains. As medical 

tasks usually involve evaluating classes that have strong similarities between them and 

possess a limited number of distinctive features that networks can utilize, conditioning on 

class information is vital. Furthermore, the prioritization of network update protocols on 

the basis of uncertainty helps to minimize learning failures that may be induced by the class-

conditioning step. We expect that such a controlled learning and adaptation methodology 

is highly suitable for clinical tasks and our evaluations that make use of clinical embryo 

data highlight its benefit over supervised learning (Fig. 2 and Supplementary Fig. 3). Such 

an approach is particularly useful in the development of automated point-of-care systems 

that make use of inexpensive hardware with relatively poorer imaging capabilities. As the 

collection and annotation of large datasets with new systems would be extremely difficult, 

the reported approach will aid the development and adaptation of machine learning models 

that were developed using standardized datasets to work with unannotated data collected 

using the newer inexpensive systems. Even when the data are collected using the same 

instrument, annotation of medical datasets, in particular, is a highly resource-intensive and 

expert-dependent task that considerably hinders the development of robust medical AI 

models. Owing to its suitability for semi-supervised applications, the reported MD-nets 

approach also offers an additional benefit over traditional supervised networks by enabling 

effective network training using largely unannotated datasets, with only a limited number of 

annotated examples.

To date, studies that made use of adversarial learning schemes for medical image analysis 

have primarily focused on utilizing their generative capabilities for tasks such as image 

reconstruction and synthesis among others44–48. In fact, generative approaches have been 

examined towards converting subpar image data collected from different inexpensive 

systems to resemble high-quality human-readable microscopy images45,49. Although these 

methods show substantial promise in certain areas of medicine, they are also limited to the 

training data domains and utilize a complex matched-image training process during model 

development, which, depending on the task, may not be possible45,48,49. Such models, 

depending on the training methodologies used, may be highly susceptible to hallucinations 

as the generator actively tries to outperform the discriminator, which limits its value for use 

with lossy image datasets such as those observed with point-of-care systems50. By contrast, 

the adversarial approach used here, MD-net, lacks a generative element and focuses on 

minimizing the performance of the discriminator between the images from the different data 

distributions, effectively forcing the network to utilize features that are available in both 

source and target domains. The relatively easy adaptation to different distributions and lack 

of need for matched image training greatly improves the developmental process of such 
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generalizable networks and with simpler and inexpensive systems. Although, generative 

variants of domain adaptation strategies, such as PixelDA and GAGL, have been reported 

to be suitable using the Modified National Institute of Standards and Technology database 

(MNIST)22,23, it has been suggested that such an approach may not be suitable for tasks/

datasets when label pollution is a potential concern, such as in Office-31, and is therefore 

probably unsuitable for most real-world medical datasets22. Furthermore, generative models 

could also struggle from the limited dataset availability for image generation during the 

adaptation process51.

Current deep learning approaches in medicine primarily focus on developing models for 

a particular task that work with one type of imaging system, usually the most commonly 

available system due to data dependency issues, and rarely focus on adaptability to different 

systems. The use of such deep learning approaches is therefore limited for newer and more 

efficient systems of the future or those that are still in the developmental pipeline. The 

reported MD-net approach can aid in adaptability from earlier systems to newer or other 

similar systems with potentially lower target data requirements. Such an approach can be 

very useful in improving access to care by facilitating the adaptation of high-performance 

models to smaller clinics and medical centres, where large, structured clinical datasets 

suitable for the development of reliable deep learning models may not be available. 

Furthermore, the reported methods can be used in repurposing models for clinical image 

analysis tasks performed at different centres and practices and similar tasks that can be 

performed using different biological samples (for example, sperm assessment in semen for 

fertility screening and sperm identification in tissue samples during microscopic testicular 

sperm extraction procedures).

Most clinical datasets used in the development of high-performance models are unavailable 

for external and research use due to regulatory limitations on getting access to patient 

information/data. MD-nets (NoS) utilizes previously developed models to adapt to datasets 

from different clinics without the need to access the original clinical data used for system 

training and validation and without the need for additional data annotation. Advancements 

provided through MD-nets open the possibility of augmenting most supervised models to 

be efficiently and reliably repurposed and reused using an adversarial learning scheme. We 

envision that such an approach has federated learning applications and could potentially 

save a considerable amount of time and resources while leading to the wider utility 

of well-trained and highly validated deep learning models. Potentially, knowledge from 

multicentre datasets can be synchronized under a single unified model/knowledge library, 

while protecting confidential information.

While the MD-nets (NoS) approach, which makes use of unlabelled target dataset and 

without direct access to original source dataset, can be of enormous benefit to medical 

and biomedical communities, the source model weights of the originally trained network, 

which are needed for domain adaptation, have a strong influence on the adaptation 

process. Supervised models carrying data biases and a high degree of task-irrelevant 

feature information can affect the network’s performance on the target dataset adversely. 

Furthermore, such a no-source approach, in its current form, makes use of a small number 

of labelled target data in validating the trained model and may not be suitable for tasks, 

Kanakasabapathy et al. Page 14

Nat Biomed Eng. Author manuscript; available in PMC 2022 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



such as the sperm morphology assessment described in this work, where target data labelling 

and manual verification are not feasible. When used properly, MD-nets can help to extend 

the effective life of many supervised models given that the original network’s learning 

can be utilized on newer and less common data domains, such as in the development of 

point-of-care imaging systems.

Point-of-care systems such as those presented in our study using smartphones can greatly 

improve access-to-care and present pathways for surveillance diagnostics and disease 

monitoring systems52. A crucial aspect for the feasibility of such point-of-care devices 

is their use costs, especially for low- and middle-income countries. In such point-of-care 

optical diagnostic systems, the image quality may not be suitable for reliable human 

inference due to factors such as limited imaging capabilities, noisy signal and looser control 

of imaging parameters. As shown in this study with sperm morphology assessments, images 

that cannot be reliably evaluated by human experts can be analysed using MD-nets given 

that features relevant for the system’s classification in the source are also available in 

the target domain. MD-nets analyse images of a target domain for classification without 

the need for any additional expert intervention, making it more suitable for point-of-care 

systems.

Furthermore, MD-nets can detect unseen distributions through the activity of its 

discriminative element, and automated adaptation to a target domain can be achieved if 

the network weights are not fixed (Supplementary Fig. 3b). In the case that the network does 

not recognize a shift, there will be a negligible change in the network’s discriminator loss 

and the model weights will not be updated. This can be useful for a non-expert end user who 

may not recognize shifts in the image data used by the network during the post-development 

phase. Thus, MD-nets can greatly contribute to the development and utility of automated 

point-of-care imaging systems for diagnostic applications.

MD-nets were developed taking into consideration the limits and preferences of the 

medical and healthcare communities. The approach makes use of a source-constrained, 

class-specific feature space-based adversarial adaptation strategy in developing robust and 

high-performing deep learning models for biomedical applications. The versatility of the 

approach enables the use of MD-net in both semisupervised and unsupervised learning 

scenarios to effectively capitalize on the largely unlabelled medical datasets. Finally, its 

ability to adapt pretrained clinical models developed at one medical centre to the dataset 

composition of another centre without the need for any data sharing and labelling can be of 

high value within the healthcare and industrial circles.

Methods

Dataset preparation.

In this study, we collected image data for three clinical image analysis tasks, namely: 

differentiating human embryos on the basis of their developmental status, human sperm on 

the basis of their morphological quality and red blood cells on the basis of their status of 

malarial infections. For each task, samples were imaged using both commercially available 

and non-commercially available imaging systems. Datasets were designed and named 
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on the basis of the quality of images produced by the imaging system (Supplementary 

Information). In brief, datasets ranged from a quality level of 4 to 1, with 4 being the 

highest and, usually, the clinical imaging set-up used by the expert annotators. Malaria 

datasets carry 1_s and 1_t categories, where 1_s, used as the source, was externally collected 

and annotated, although both 1_s and 1_t were imaged using a smartphone attached to a 

benchtop microscope.

Human embryo image datasets.

The highest quality embryo dataset (ED4) comprises 2,440 images of embryos captured 

at 113 h after insemination of embryo culture from 374 patients at the Massachusetts 

General Hospital (MGH) fertility centre in Boston, Massachusetts during routine clinical 

care and has been used in this study under an institutional review board approval 

(IRB#2017P001339) (Supplementary Fig. 1). The embryos were imaged using a commercial 

time-lapse imaging system at MGH (Vitrolife Embryoscope) and only embryo images 

that were collected at 113 h after insemination were used for this study. There is no 

universal grading system for embryos, and the annotators used a five-quality grade system 

that is specific to our dataset as defined by the Massachusetts General Hospital fertility 

centre, which uses a modified Gardener blastocyst grading system13,15. A two-category 

embryo classification (blastocyst; non-blastocyst) based on the blastocyst status is more 

commonly recognized worldwide. The two-category system is a condensed version of the 

five-category system, where classes 1 and 2 of the five-category systems belong to one class 

(non-blastocyst), and classes 3, 4 and 5 belong to the other class (blastocyst). Images were 

therefore annotated by MGH embryologists on the basis of their developmental grade, and 

the annotated data were used for training on the basis of the previously described five-class 

system focused on embryo morphological features with inferences made at a two-class level 

(blastocyst; non-blastocyst). ED4 was used with a split of 1,188, 510 and 742 for training, 

validation and testing, respectively (Supplementary Fig.1). ED3 comprises 258 images of 

embryos recorded using various clinical benchtop microscopes and was originally collected 

by the Society for Reproductive Biologists and Technologists (SRBT) for the Embryo 

ATLAS project (Supplementary Fig. 1). The images were categorized into two different 

classes, namely blastocysts and non-blastocysts by eight director-level embryologists from 

eight fertility practices across the United States. The 69 images of ED2 were recorded by 

imaging embryos designated for discard or research using a portable stand-alone optical 

system (Supplementary Information and Supplementary Figs. 11 and 16), while the 296 

images of ED1 were recorded by imaging embryos designated for discard or research using 

a portable smartphone-based optical system (Supplementary Information and Supplementary 

Figs. 11 and 17). All imaging tasks, including data collection and annotation, were 

performed by staff at the MGH fertility centre under institutional review board approval 

(IRB#2017P001339, IRB#2019P001000 and IRB#2019P002392). Images were categorized 

into five different classes by MGH technical staff and consolidated into two inference 

classes similar to the ED4 data preparation. All of the experiments were performed in 

compliance with the relevant laws and institutional guidelines of the Massachusetts General 

Hospital, Brigham and Women’s Hospital and Mass General Brigham. Data split for each 

individual domain adaptation task evaluated in this study are available in the Supplementary 

Information (Supplementary Table 5).
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Human sperm image datasets.

The highest-quality human sperm image dataset (SD4), which was used in this study as 

the source dataset, was obtained from images of ten slides of smeared and stained human 

sperm samples. The images of these slides were obtained from the American Association 

of Bioanalysts (AAB) and were imaged using ×100 microscopes. The resolution of these 

images in their stitched form (full slide image) was as high as 266,000 × 180,000 px. A 

total of 322,081 individual cells/objects was extracted from these images using a template 

matching algorithm (Supplementary Information and Supplementary Fig. 18). A CNN 

classifier was used to differentiate between sperm cells and non-sperm cells to refine the 

dataset before use29. The refinement process yielded a total of 197,283 individual sperm 

images, which were later used mostly for testing the developed network (Supplementary 

Figs. 9 and 18). A custom-built mobile application was used to facilitate individual sperm 

image annotations, which comprised the following classes: normal sperm, head defect, 

neck defect and tail defect (Supplementary Information and Supplementary Fig. 18). A 

total of 4,142 sperm images was annotated by five clinicians at MGH, which made up 

the annotated source data. The data were split into three sets, namely training, validation 

and test of sizes 2,899, 828 and 415, respectively, during the development of the initial 

network (Supplementary Fig. 9). The network used for the evaluation of the AAB sperm 

slides utilized 4,142 annotated sperm image data as the source and 193,141 as the target 

(testing) in estimating the overall morphological score of each sperm slide. We measured the 

average sperm morphology score of each patient sperm slide (n = 10) by analysing 193,141 

sperm images using MD-net and compared the results with the national average sperm 

morphology score measured by at least 90 technicians across the country as reported by 

AAB. The sperm image data used for SD3, SD2 and SD1 domains were obtained from 47, 

48 and 48 patient semen slides that were collected as part of the participant’s routine clinical 

practice at the MGH fertility centre (Supplementary Fig. 9) (IRB#2019P001015). Clinically, 

the datasets were prepared by imaging smeared semen samples on glass slides and stained 

using the Romanowsky staining method. The sperm image data used for SD3, SD2 and 

SD1 domains were recorded using a benchtop Keyence microscope at ×60 magnification, a 

3D-printed portable imaging system (Supplementary Information and Supplementary Figs. 

11 and 16) and a 3D-printed smartphone-based imaging system (Supplementary Information 

and Supplementary Figs. 11 and 17), respectively. The overall morphology score for 

each slide was measured using conventional manual microscopy by MGH fertility centre 

technical staff. Individual cells were extracted from these images using a template matching 

algorithm. As a result, 100,892 sperm images were collected for SD3; 19,668 sperm images 

were collected for SD2 and 20,554 sperm images were collected for SD1, which were 

eventually used in the development and evaluation of the MD-nets (Supplementary Fig. 9). 

A total of 7, 2 and 1 slides was used in calibrating the network for performance with SD3, 

SD2 and SD1, respectively, during network development and these slides were therefore not 

used during the system evaluation. Data split for each individual domain adaptation task 

evaluated in this study are available in the Supplementary Information (Supplementary Table 

5).
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Malaria image datasets.

The externally annotated source dataset (MD1_s) comprises 27,558 single blood cell images 

of Giemsa-stained thin-blood smear slides, which were collected from 150 patients with P. 
falciparum infection and 50 healthy controls (Supplementary Fig. 13). The thin-smear slides 

were imaged using a smartphone camera attached to a benchtop bright-field microscope, 

and segmentation was performed to isolate individual red blood cell images. All images 

were manually annotated between infected (parasitized) and non-infected (non-parasitized) 

cells by a single expert slide reader from Mahidol-Oxford Tropical Medicine Research 

Unit in Bangkok, Thailand. The dataset is publicly available and is hosted by the National 

Library of Medicine (NLM) of the NIH33. The MD1_s dataset was split into 19,290, 5,512 

and 2,756 for training, validation and testing, respectively, with equal class distributions 

for each set. The malaria blood cell data used for MD3, MD2 and MD1 domains were 

obtained from eight patients who were positive for malarial infection, confirmed using 

an immunochromatographic antigen test (Abbott BinaxNOW), during routine clinical care 

at MGH. Thin-smear slides were prepared and stained with Giemsa. These deidentified 

slides were approved for secondary research use by the institutional review board at 

BWH (IRB#2020P000644). Slides were imaged using a benchtop microscope, a portable 

stand-alone 3D-printed microscope and a smartphone-based microscope (Supplementary 

Information), and individual cells were extracted from these images using a template-

matching algorithm (Supplementary Information and Supplementary Figs. 11, 16 and 

19). As parasitized cells of these slides that were originally confirmed by clinical staff 

presented very distinct morphological patterns, such as chromatin dots under microscopic 

investigations, the annotators were asked to differentiate images collected from these slides 

on the basis of the presence of such dots in the individual red blood cell images53. These 

samples were manually annotated by three members of our research group into two different 

classes, namely P. Falciparum infected (parasitized) and uninfected (non-parasitized) cells. 

Only cells with a perfect agreement between all three annotators were used in this study. 

MD3 comprised 3,792 blood cell images recorded using a benchtop microscope. The data 

were split into a validation set of 3,026 and a test set of 766 (S13). MD2 comprised 

1,645 blood cell images recorded using a portable imaging system. The data were split 

into 1,315 and 330 for validation and testing, respectively (Supplementary Fig. 13). MD1_t 

comprised 1,603 blood cell images recorded using a smartphone attached to a benchtop 

microscope, similar to data imaging performed for MD1_s. The data were split into 1,282 

and 321 for validation and testing, respectively (Supplementary Fig. 13). Data split for each 

individual domain adaptation task evaluated in this study are available in the Supplementary 

Information (Supplementary Table 5).

Malaria image set preparations for simulated patient cases.

To quantitatively evaluate the performance of MD-nets (NoS) in detecting malaria-infected 

blood cells in samples, we prepared a new set of data using malaria slides received from 

MGH. A total of 12,866, 9,752 and 8,843 malaria images recorded from MGH malaria 

slides were included in the MD1_t, MD2 and MD3 datasets, respectively. The new images 

were also annotated manually by three staff on the basis of the status of malarial infection. 

Using the updated datasets, 40 image sets per domain, composed of different clinically 

relevant proportions (0–15%) of parasitized blood cell images, were prepared for the 

Kanakasabapathy et al. Page 18

Nat Biomed Eng. Author manuscript; available in PMC 2022 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



simulated diagnostic evaluation of MD-nets (NoS). Each image set contained a total of 1,500 

unique cell images. Ten image sets (for all three datasets) contained only non-infected blood 

cells (0%). The other 30 cases contained varying levels of P. falciparum-infected blood cells 

with a ratio of infected cells ranging from 1% to 15% (2 cases for every 1% increase) (for 

all three datasets). The models were then tested using these prepared simulated cases and, in 

each dataset, all of the samples that reported a higher number of positives than the control 

samples were considered to be positive.

Network development and training.

The general MD-net design includes a base network architecture with a final flattened layer 

connected to a classifier block and an adversarial block (Fig. 1b). MD-nets utilize two 

different training strategies based on the availability of source data. With the availability 

of source data, MD-nets capitalize on a more traditional approach taking into consideration 

best practices suited for the medical domain with a strong emphasis on source performance. 

When source datasets are unavailable, the pretrained source model is utilized by MD-nets, 

in combination with a clustering element to generate pseudolabels, with an emphasis on 

retaining source information (Fig. 4a).

MD-nets.

During the training phase, the images from both the source and the target datasets are 

transformed into the respective feature representations by the feature extractor of the 

base network. The feature representations are utilized by the classifier and adversarial 

blocks during training to effectively classify between the different classes and differentiate 

between the different domain distributions, respectively. Borrowing ideas from previous 

work, MD-nets are trained by minimizing the classification loss generated using the 

source data by the classification block, while maximizing the discriminator loss (transfer 

loss), increasing the domain confusion11,12,24,54 (Fig. 1b). More specifically, the traditional 

approach builds on the concepts and ideas utilized by DANN and CDAN11,12. We 

conditioned the discriminative block using the class labels to improve the transfer of 

class-specific information between the domains. The domain discriminator, which is trained 

to discriminate source and target features conditioned by class information, makes use 

of the class predictions from the SoftMax function of the classifier network to compute 

the conditional distribution. Moreover, to improve the adaptation performance, imbalance 

in the training data (class imbalance) was addressed by balancing data through random 

oversampling and under sampling distributions such that the resultant distribution of labels 

in each epoch is balanced. We performed hyperparameter tuning by computing reverse 

validation risk. The stoppage of network training in MD-nets was defined by monitoring 

performance on source data to minimize overfitting on the target. Furthermore, MD-nets 

included weight normalizations at the SoftMax layer to improve class separation among 

distributions, and batch normalization was added to the feature representation to help in 

reducing domain discrepancy (by reducing internal covariate shift).

To adapt a network trained using a source data distribution Ds for a particular task to 

a shifted target data distribution Dt for the same task, both Ds and Dt were passed 

through the MD-net’s base network (specific to the task) to iteratively obtain the feature 
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representations fs and ft for every data point of Ds and Dt. Here, Ds and Dt are represented 

by Ds = xis, yis i = 1
ns

 and Dt = xjt j = 1
nt

, where x is the datapoint (image) and y is the 

associated classification label for n number of images. ResNet-50 was used for all sections 

of the study involving comparisons. For the cell classification tasks based on embryo and 

sperm morphologies, we used the Xception as the base network as Xception, especially 

for embryo image analysis, resulted in a more robust performance15,55. Xception models 

did not include additional weight and batch normalizations, although it is probable that the 

performance will improve with their inclusion. The 2,048 features from the flattened layer 

of these networks were used to obtain fs and ft from xs and xs for every training step. These 

representations are passed to the classifier block where the conditional probability vectors cs 

and ct are generated using a SoftMax function. For the classification tasks involving sperm 

and red blood cells, the probability vector length was limited to 2, while embryo tasks used 

a vector length of 5 and the length was condensed to 2 through summation15. The source 

classifier error is minimized to guarantee lower source risk and is defined as

ϵ(C) = E xis, yis ∼ DsL C xis , yis ,

where L() represents cross-entropy loss and C() is the classifier network.

In parallel, during the adaptation process, the discriminator error is maximized. The 

discriminator network, D, utilizes the common base network along with the adversarial 

block which consists of three layers with rectified linear units, activations and dropouts. In 

the discriminator error calculation, weighted entropy conditioning is utilized along with a 

multilinear feature map h. The computation of h(f,c) is a multilinear map, formed by the 

tensor product of feature representation f and classifier prediction c. Where c for k classes is 

given by c = [c1, c2, c3, … , ck] and f for l dimensions is given by f = [f1, f2, f3, … , fl]. The 

resultant multilinear map h is expressed as

h f, c =

f1 . c1 f1 . c2 ⋯ f1 . ck
f2 . c1 f2 . c2 ⋯ f2 . ck
f3 . c1 f3 . c2 ⋯ f3 . ck

⋮ ⋮ ⋮ ⋮
fl . c1 fl . c2 ⋯ fl . ck

The combination of f and c, performed as a conditioning step, helps to preserve class-

specific information across domains. Furthermore, entropy was used as a metric of 

uncertainty in the classifier predictions to improve the classification performance on target 

distribution by encouraging the high confidence predictions in the unlabelled target domain. 

The uncertainty of the predictions, H(c), was defined as,

H(c) = −
i 1

n
cilog ci
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Where n is the total number of training classes and ci is the probability vector with each 

class. Each training example at the discriminator is weighted with

w(H(c)) = 1 + e−H(c)

Therefore, the discriminator error ε(D) is given by,

ϵ(D) = − Exis ∼ Dsw H cis log D his − Exjt ∼ Dtw H cjt log 1 − D hjt

The overall MD-net training is achieved by minimizing source risk and maximizing the 

discriminator error for distance reduction between the source and target distributions, which 

is achieved by minimizing the overall cost function given by,

min(ϵ(C) − λϵ(D))

where λ is a trade-off between discriminator error and source-risk.

MD-nets (NoS).

MD-nets (NoS) were developed for specific scenarios in which high-quality clinical source 

data are unavailable and source model weights with only the unlabelled target dataset were 

available. This version of MD-nets carries all of the elements of the original MD-nets, 

along with an additional frozen feature map extractor initialized with source weights and 

a DeepCluster-based clustering element56 (Fig. 4a). As there are no source data available 

during network training, MD-net (NoS) makes use of feature maps, fTs, generated by the 

frozen source feature map extractor along with pseudolabels generated by the clustering 

element, when using the unlabelled target data for adaptation. The target feature extractor 

and classifier block, also initialized with the source weights, along with the adversarial block 

are updated throughout training. However, the clustering element is updated periodically 

at regular intervals, which is treated as a hyperparameter for the different tasks. In the 

NoS version, MD-nets are trained by minimizing the discrepancy between the pseudolabels 

generated by the clustering element and the target classifier, which is treated as the 

classifier error, ε(Cnos). Furthermore, while minimizing the classifier error, we maximize the 

discriminator error similar to the MD-nets design. In this approach, during adaptation with 

the unlabelled target examples, the discriminator helps to stabilize the adaptation process by 

acting as a regularizer, restricting the target feature maps, fTt, in substantially deviating from 

the frozen source feature maps, fTs.

The classifier error is minimized to match the generated pseudolabels obtained from 

the clustering element56. For a given set of target images xjt = x1
t , x2

t , x3
t , …, xjt , once the 

initial labels, assigned based on the classifier predictions Cnos xjt , the initial centroids are 

calculated using
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μk0 =
xj 1
tn

Cnos xjt fTs xjt

xj 1
tn

Cnos xjt

Once all of the centroids for each class are obtained, we compute the initial pseudolabels, y0
t , 

by finding the nearest centroid cluster by obtaining the minimum cosine distance between 

the feature map fTs xjt  and the centroids.

y0
t = argminkfTt xjt − μk0

t2

Using the generated pseudolabels, we calculate the centroids and generate pseudolabels once 

more,

μk1 =
xj 1
tn

Cnos xjt fTs xjt

xj 1
tn

Cnos xjt

y1
t = argminkfTt xjt − μk1

t2

The newly generated pseudolabels are utilized in the calculation of the classifier error during 

training. The NoS classifier error ε(Cnos) is defined as

ϵ Cnos = E xjt ∼ DtLnos Cnos xjt , y1
t

where Lnos() represents cross-entropy loss and Cnos() is the NoS target classifier network.

As there are no source images, the discriminator error ε(D) is given by

ϵ(D) = − Exjt ∼ Dtw H cjTs log D hjTs − Exjt ∼ Dtw H cjTt log 1 − D hjTt

The overall MD-net (NoS) training is achieved similar to the original approach, by 

minimizing classifier error and maximizing the discriminator error,

min λϵ Cnos − ϵ(D)

where λ is a trade-off between discriminator error and classifier error.
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Embryo classification network parameters.

MD-net primary embryo classification models were trained with ED4 as the source, and 

ED3, ED2 and ED1 as the target. ED4 was divided into source training and source 

validation when used for adaptation to other distributions (Supplementary Table 5). These 

embryo classification models used Xception as the base network. The models were trained 

to classify embryo images recorded at 113 h after insemination into blastocysts and non-

blastocysts as two major clinically relevant classes of embryos. Hyperparameters were 

evaluated manually (Supplementary Table 6). Learning rates between 0.1 and 0.0001 and 

batch sizes of 32 and 64 were evaluated when developing the best performing neural 

network (Supplementary Table 6). Data balancing was achieved through augmentation and 

stratified batch distributions. Data augmentation was performed by random horizontal or 

vertical flipping and random 0–359° rotations of the images. Early stoppage was set at 

2,000 iterations after the lowest source validation loss (Supplementary Table 6). Reverse 

validation risk for each model trained was also evaluated when picking the final models used 

in the study. For the variability experiments (Fig. 2d), the supervised networks were trained 

using the Xception, Inception v3, ResNet-50, Inception-ResNet v2 and de novo 40-layer 

CNN55,57–59. These networks were trained using ED4 data and their hyperparameters were 

evaluated manually to obtain the best performing model. The dimensions of all images used 

in network training were resized to 210 × 210 px. All training was performed within the 

Keras environment. We picked the best model on the basis of the best validation loss and 

tested the performance on unseen target datasets (ED4, ED3, ED2 and ED1) by randomly 

changing the seed (5 seeds). All networks were trained with hyperparameters of the best 

performing model and using different seeds (5 seeds) (Supplementary Table 2).

We envision the use of such approaches for medical image analysis tasks to have different 

benefits. While continuous adaptation offers the potential to adapt regardless of domain 

shifts and in the absence of any knowledge of the shifts, freezing the weights helps in 

utilizing an adapted network for rapid testing. In our study, we wanted to investigate the 

feasibility of both approaches for medical image analysis tasks if their test performances 

would be satisfactory. We therefore utilized our Embryo datasets (ED4, ED3, ED2 and 

ED1) in evaluating MD-net performance when the network weights were frozen, and when 

they were continuously adapting. The original target test sets of the four datasets were 

split into 50%–50% (t1–t2) (ED4 = 373, ED3 = 130, ED2 = 36 and ED1 = 150) for this 

experiment. In the continuous adaptation arm of the experiment, both test sets were used 

during adaptation, that is, the network was trained with the unlabelled target using both sets 

(t1 and t2), and the test result was obtained by calculating the network performance on t2. 

In the fixed weights arm, the MD-net was trained with t1 as the unlabelled target and its 

weights were frozen once the best performing model on source was obtained. The network 

with its frozen weights, which now behaves as a classifier, was used to evaluate t2 and the 

performance was calculated for comparison with the other arm. For continuously adapting 

MD-nets, training was terminated with the early stoppage set at 2,000 iterations, and the 

model with the best validation loss was saved.

In medical tasks, assuming the original network training source data are well validated, it 

is preferable that networks developed for newer domains utilize features that are shared 
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by both domains while performing sufficiently well in both domains. High network 

performance when using such common features between the domains helps confirm that 

these networks developed for the target domain make use of medically task-relevant features 

during classification. Thus, in our study with embryo images, we evaluated the effect of 

transfer learning compared to our adversarial approach. For the experiment comparing 

adversarial performance and supervised adaptation performance, MD-nets (Xception) were 

trained with ED4 as the source data and unlabelled target data as described earlier. A 

baseline supervised network (Xception) was trained using ED4 data and tested on a held-out 

ED4 test set. The network was then, through transfer learning, adapted to the different 

domains (ED3, ED2 and ED1) with the use of the target labels. The networks were then 

tested using the ED4 test set. Similarly, the baseline network weights were used in the 

MD-net (Xception) framework and the network was trained using the target sets ED3, ED2 

and ED1 without their target labels. The MD-net models were also tested using the common 

ED4 held-out test set.

For comparison with other methods, we reimplemented MD-nets with ResNet-50. 

Hyperparameters were optimized through manual evaluations and selection. Learning rates 

between 0.1 and 0.0001 and batch sizes of 32 and 64 were evaluated when developing 

the best performing neural network model (Supplementary Table 6). Data balancing was 

achieved through augmentation and stratified batch distributions. Data augmentation was 

performed by random horizontal or vertical flipping and random 0–359° rotations of the 

images. The early stoppage was set at 5,000 iterations after the lowest source validation 

loss. We also implemented DANN, ADDA, PixelDA, GAGL and CAN with ED4 as source, 

and ED3, ED2 and ED1 as the target. These networks were trained and optimized based 

on the practices and guidelines suggested by the original authors. A list of the evaluated 

hyperparameters and best performing models is provided in the Supplementary Information 

(Supplementary Table 6).

Sperm classification network parameters.

MD-nets trained for the classification of sperm cells on the basis of their morphology was a 

binary classification model with SD4 as the source dataset and SD3, SD2 and SD1 as target 

datasets (Supplementary Table 5). Hyperparameters were evaluated manually. Learning rates 

between 0.01 and 0.00001 and batch sizes of 8, 16, 32 and 64 were evaluated when 

developing the best performing neural network (Supplementary Table 6). Data balancing 

was achieved through augmentation and stratified batch distributions. Early stoppage was set 

at 2,000 iterations after the lowest source validation loss (Supplementary Table 6). Reverse 

validation risk for each model trained was also evaluated when picking the final models used 

in the study.

Malaria classification network parameters.

Initially, a supervised neural network classifier was developed using the NIH dataset to 

replicate a previously reported neural network. Using the same architecture mentioned 

in their work (ResNet-50), we trained a binary classifier on MD1_s33. The images 

were resized to 100 × 100 px and normalized during training. Data augmentation was 

performed by random horizontal or vertical flipping and random 0–359° rotations of the 
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images. Hyperparameter tuning was performed by a manual search of learning rate (0.001–

0.0000001) and the best model was selected on the basis of the lowest validation loss.

For the development of MD-nets (SW), the base network was initialized with the trained 

weights of the supervised model (ResNet-50). The initial layers of the base network 

were then frozen and the whole network was retrained with MD1_s as the source, and 

MD3, MD2 and MD1_t as the target (Supplementary Table 5). Only the last 7 layers, 

which include the fully connected layer and six sets of convolution layers with batch 

normalization from the classifier and discriminator, were used during training by MD-nets. 

Hyperparameters were evaluated manually (Supplementary Table 6). Learning rates between 

0.01 and 0.00001 and batch sizes of 16 and 32 were evaluated when developing the 

best performing neural network. Data balancing was achieved through augmentation and 

stratified batch distributions. Patience of 5,000 iterations was used to allow adaptation after 

the lowest source validation loss is achieved (Supplementary Tables 5 and 6). Similarly, 

MD-nets were also trained using the source and target datasets in the traditional manner for 

comparison (Supplementary Tables 5 and 6).

For the development of MD-nets (NoS), the target images were passed through the target 

feature extractor and the frozen source feature map extractor, which were both initialized 

with the pretrained weights of the supervised model (ResNet-50). The images were resized 

to 100 × 100 px and normalized during training. Hyperparameters were evaluated manually. 

Learning rates between 0.01 and 0.0001 and batch sizes of 8, 16 and 32 were evaluated 

when developing the best performing neural network, we also fine-tuned classifier trade-off 

λ (0–1).

MD-nets Office-31.

Office-31 is a widely used publicly available dataset for visual domain adaptation, with 

4,652 images and 31 categories collected from three distinct domains: Amazon (A), 

Webcam (W) and DSLR (D)19. We evaluate all methods on six transfer tasks A → W, D → 
W, W → D, A → D, D → A and W → A. In this study, we implemented PixelDA, GAGL, 

MD-nets and MD-nets (NoS) models. We use all source domain data and all unlabelled 

target data used for training and picking the model. For all implemented models, we divide 

the data into 90% source training and a 10% source validation dataset (Supplementary Table 

5). PixelDA, MD-net (NoS) and GAGL used a target data validation (Supplementary Table 

5). MD-net models were finalized based on their performance on the source validation loss. 

The images were resized to 256 × 256 px and were cropped to 224 × 224 px. The images 

were normalized during training. Hyperparameters were evaluated manually (Supplementary 

Table 6). Data balancing was performed for all methods except MD-nets (NoS) on the 

source data through augmentation and stratified batch distributions. We used ResNet-50 

as our base architecture with batch normalization, weight normalization and an additional 

bottleneck layer.

Specifically, for MD-nets (NoS), a supervised classifier neural network was trained on all of 

the datasets, Amazon (A), Webcam (W), and DSLR (D), using ResNet-50. The images were 

also resized and cropped to 244 × 224 px and normalized during training. Hyperparameters 

were evaluated manually (Supplementary Table 6).
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Statistical information.

Statistical analyses and measures such as the two-tailed one-sample t-tests, diagnostic 

sensitivity, specificity and accuracy were performed using MedCalc (v.19.1) and GraphPad 

Prism (v.8.4.0). AUC values were calculated through receiver operator characteristic 

analyses using the Python library Scikit-learn library (v.0.23.1).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Schematics of the use of adversarial domain adaptive neural networks for medical image 
analysis.
a, Supervised learning networks for medical image analysis are limited to fully expert-

annotated datasets for training and are generally unable to adapt to unseen distributions of 

data collected using different imaging systems used in different clinical settings. Clinical 

expert staff may not be able to reliably annotate medical images obtained through portable 

point-of-care optical systems that are usually of lower quality compared with bulky and 

expensive benchtop microscopes. However, adversarial learning networks can be used to 

utilize standardized annotated image datasets obtained from one distribution (source) to 

adapt themselves with unannotated data obtained from a different distribution (target) 

towards a substantially more generalized neural network. b, Schematic of the general 

framework of the adversarial domain adaptive medical neural networks (MD-nets). The 

base network layers can be replaced using any regular custom neural network architecture. 

Additional elements for pseudolabelling can be added to enable the network to achieve 

adaptation in the absence of source data.
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Fig. 2 |. Comparison of supervised CNNs and domain adaptation methods for the morphological 
analysis of human embryo images.
a, The embryo image datasets were collected from a clinical time-lapse system (ED4), 

various clinical brightfield inverted microscopes (ED3), a portable 3D-printed imaging 

system (ED2) and a 3D-printed smartphone-based imaging system (ED1). The overlaid 

saliency maps help to visualize pixels that are most utilized by the MD-nets in their 

decision-making. The interest points are examples of strong features of different embryo 

images identified by the SIFT algorithm. b, The distribution of feature points in non-

blastocyst and blastocyst-stage embryo images collected from ED4 (n = 251 and n = 491), 

ED3 (n = 141 and n = 117), ED2 (n = 13 and n = 56) and ED1 (n = 99 and n = 197). The 

dashed lines represent the median and dotted lines represent quartiles. c, The performance 

of MD-nets in evaluating embryo images collected using different imaging systems on the 

basis of their developmental stage. The red bars represent non-blastocysts and the blue 
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bars represent blastocysts. d, The performance of MD-nets in embryo image classification 

compared to different supervised learning models trained with only the ED4 dataset (source) 

and unsupervised domain adaptation strategies implemented with ResNet-50, when tested on 

target test datasets of ED4 (n = 742), ED3 (n = 258), ED2 (n = 69) and ED1 (n = 296). 

The dotted line separates the domain adaptation methods from the supervised models. Each 

result represents the average of five random initialization seeds and the error bars represent 

the s.e.m. The asterisks indicate performance averages of below 50%. The dots represent the 

individual performance values of each model.
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Fig. 3 |. Assessment of the performance of MD-nets in quantitatively evaluating cell morphology 
using human sperm cells as a clinical model.
a, Linear regression plot (n = 10). The dotted line represents the line of identity. The solid 

red line represents the best-fitting straight line on the available data points identified using 

a least-squares analysis. The dotted red line represents the 95% confidence interval of the 

fitted line. The equation represents the line equation of the fitted line and r represents 

the Pearson’s correlation coefficient (P = 0.004). b, The absolute difference between 

morphological scores of human semen samples (SD4) when measured using automated 
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MD-net and manual-based assessment (national average) performed using conventional 

manual microscopy. n = 10. c, Comparison of distributions of SIFT feature points per image 

identified across the various domain-shifted datasets of microscopic sperm images. SD4, n 
= 86,440; SD3, n = 18,972; SD2, n = 19,668; and SD1, n = 20,554. Feature estimates are 

not separated by classes as manual annotations are unavailable. The dashed lines represent 

the median and the dotted lines represent quartiles. d–f, Bland-Altman tests comparing 

morphology scores estimated on the basis of manual microscopy analysis and MD-net 

using sperm samples imaged using a benchtop microscope (d) (SD3, n = 40); a portable 

3D-printed microscope (e) (SD2, n = 48); and a portable smartphone-based microscope (f) 
(SD1, n = 47). The dotted lines indicate the mean bias and the blue region within the blue 

dashed lines indicates the 95% limits of agreement. g, t-SNE plots illustrating source and 

target clustering achieved by MD-net for the four different sperm datasets. h, Examples 

of sperm images that were collected using the different optical instruments along with the 

associated saliency maps obtained from the MD-net feature extractor.
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Fig. 4 |. Performance of MD-nets (NoS) in the evaluation of malaria-infected samples.
a, Schematic of the adversarial neural network scheme showing the preloaded frozen layers 

and trainable layers. This version of MD-nets makes use of a clustering element and 

pretrained source weights and is designed to not use any source data during adaptation 

while using only unlabelled target data. fTt and hTs represent the feature representations 

of the target feature extractor and multilinear maps of the frozen source feature extractor, 

respectively. cnos represents the classifier predictions. b, Comparison of the distributions 

of SIFT feature points per image identified across the various domain-shifted datasets of 
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microscopy images of parasitized and non-parasitized cells. Samples from non-parasitized 

MD3 (n = 601), MD2 (n = 688), MD1_t (n = 1,896) and MD1_s (n = 12,401), and 

parasitized MD3 (n = 601), MD2 (n = 688), MD1_t (n = 1,896) and MD1_s (n = 12,401) 

were used in the SIFT feature measurements. The dashed lines represent the median and the 

dotted lines represent quartiles. NIH, National Institutes of Health. c–e, Receiver operator 

characteristics analyses were conducted to compare the performance of MD-net (NoS) 

before and after adaptation with preloaded weights on MD3 (c), MD2 (d) and MD1_t (e). 

The shaded regions represent the 95% confidence intervals. f, Example images of parasitized 

and non-parasitized cells from the different malaria datasets MD1_s (i), MD2 (ii), MD3 

(iii) and MD1_t (iv). g, Qualitative diagnostic performance of MD-net (NoS) before and 

after no-source adaptation to domain-shifted data collected using a benchtop microscope, 

a portable microscope and a smartphone microscope (n = 40). The blue squares represent 

image sets that were qualitatively predicted to be negative for malaria and the red squares 

represent those that were predicted to be positive for malaria.
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