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Abstract

SMG9-deficiency syndrome, also known as heart and brain malformation syndrome, is a very rare congenital genetic
disorder mainly characterized by brain, heart, and growth and developmental abnormalities. This syndrome is an
autosomal recessive disease resulting from mutations in the SMG9 gene, which encodes a critical component of
nonsense-mediated mRNA decay. Thus far, only twelve SMG9 deficiency patients have been reported with five novel
homozygous SMG9 mutations. The most frequent characteristic features of these patients are facial dysmorphism,
severe global developmental delay, intellectual disability, congenital heart disease, growth restriction, microcephaly,
and brain abnormalities. Herein, whole exome sequencing was performed to identify novel compound heterozygous
SMG9 variants (NM_019108.3: ¢.1318_1319delAG (p.Ser440%*) and c.947A>G (p.His316Arg)) in the proband, who exhib-
ited syndromic intellectual disability. Mutations were confirmed as segregating in his affected sister and other unaf-
fected family members by Sanger sequencing. The patients we describe here have a similar dysmorphology profile
associated with SMG9-deficiency syndrome. Comparing the phenotype with that of patients in published reports, our
patients can walk independently and their growth parameters are normal. In addition, short stature, failure to thrive,
and microcephaly were not observed. Possible residual function of the H316R SMG9 variant could explain the milder
phenotype observed in our patients. Our report is the first description of a non-consanguineous Chinese pedigree
with novel compound heterozygous variants in the SMG9 gene. The molecular confirmation of the patient expands
the genetic spectrum of SMG9-deficiency syndrome, and the manifestation of SMG9-deficiency syndrome in the
patient provides additional clinical information regarding this syndrome.
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Introduction

The SMG9 gene, located at 19q13.31, encodes a regula-
tory subunit of the SURF complex, which is a translation
termination complex during nonsense-mediated decay
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(NMD) [1]. NMD is a conserved posttranscriptional sur-
veillance pathway that reduces the production of harm-
ful truncated proteins translated from transcripts with
premature stop codons (PTC) to ensure the fidelity and
accuracy of the process from the transcription of genetic
information to protein synthesis [2—5]. It plays an impor-
tant role in many biological processes, including embry-
onic development, cell differentiation, stress responses
and immune response [6]. Disruption of NMD can lead
to a plethora of human genetic diseases [7]. As a member
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of the core factors involved in NMD, SMG9 supports and
stabilizes the formation of the SMG1 complex (SMG1C)
by binding to SMG1 and SMGS, and it is involved in
PTC recognition, which is a key step in the degradation
of mRNA containing PTC [1, 8]. The inability of cells to
recognize transcripts containing PTCs with SMG9 loss-
of-function mutations further indicates that SMG9 plays
a key role in post-transcriptional regulation and monitor-
ing [9]. SMG9 is highly conserved from archaea to eukar-
yotes and is expressed widely across many tissue types in
humans. This implied that functionally impaired SMG9
would lead to a severe disease phenotype.

Homozygous loss-of-function variants in the SMG9
gene (OMIM: 613176) were recently described to cause
a neurodevelopmental disorder characterized by intel-
lectual disability and multiple malformations in twelve
affected individuals from worldwide [9-13] (Fig. 1A).
The most frequent manifestations of these subjects with
mutations in the SMG9 gene are microcephaly, cerebral
malformations, intellectual disability, congenital heart
defects, and ocular anomalies. However, the severity of
the phenotype caused by SMG9 mutations remains to be
fully explored. Additional reports on SMG9 gene muta-
tions and their phenotypes will therefore be essential to
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the understanding of this condition. Herein, we report
compound heterozygous SMG9 (NM_019108.3) vari-
ants, ¢.947A>G (p.His316Arg) and c.1318_1319delAG
(p-Ser440fs), identified in a Chinese family with two
affected individuals, and we describe the patient’s associ-
ated clinical profile.

Materials and methods

Ethical compliance

A Chinese family was recruited form the Maternal and
Child Health Hospital of Guangxi Zhuang Autonomous
Region with a total of five members, with two affected
patients and three unaffected individuals (Fig. 1B). The
study was approved by the Institutional Review Board
and Ethics Committee of Guangxi Maternal and Child
Health Hospital, and detailed written informed consent
was obtained from the patients’ parents.

Whole-exome sequencing and Sanger sequencing

Peripheral anticoagulated whole blood samples (2 ml)
were collected from all family members. Genomic DNA
was extracted with a commercial DNA extraction kit
(Zeesan Biotech Co., Ltd, Xiamen, China). To identify
the potential pathogenic variants in the patients of the
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Fig. 1 Clinical and genetic features. A The distribution of all variants detected so far in fourteen patients with SMG9 variants. B Pedigree chart of the
family of the patients with SMG9-deficiency syndrome. The proband is indicated by a black arrow. € Sanger sequencing DNA chromatograms of
SMGY indicating the frameshift ¢.1318_1319delAG(p.Ser440%) variant inherited from the mother and the missense variant c.947A>G (p.His316Arq)
was transmitted by the father. D Facial clinical features at the age of 4 months. Note the presence of prominent metopic suture with broad nasal
bridge, low set malformed ears and left-sided ptosis
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family, whole-exome sequencing (WES) was performed
using genomic DNA of the proband. Exome enrichment
was performed using a commercial capture kit (Sure
Select Human All Exon, v5, Agilent Technologies, Santa
Clara, CA, USA). The enriched library was sequenced on
the Illumina HiSeq 2000 platform (Illumina Biotechnol-
ogy, San Diego, CA, USA). The GRCh37/hg19 reference
genome was aligned with the reads obtained using the
BWA Multi-Vision software package (v. 0.7.15). Variant
calling was performed with the Genome Analysis Toolkit
(GATK) and the variant annotation with TGex software
(LifeMap Sciences, Alameda, CA).

SIFT (http://sift.jcvi.org/), PolyPhen2 (http://genet
ics.bwh.harvard.edu/pph2/), CADD (https://cadd.gs.
washington.edu/snv), and MutationTaster (http://www.
mutationtaster.org/) were used to predict the effects of
variants on protein structure and function. A 3D model
of the SMG9 protein was constructed using SWISS-
MODEL (https://swissmodel.expasy.org/). Co-segre-
gation analysis of SMG9 variants were performed with
Sanger sequencing among family members (Fig. 1C). For
validation PCR, SMG9 forward 5-CCTGATTAGTCT
GGGCAGAAG-3' and reverse 5-AGGATCCCTCTG
GCTGCT-3' primers were used for exon 9 amplification,
and forward 5'-CTCCTGATCCTGCTTTGACTG-3' and
reverse 5-TTGTCTCTCCATGAACCTGTTG-3' prim-
ers were used for exon 12 amplification. The pathogenic-
ity of the variants was classified according to ACMG/
AMP guidelines [14].

Results

Clinical phenotype

The proband (II:1), a 7-year-old male, was the third
child of physically healthy non-consanguineous parents
(Fig. 1B). He was born at full term with normal measure-
ments (51.2 c¢cm; 3340 g). He was admitted to the Pedi-
atric Endocrine Guangxi Zhuang Autonomous Region
Women and Children Care Hospital due to severe intel-
lectual disability and gait disturbance when he was
5 years old. He started to sit unsupported at 11 months
and walked at 31 months, but continues to exhibit an
unsteady gait. He currently has no meaningful language.
He had mild facial dysmorphic features including a broad
nasal bridge, low set malformed ears, and left-sided ptosis
(Fig. 1D). He has Duane syndrome. He also suffered from
congenital heart disease consisting of a repaired atrial
septal defect and a ventricular septal defect. According to
the Wechsler Intelligence Scale for Children at the age of
5, his Full Scale IQ was 45. He has recurrent stereotypical
body rocking, hand flapping, and spinning. Brain mag-
netic resonance imaging at 4 years showed mild general-
ized brain atrophy. He does not have hearing problems.
Growth parameters were also within the normal range
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(At 5 years of age: Height, 110.3 cm, 50%, 0.0SD; weight,
20.2 kg,+0.4SD; head circumference, 50 cm,—0.55SD).
His karyotype was 46, XY. His 10-year-old sister was also
found to have a similar phenotype in the form of severe
psychomotor delay, mild craniofacial dysmorphism, and
congenital heart defects. Full clinical details for each
patient are shown in Table 1.

Mutation analysis
WES was performed on the proband, and sequencing
reads of 5.4 Gbp were generated. A total of >99% of the
targeted regions were covered with a depth of more than
10x. A total of 26,201 SNV or indel variants were identi-
fied in coding regions and splice sites (splicing junction
10 bp). After removing synonymous variants, and remov-
ing the variants with a minor allele frequency (MAF) > 1%
in gnomAD, ESP, 1000G and our internal database, there
were 1253 variants remaining with a MAF<0.01. Fur-
thermore, according to the ClinVar databas, the neutral,
likely benign and benign variants were also excluded.
Clinical features included intellectual disability, gait dis-
turbance, motor delay, dysphasia, broad nasal bridge,
low set malformed ears, left-sided ptosis, duane anom-
aly, septal defect, ventricular septal defect, stereotypi-
cal body rocking, and brain atrophy were regarded as
filtration parameters for variant screening. Using TGex
software (LifeMap Sciences, United States), nine candi-
date variants matched with known phenotypes in eight
genes (SMGY, NIPBL, ATN1, NPC1, MED23, METTL23,
RBM12, DEPDCS5) were subsequently extracted. Two
heterozygous SMG9 variants, ¢.947A>G (p.His316Arg)
and ¢.1318_1319delAG (p.Ser440*), were identified in the
proband (Fig. 1C). Sanger sequencing further revealed
that the heterozygous c.947A>G (p.His316Arg) and
¢.1318_1319delAG (p.Ser440*) variants were identified in
the father and mother, respectively, and that his affected
sister (II-1) also had these variants (Fig. 1C). However,
another sister (II-2) was unaffected, and Sanger sequenc-
ing showed she did not have either variant.

The variant ¢.1318_1319delAG(p.Ser440*) was absent
in the Human Gene Mutation Database (http://www.

hgmd.cf.ac.uk/ac/), HPSD  (http://liweilab.genetics.
ac.cn/HPSD/), dbSNP  (http://www.ncbi.nlm.nih.gov/
SNP/), ExAC, and gnomAD (https://gnomad.broad

institute.org/). It was located in the twelfth exon of the
SMG9 gene and causes a premature termination codon,
leading to a loss of function. The functional prediction
for ¢.1318_1319delAG(p.Ser440*) was disease-causing
by MutationTaster. The other SMG9 variant c.947A>G
(p.His316Arg) is present in the Genome Aggregation
Database (gnomAD v.2.1.1), with a minor allele frequency
of 0.00000398. The variant ¢.947A>G (p.His316Arg) is
located in the ninth exon of the SMG9 gene and in the
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nucleotide-binding G-fold domain of the SMG9 protein,
which is required for the interaction between SMG9 and
the G-like domain of SMG9 [15-17]. Multiple sequence
alignment revealed that the sequence at residue 316 is
highly conserved in different organisms (Fig. 2). The
variant ¢.947A>G (p.His316Arg) was predicted to be
deleterious by SIFT, PolyPhen2, and CADD. The Soft-
ware SWISS-MODEL was used to predict the 3D struc-
tures of the wild type (WT) and mutant SMG9 (Fig. 3)
protein. 3D modeling of the WT and mutated protein
sequences indicated that for the SMG9-H316R variant,
the additional arginine gained from the variant changes
the secondary and tertiary structures by reducing a local
a-helix. According to the AMP/ACMG guidelines for
the interpretation of sequence variants [6], c.947A>G
(p-His316Arg) was assessed to be likely pathogenic (PM1,
PM2_supporting, PM3, PP3, PP1_supporting), and
¢.1318_1319delAG(p.Ser440*) was assessed to be patho-
genic (PVS1, PM2_supporting, PP1_supporting).

Genotype-phenotype correlations

To date, a total of 12 patients with pathogenic SMG9 var-
iants have been reported in the literature [9-13]. Clini-
cal and molecular features of the 12 patients and of our
patients are summarized in Table 1. By extensive litera-
ture analysis, we compared the phenotypes of 6 patients
with homozygous missense variants and 6 patients with
loss-of-function variants (LoF; including frameshifts,
nonsense variants, and splice sites). Of the 6 patients
with homozygous missense variants, some milder phe-
notypes were observed, including independent walking
(5/6), normal speech (5/6), mild to moderate intellec-
tual disability (5/6), and normal growth (6/6). We also
noticed that only one of these patients had a brain mal-
formation, and two had congenital heart disease. While
in patients with homozygous loss-of-function mutations,
severe intellectual disability (4/4), inability to walk (3/3),
ventricular septal defect (6/6), growth Restriction (3/3),
microcephaly (5/5), and brain abnormalities (5/5) were
observed.

p.His316

Homo_sapiens (IReRN:Y:Y BB RVIe): \TAVARYAV6) 5] AN
Ol =Ty S T.OTAAFLETVCHVVIVVQDWET
TR SNITSST,Q TAAFLETVCHVVIVVQDWET
Canis_lupus  RIRONN:V:N N NRVISISAVAVERTAVIO)D1 RN

Loxodonta SLQIAAFLFTVCHVVIVVQDWET
CEIERCETTE < 1.0 TAAFLETVCHVVIVVQDWET
Do) oo /SR S T O TAAFLETVCHVVIVVQDWET

Danio_rerio

Fig. 2 Multispecies alignment showing the strong conservation

of SMG9 p.His316
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Discussion

Heart and brain malformation syndrome is a rare neu-
rodevelopmental disorder. In 2016, Shaheen et al.
reported for the first time that SMG9 mutations were
found in three children with brain and heart malfor-
mations from two unrelated families through WES [9].
Lemire et al. further expanded the disease phenotype by
studying SMG9 mutation in a patient with intellectual
disability and multiple malformations [11]. To date, only
twelve patients with SMG9-deficiency syndrome have
been reported [9-13]. The most frequent characteristic
features of these subjects with SMG9-deficiency are facial
dysmorphism, congenital heart defects, severe intel-
lectual disability, growth restriction, microcephaly and
brain abnormalities. In the current study, we performed
WES and identified compound heterozygous variants in
the SMGY9 gene in a Chinese family that included two
patients. The patients showed the common phenotypes
associated with SMG9-deficiency syndrome, includ-
ing facial dysmorphism, a degree of intellectual disabil-
ity, developmental delay, mild generalized brain atrophy,
and congenital heart defects. Therefore, the patients were
diagnosed with heart and brain malformation syndrome.
Regarding developmental delay, our patients could walk
independently and had normal growth. In addition, short
stature, failure to thrive, and microcephaly were not
observed in our patients.

In the patients described in the present study, the bial-
lelic SMG9 variants identified were a combination of
frameshift and missense variants. The ¢.1318_1319delAG
(p.Ser440*) variant was a novel frameshift variant
located in the ninth exon of the SMGY9 gene. It may act
similarly to other loss-of-function variants (LoF; includ-
ing frameshifts, nonsense variants, and splice sites)
of SMGY, like ¢.7014+4A>G and c¢.520_521delCC(p.
Prol174Argfs*12) that have previously been reported [9].
These variants result in no protein production with a sig-
nificant decrease in mRNA level due to NMD degrada-
tion [9]. The other variant, c.947A>G (p.His316Arg), is
located in the G-fold domain. This domain is involved in
the formation of SMG8-SMG9 heterodimers and could
impact the kinase activity of SMG1 [15]. The protein 3D
structural analysis of SMG9-H316R suggests that the
mutation leads to a decreased number of a-helices and
disruption of the integrity of the G-fold domain. The
variant is predicted to affect the formation of the SMG1-
SMG8-SMGY complex, altering the kinase activity of
SMG1 [15-17]. According to the ACMG/AMP stand-
ards and guidelines [12], the novel c.1318_1319delAG
(p.Ser440*) variant is pathogenic according to the PVS1,
PM2_supporting, and PP1_supporting criteria, while
the novel c.947A>G (p.His316Arg) variant is likely



Yang et al. BMC Medical Genomics (2022) 15:67

Page 7 of 8

SMG9, WT

SMG9, c.947A>G (p.His316Arg)

Fig. 3 A, B Three-dimensional structures of SMG9 protein. A Wild-type, B c.947A>G (p.His316Arg) mutant-type. The arrows indicated the location of
p.His316

pathogenic according the PM1, PM2_supporting, PM3,
PP1_supporting, and PP3 criteria.

To date, only twelve affected individuals have been
reported with homozygous variants in SMGY9, includ-
ing two missense variant, one nonsense variant, one
frameshift variant, and one splicing variant [9-11]. Clini-
cal and molecular features of the 12 patients and of our
patients are summarized in Table 1. Of note, patients with
SMG9 homozygous missense variants exhibited a milder
phenotype [11, 13], while patients with homozygous loss-
of-function variants (LoF; including frameshifts, nonsense
variants, and splice sites) exhibited a more severe pheno-
type [9, 10, 12]. This suggests the degree of phenotypic
defects is dependent on the variable degree of functional
SMG9 impairment. In the current study, the patient pre-
sented with somewhat milder phenotype and was identi-
fied to carry both a frameshift and a missense variant. It
appears that p.Ser440* is associated with a similar LOF var-
iant to the SMGY variants reported, while the p.His316Arg
missense variant may result in partial loss-of-function of
the SMG9 protein. Possible residual function of the H316R
SMG9-carrying protein could explain the milder pheno-
type observed in our patients. These results are limited by
the currently reported cases and variants, and as the num-
ber of patients increases, further refinement of the phe-
notype and identification of genotypic effects and other
phenotypic determinants are expected. Further functional
studies of these variants are needed to enhance our under-
standing of the disease and its mechanisms of action.

The underlying mechanism of SMG9 causing the con-
genital syndrome with multisystem abnormalities still
remains to be elucidated. Previous study revealed that
SMG9 deletion plays an established role in NMD, but
there is no evidence that NMD in SMG9 deficiency
causes widespread interference with the degradation
of transcripts containing PTC [9]. In addition, PTC-
containing transcripts undergo efficient degradation in
the context of SMG9 deficiency, and the SMG9 mutant
transcript itself is also regulated by NMD in the cells of
affected individuals [9, 18]. Although the severity of the
phenotype of individuals with different variant types is
variable, the global homogeneity of the phenotype among
all affected individuals suggests that the disease may be
caused by a consistent dysregulated mechanism. Thus,
SMG9 may have other unknown functions besides NMD
that contribute to the pathogenic mechanism of SMG9-
related syndromes.

Conclusions

In summary, we identified a novel compound heterozy-
gous variant in the SMGY9 gene in two patients from
the same family with a degree of intellectual disability,
developmental delay, and other congenital abnormali-
ties. This is the first description of a non-consanguineous
Chinese pedigree with SMG9 variants. These variants
were associated with a milder phenotype of SMG9-def-
iceny syndrome, which provides new insights into phe-
notypes caused by different variant combinations. The
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molecular confirmation of these SMG9-deficiency syn-
drome patients expands the clinical profile of patients
with SMG9-deficiency syndrome as well as the SMG9-
deficiency syndrome-associated SMG9 variant spectrum.
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