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* Background and Aims The largest genus of Salicaceae sensu lato, Salix, has been shown to consist of two
main clades: clade Salix, in which species have XY sex-determination systems (SDSs) on chromosome 7, and
clade Vetrix including species with ZW SDSs on chromosome 15. Here, we test the utility of whole genome
re-sequencing (WGR) for phylogenomic reconstructions of willows to infer changes between different SDSs.

* Methods We used more than 1 TB of WGR data from 70 Salix taxa to ascertain single nucleotide polymorphisms
on the autosomes, the sex-linked regions (SLRs) and the chloroplast genomes, for phylogenetic and species
tree analyses. To avoid bias, we chose reference genomes from both groups, Salix dunnii from clade Salix and
S. purpurea from clade Vetrix.

* Key Results Two main largely congruent groups were recovered: the paraphyletic Salix grade and the Vetrix
clade. The autosome dataset trees resolved four subclades (C1-C4) in Vetrix. C1 and C2 comprise species from
the Hengduan Mountains and adjacent areas and from Eurasia, respectively. Section Longifoliae (C3) grouped
within the Verrix clade but fell into the Salix clade in trees based on the chloroplast dataset analysis. Salix triandra
from Eurasia (C4) was revealed as sister to the remaining species of clade Verrix. In Salix, the polyploid group C5
is paraphyletic to clade Vetrix and subclade C6 is consistent with Argus’s subgenus Protitea. Chloroplast datasets
separated both Vetrix and Salix as monophyletic, and yielded C5 embedded within Salix. Using only diploid spe-
cies, both the SLR and autosomal datasets yielded trees with Vetrix and Salix as well-supported clades.

* Conclusion WGR data are useful for phylogenomic analyses of willows. The different SDSs may contribute to
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the isolation of the two major groups, but the reproductive barrier between them needs to be studied.

Key words: Salix, phylogeny, sex determination, whole genome re-sequencing, chloroplast dataset, willows.

INTRODUCTION

Salicaceae sensu lato (s.1.) includes over 50 genera, with ~1000
species of woody trees and shrubs (Chase et al., 2002; Li et al.,
2019). Salix L. (willows) is the largest genus (Skvortsov, 1999;
Fang et al., 1999; Ohashi et al., 2006), and includes ~450 spe-
cies mainly distributed in the Northern Hemisphere (reviewed
in Argus, 1997; Skvortsov, 1999; He et al., 2021a). However,
species with valuable biological features have been widely
introduced and cultivated in various locations around the world
(Isebrands and Richardson, 2014).

Reproduction by separate sexes (dioecy), reduced flowers,
polyploidization and frequent natural hybridization, with often
wide ranges of intraspecific phenotypic and genotypic vari-
ation, all create problems for willow classification (Argus,
1997; Skvortsov, 1999; Fang et al., 1999). Molecular evidence
in the first decade of the 21st century proved Salix to be a

monophyletic group, and significant progress in genus delimi-
tation has been achieved (Supplementary Data Table S1).
Subgeneric classification of Salix has, however, remained in
a process of endless revision (Supplementary Data Table S1).
Skvortsov (1968, translated into English in Skvortsov, 1999),
recognized three subgenera in Eurasia, Salix, Chamaetia and
Vetrix. However, he made no taxonomic decision on species
from other continents. He admitted that the separation between
the subgenera Chamaetia and Vetrix was not clear. These sub-
genera are more closely related to each other than to Salix s.1.
(sensu Skvortsov), which shows ‘primitive’ morphological fea-
tures (Barkalov and Kozyrenko, 2014; Cronk et al., 2015; Wu
et al., 2015) typically found in Populus. Dorn (1976), based on
morphological characteristics of American willows, accepted
only the subgenera Salix and Vetrix. Argus (1997) conducted
a morphological cladistic analysis and classified the North
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American species into four subgenera: Salix, Longifoliae,
Chamaetia and Vetrix. Later, Argus (2010) accepted five sub-
genera in the Flora of North America: Protitea, Longifoliae,
Salix, Chamaetia and Vetrix.

Hardig et al. (2010) used matK chloroplast markers and
ribosomal DNA internal transcribed spacer (ITS) sequences,
generally supporting Argus’s subgenera. However, Chen et al.
(2010) revealed the two subgenera Chamaetia and Vetrix to be
monophyletic based on three plastid markers. Abdollahzadeh
et al. (2011) considered that all of these subgenera were non-
monophyletic except Longifoliae. Using external transcribed
spacer (ETS) and ITS sequences of nuclear ribosomal DNA and
four plastid markers, Wu et al. (2015) supported the merging of
the subgenera Chamaetia and Vetrix, with sect. Amygdalinae
as sister to it. Lauron-Moreau et al. (2015a) proposed to sub-
divide Salix into two subgenera (Salix and Vetrix), but in a cor-
rected version (Lauron-Moreau et al., 2015b) four clades were
recognized, basically consistent with subgenera Protitea, Salix,
Longifoliae and Vetrix (including Chamaetia), respectively.
Other molecular studies around the same time mostly recog-
nized two major clades within Salix: one which is composed
of species from subgenera Salix, Longifoliae and Protitea,
and the other including species of subgenera Chamaetia and
Vetrix, along with sect. Amygdalinae, and representatives of
the formerly recognized segregated genera Chosenia (Salix
arbutifolia) and Toisusu (Salix cardiophylla) (Wu et al., 2015;
Zhang et al., 2018b). Restriction-site associated DNA (RAD)
sequencing has been applied to estimate the phylogeny of wil-
lows, whereby in particular Wagner et al. (2018, 2020, 2021a)
confirmed the monophyly of Chamaetia and Vetrix, suggesting
they be treated as the Chamaetia/Vetrix clade, but excluding
sect. Amygdalinae. He et al. (2021a) discussed adaptive evolu-
tion patterns of some Chamaetia/Vetrix species and their radi-
ation in the Hengduan Mountains, showing subdivision within
the clade into the Hengduan and Eurasian subclades. Recently,
chloroplast genomes of 32 species confirmed the monophyly
of three well-supported clades that are each separated on long
branches: Chamaetia/Vetrix, subg. Salix, and in between the
‘Amygdalinae’ clade with Salix triandra (Wagner et al., 2021D).

The emergence and development of high-throughput
sequencing technologies has provided new approaches (Morey
et al., 2013). In particular, it has become possible to sequence
large genomes at low cost with relative confidence in the data
quality (Shendure et al., 2017), and whole genome sequencing
(WGS) has become widely used (Unamba et al., 2015), and
further extended to whole genome re-sequencing (WGR)
(Shendure et al., 2017). This method can now be used for
phylogenomic studies (e.g. Malmstrgm et al., 2017; Ma et al.,
2018; Olofsson et al., 2019).

Compared to the nuclear genome, the chloroplast genome is
considerably smaller, varying among plants in size and coding
genes (Daniell et al., 2016). Moreover, the substitution rate of
the chloroplast genome is low, which makes it potentially a
useful resource for molecular phylogenetic studies (Raubeson
and Jansen, 2005). The disadvantage is the low resolution of
plastid phylogenies and the predominant maternal inheritance
of the chloroplast genome. Phylogenetic incongruence with nu-
clear data may appear due to the maternal or biparental mode of
transmission (Stull et al., 2020). Offspring resulting from inter-
specific hybridization inherit nuclear genes from both parents.
However, as shown by Zhang and Liu (2003), since Salix has
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maternal inheritance, the chloroplast genome is expected to re-
main largely identical with that of the female parent. Several
studies have applied chloroplast genomes to willow species to
resolve phylogenetic issues. Zhang et al. (2018b) used whole
chloroplast genome sequences of 42 members of Salicaceae s.1.
mainly for divergence time estimation; nevertheless, two major
clades within Salix, mainly comprising species of Chamaetia/
Vetrix and Salix, respectively, were recognized. Li et al. (2019)
used chloroplast genomes of Salix interior along with chloro-
plast genomes of 23 species from Salicaceae s.I. to recon-
struct intrageneric relationships within the family. Wagner
et al. (2021b) confirmed that chloroplast genomes can separate
large clades, but that chloroplast genome evolution at the spe-
cies level is shaped by low divergence, reticulate evolution
and homoplasy. Thus, despite low resolution and low support
values within clades, chloroplast genome data can be success-
fully used for investigation of the major clades of Salix.

Hybridization and sex determination

Salix is of interest for the study of sex-determination systems
(SDSs), and these may relate to the phylogenetic relationships
in the following way, making it important to clarify relation-
ships among willows. Populus and Salix are sister genera in
Salicaceae, and both are dioecious. It has therefore been sug-
gested that this state was present in the common ancestor of
these genera (Dai et al., 2014) before they diverged from each
other about 40—45 Mya (Boucher et al., 2003; Wu et al., 2015).
Despite the long period during which dioecy could have ex-
isted, the chromosomes carrying the sex-determination region
(SDR) are homomorphic (van Buijtenen and Einspahr, 1959).
In both genera the SDR systems are based on a single factor
located on either the female (W) chromosome or the male (Y)
chromosome (Renner and Miiller, 2021). This factor is either
female-specific expressed on the W chromosome or dominantly
repressed by the male Y chromosome. Changes in the position
of the SDR can occur relatively easily by translocation or new
mutations (Renner and Miiller, 2021). It is therefore possible
that the SDR has evolved to some extent independently in these
two genera, and that turnover events could have occurred, in
which an established sex-determining system was replaced by
a different one. Indeed, both male and female heterogamety
are now known within the genus Salix. Studies of SDSs have
mainly been based on members of subg. Vetrix, including
Salix polyclona, S. suchowensis, S. viminalis, S. purpurea and
S. triandra, which have female heterogamety (ZW) with phys-
ically extensive sex-linked regions (SLRs) on chromosome 15
in all species (reviewed in He et al., 2021b; Table 1). However,
recent studies have demonstrated male heterogamety (XY) and
SLRs on chromosome 7 in two species of subg. Salix, namely
S. dunnii (He et al., 2021b) and S. nigra (Sanderson et al.,
2021). Thus, the different SDSs may support a biologically im-
portant subdivision of Salix that could be used as a character in
subgeneric classification (although sex determination has so far
been studied in only a few species of Salix).

Recent studies have tended to decrease the number of sub-
genera, predominantly agreeing on the recognition of only
two major clades, the Salix clade consisting of subg. Salix,
Longifoliae and Protitea, and the Chamaetia/Vetrix clade
which includes subg. Chamaetia and Vetrix along with Salix
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TABLE 1. Summary of current information about sex determin-
ation systems in Salix, adapted from He et al. (2021b)

Species Male or female ~ Chromosome  References
heterogamety carrying the
sex-determining
locus
Salix clade
S. dunnii Male (XX/XY) 7 He et al. (2021b)
S. nigra Male (XX/XY) 7 Sanderson et al.

(2021)
Vetrix clade

S. triandra Female (ZW/ZZ) 15 Li et al. (2020)

S. purpurea Female (ZW/ZZ) 15 Zhou et al. (2020)

S. suchowensis Female (ZW/ZZ) 15 Hou et al. (2015)

S. viminalis Female (ZW/ZZ) 15 Almeida et al.
(2020)

S. polyclona Female (ZW/ZZ) 15 L. He et al. (in
prep.)

arbutifolia (Chosenia), S. cardiophylla (Toisusu) and sect.
Amygdalinae. Furthermore, interspecific hybridization occurs
mostly within the Vetrix or Salix clades (Wagner et al., 2021a),
raising the question whether the two main clades with different
SDSs have reproductive barriers.

Thus, in the present study we aimed: (1) to use WGR data to
reconstruct the phylogeny of sampled specimens (this approach
has never been applied to the reconstruction of willow phyl-
ogeny across the whole genus); (2) to test whether phylogenies
based on autosomes, SLRs and chloroplast sequences are con-
sistent with one another; and (3) to determine whether differ-
ences in SDSs between species of the two clades offer a reliable
character for their subgeneric division, or not.

MATERIALS AND METHODS

Taxon sampling

We included 90 Salix samples (23 sections, 62 species and eight
varieties) in our analysis (Supplementary Data Table S2); 59
samples representing 48 taxa were newly collected from China,
Japan and North America for this study. The species represent
the five previously recognized subgenera Salix, Protitea, Vetrix,
Longifoliae and Chamaetia. The plant material was frozen in
liquid nitrogen and stored at —80 °C until total genomic DNA
was extracted or dried with silica gel. To cover more taxa and
sections of the genus, resequencing genome data were included
from 26 samples of L. He et al. (in preparation) and Guo et al.
(2021), representing 23 taxa. All these taxa were identified using
relevant floras and taxonomic papers (Fang et al., 1999; Ohashi,
2006; Argus, 2010; He ez al., 2014, 2015; Liu et al., 2016, 2020;
He and Chen, 2017; He, 2018; Zeng and He, 2020). We also
downloaded whole genome sequencing data of five samples:
Salix brachista (SRR7341535), S. dunnii (SRR12893418),
S. purpurea (SRR3927002), S. suchowensis (SRR10197854)
and S. viminalis (ERR1558612) from NCBI, which have avail-
able assembled genome(s) (reviewed in He et al., 2021b),
and chose Populus euphratica (1_233/ SRR13324572) as the
outgroup.
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Ploidy determination

The ploidy level of 49 individuals representing 42 taxa
was measured by flow cytometry (FCM). Salix polyclona
(2x=2n =38, L. He et al., in preparation) was used as an ex-
ternal standard for ploidy determination. The FCM protocol
of Dolezel et al. (2007) was used. About 20-50 mg of silica
gel-dried leaf tissue was incubated for 80 min in 1 mL LBO1
buffer, and then chopped with a razor blade. The cell culture
was then collected by gentle pipetting and filtered through a
38-um nylon mesh. Before analysis, the samples were stained
with 80 pg mL~!' propidium iodide (PI) simultaneously with
80png mL~! RNase in an ice bath for 30 min. About 5000 nuclei
were measured for each sample.

Ploidy levels were estimated using a MoFlo-XDP flow
cytometer (Beckman Coulter, Inc., Indianapolis, IN, USA), and
FloMax V2.0 (Sysmex Partec GmbH, Miinster, Germany) was
used to evaluate the histograms for each sample. The ploidy
level was obtained based on the following equation: Sample
ploidy (integer) = reference ploidy x mean position of the G1
sample peak/mean position of the G1 reference peak. A max-
imum coefficient of variation (CV) value of 8 was accepted
for each sample peak (GO/G1 peak), to control the quality of
ploidy-level measurements.

Sequencing, reads mapping and variant calling

Total genomic DNA for 59 samples was extracted from
fresh leaves frozen in liquid nitrogen and stored at —80 °C or
silica gel-dried leaves using the Qiagen DNeasy Plant Mini Kit
(Qiagen, Valencia, CA, USA) following the manufacturer’s in-
structions. WGR using paired-end libraries was performed on
an [llumina NovaSeq 6000 with 150-bp read length on each
end by NovoGene (Beijing, China) and Majorbio (Shanghai,
China). The high-quality genome assemblies of Salix dunnii
(female, including chr07X, clade Salix) (He et al., 2021b)
and S. purpurea v5.1 (female, including phased Chr15Z and
Chr15W, clade Vetrix) (Zhou et al., 2020), and chloroplast gen-
omes of S. dunnii (He et al., 2021b) and S. purpurea (GenBank:
KP019639.1) were used as reference genomes for all 90 sam-
ples of Salix and the outgroup in read mapping and variant
calling.

The sequenced reads of all samples were filtered and trimmed
using fastp, and reads with length <60 bp were discarded (Chen
et al.,2018). Then clean reads were aligned to the genomes and
chloroplast genome sequences of Salix dunnii and S. purpurea
using the BWA-MEM algorithm from BWA 0.7.12 (Li and
Durbin, 2009; Li, 2013). SAMTOOLS 0.1.19 (Li et al., 2009)
was used to extract primary alignments, and to sort and merge
the mapped data. We used Sambamba 0.7.1 (Tarasov et al.,
2015) to mark potential duplications from the PCR amplifica-
tion step of library preparation for all bam files.

We called variants for all the bam files using GATK’s
‘HaplotypeCaller’ and ‘GenotypeGVCFs’ (Genome Analysis
Toolkit v.4.1.8.1). For each bam file, ‘HaplotypeCaller’ for
chromosome regions was run with ‘--sample-ploidy 2’, and
for chloroplast regions with ‘--sample-ploidy 1°. Genomic
VCFs (GVCFs) of chromosome and chloroplast regions
were obtained for each sample. Before joint genotyping
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with ‘GenotypeGVCFs’, ‘GenomicsDBImport’ and
‘CombineGVCFs’ were used to merge the GVCFs of chromo-
some regions and chloroplast regions from all samples, respect-
ively. Hard filtering of the single nucleotide polymorphisms
(SNPs) was carried out using the best practice quality re-
commendations of the GATK group (QD < 2.0, FS > 60.0,
MQ < 40.0, MQRankSum < —12.5, ReadPosRankSum < —-8.0,
SOR > 3.0). Biallelic sites were extracted for subsequent fil-
tering for the chromosome regions. For the sites in the chloro-
plast regions, we kept all polymorphisms. We then excluded
sites with extremely high coverage across all samples (twice the
average coverage) and treated the sample-level genotype depth
‘<4’ as no call, and included sites with at most 10 % of no-call
genotypes in all sample (for sites in chloroplast sequences,
we allowed 50 % maximum missing). We also removed sites
with a minor allele frequency <0.05. This process yielded
four high-quality SNP datasets: 416 SNPs using the chloro-
plast genome of Salix dunnii as reference (CP-dun), 3 036 086
SNPs using the S. dunnii nuclear genome as the reference, 988
SNPs using the chloroplast genome of S. purpurea as reference
(CP-pur) and 3 350 756 with the S. purpurea nuclear genome
reference.

Phylogenetic analysis

Since different SDSs were identified in the two main diploid
clades, we extracted the SNPs in autosomal regions from both
nuclear datasets (excluding the entire chromosomes 7 and 15).
A python script (https://github.com/zhangrengang/degeneracy)
was used to generate all four-fold degenerate (FF-D) sites in the
genomes of Salix dunnii and S. purpurea, based on their gene
annotation (GFF3 files, Zhou et al., 2020; He et al., 2021b). We
extracted the SNPs at these FF-D sites from the two nuclear auto-
somal datasets. Polyploidy can confuse phylogenetic analysis, es-
pecially if interspecific hybridization was involved in duplication
of the genome, which can lead to incongruent reconstructions as
well as reticulate evolutionary patterns (Alix et al., 2017). We
therefore obtained 233 684 FF-D SNPs for all individuals, and
207 155 FF-D SNPs for diploids, from the autosome regions
AR-dun (SNPs in autosome regions, using Salix dunnii as refer-
ence genome); similarly, we obtained 258 908 FF-D SNPs for all
individuals and 230 084 for diploids from the AR-pur (SNPs in
autosome regions, using S. pupurea as reference genome).

Phylogenetic relationships were inferred by a maximum-
likelihood approach using RAXML v0.8.2.4 (Stamatakis,
2014) based on the concatenated sequences of six datasets:
AR-dun (all individuals), AR-Di-dun (diploids only), CP-dun,
AR-pur (all individuals), AR-Di-pur (diploids only) and CP-pur.
Support values were calculated using 100 rapid bootstrap rep-
licates (-f a option) based on the GTR + GAMMA nucleotide
substitution model as used by Wagner et al. (2020) and He et al.
(2021a) for the phylogenomics of willows.

The SDSs are not known for any polyploid willows. We there-
fore extracted SNPs from the SLRs only for the diploids. For
the dataset using the S. dunnii reference, this region is X-LR,
chr07:5675000-8880000 of chromosome 7, and for that using
the S. purpurea reference it is the Z-linked region of chromo-
some 15 (Z-LR, Chrl5Z: 2341099-6715814) (Zhou et al.,
2020; He et al., 2021b). Because recombination suppression of
SLRs may lead to gene duplications, we used only single-copy
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genes (SCGs) in the chromosome 7X and 15Z regions, iden-
tified using OrthoFinder (Emms and Kelly, 2019). Because
of assembly quality and availability of phased SLRs, we used
only the genomes of S. brachista, S. dunnii and S. purpurea
to identify the chromosome 7X SCGs, and only S. dunnii and
S. purpurea (excluding Chr15W) to identify the chromosome
15Z SCGs. Then we used the two SCG datasets to extract the
SNPs in the X-LR and Z-LR. This yielded 1165 SNPs in 32
SCGs in X-LR, and 663 SNPs in 15 of 74 SCGs in Z-LR. We de-
veloped a custom script to obtain the sequences of each SCG in
these datasets, and used ModelFinder (Kalyaanamoorthy ez al.,
2017) to select the best model under the Bayesian information
criterion, and IQ-tree based on the best model (Minh et al.,
2020) to construct individual gene trees. Species trees of the two
datasets were estimated using ASTRAL (Zhang et al., 2018a).

RESULTS

Ploidy determination

Among the 42 measured taxa, the ploidy levels of 17 spe-
cies and five varieties were measured for the first time
(Supplementary Data Table S2, Fig. S1). Salix annulifera,
S. baileyi, S. caroliniana, S. cheilophila, S. fargesii var.
hypotricha, S. fargesii var. kansuensis, S. hypoleuca var.
kansuensis, S. hypoleuca var. platyphylla, S. luctuosa,
S. permollis, S. spathulifolia and S. tangii were revealed
to be diploid. Salix austrotibetica, S. balansaei, S. chienil,
S. paraplesia, S. sclerophylloides, S. spathulifolia var.
glabra and S. staintoniana were found to be tetraploid. Salix
taipaiensis, S. wangiana and S. yuhuangshanensis were hexa-
ploid. Of the other 20 taxa, 17 had ploidy levels congruent
with previous reports (Table S2). However, the ploidy levels
of tetraploid Salix daltoniana, diploid S. cf. scouleriana and
hexaploid S. sinica differed from those previously reported
[S. daltoniana diploid (Fang et al., 1999); S. scouleriana tetra-
ploid (Argus, 2010); and S. sinica tetraploid (L. He et al., in
preparation)].

Whole genome re-sequencing

After filtering, we obtained more than 7 (mean 11) Gb of
clean reads per new sequenced sample (Supplementary Data
Table S3), and on average 11.4 Gb of all samples. The average
depths of the new sequences ranged from 14.5x to 44.1x
and from 11.9x to 44.2x%, using Salix dunnii and S. purpurea
as reference genomes, respectively, while all the 91 samples
had average depths of 14.5- 62.9x and 11.9-63.5x%, respect-
ively (Tables S4 and S5). Based on more than 1 TB (0.65 TB
newly sequenced) clean reads, we obtained 416 chloroplast and
3 036 086 nuclear high-quality SNPs using S. dunnii as refer-
ence, 988 and 3 350 756 high-quality SNPs with S. purpurea
as reference.

Phylogenetic trees based on nuclear and chloroplast data

As we hypothesized that the species of the two main clades
of Salix have different SDSs (see Introduction), we chose
Salix dunnii and S. purpurea from the two clades as reference
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genomes in order to analyse SLRs separately from auto-
somal ones, and used a total of eight datasets to reconstruct
phylogenies and species trees of Salix species (see Methods;
Table 2, Figs 1-4; and Supplementary Data Figs S2-S5).

Five major clades and one paraphyletic group were found
by analyses of putatively autosomal sequences, using both the
AR-dun and AR-pur datasets, which include both diploid and
polyploid species (Fig. 1; Supplementary Data Fig S2). Clade
Vetrix includes four subclades: C1, C2, C3 and C4. Salix in-
cludes one subclade (C6) and a small polyploid group, C5, con-
sisting of Salix shihtsuanensis, S. chienii and S. matsudana, plus
three branches with S. cf. fragilis, S. pentandra, S. paraplesia
and S. lucida, paraphyletic to the Vetrix clade. Individuals
of the same species are well supported as monophyletic in
the two trees, except a few species or complex with multiple
ploidy levels (S. polyclona, S. shihtsuanensis), allopolyploid
origin (S. opsimantha) or unclear morphological boundaries
(S. luctuosa and S. hypoleuca; S. fargesii and S. moupinensis).

Compared to the complete autosome datasets, the data from
just the diploid species [AR-Di-dun, AR-Di-pur, and SLR
datasets (SCG-X-LR and SCG-Z-LR)] are expected to be less
affected by the problems outlined above for polyploid species,
such as paraphyly and reticulate evolution. All analyses of the
diploid data support separate monophyletic groups of Vetrix
and Salix species (Figs 2 and 3; Supplementary Data Figs S3
and S4). Due to lower numbers of SNPs, the SCG-X-LR and
SCG-Z-LR species trees did not distinguish C1 and C2, but re-
vealed C3 as sister to the C1 and C2 groups. The AR-Di-dun
and AR-Di-pur analyses revealed a similar topology of C1, C2,
C3, and C4 of clade Vetrix as with the whole autosome datasets.

Both trees based on chloroplast genomes, CP-dun and
CP-pur, again included two major well-supported clades, Salix
and Verrix (Fig. 4; Supplementary Data Fig. S5). Bootstrap
support values for most of the internal nodes within the major
clades were low, and no subclades were clearly defined within
Vetrix, with the notable exception of subclade P1, Salix triandra.
Representatives of subg. Chamaetia and Vetrix were intermixed

TABLE 2. Details of the eight datasets used to conduct phylogenetic
analyses

Dataset

Nuclear genome
Four-fold degenerate SNPs of autosomal region

AR-dun 233 684

AR-pur 258 908
Four-fold degenerate SNPs of autosomal region (diploids only)

AR-Di-dun 207 155

AR-Di-pur 230 084
SNPs of single-copy genes in sex-linked region (diploid only)

SCG-X-LR 1165

SCG-Z-LR 663
Chloroplast genome

CP-dun 416

CP-pur 988

Dun and X-LR used the Salix dunnii genome as reference; X-LR represents
the X-linked region on chromosome 7 of Salix dunnii. Pur and Z-LR used the
Salix purpurea genome as reference; Z-LR represents the Z-linked region on
chromosome 15 of Salix purpurea. AR, CP and SCG represent autosomal re-
gion, chloroplast genome and single copy gene, respectively.
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in one highly supported clade. In contrast, the Salix clade was
fully supported as distinct; all species previously recognized as
members of subg. Salix (including S. exigua and S. interior) fell
within it, in two well-supported subclades.

DISCUSSION

Phylogenomic analyses of Salix

Five major clades and one paraphyletic group were formed in
autosome data-based trees (Fig. 1; Supplementary Data Fig. S2).
Subclade C1 mainly comprises Asian species, especially en-
demic species of the Qinghai—Tibetan Plateau (QTP, including
Hengduan Mountains and Himalaya), generally supporting the
finding of a radiation by He er al. (2021a) in their Hengduan
Mountains (HDM) clade, whereas C2 includes Eurasian and
North American willows (Fig. 1; Fig. S2, Table S2). The spe-
cies of both subclades are present in the Vetrix clade of chloro-
plast genome-based trees (Fig. 3; Fig. S4). The American
species Salix exigua and S. interior (C3) have been considered
to belong to subg. Longifoliae (Argus, 2010), but their position
within Vetrix is highly supported in our analysis. This is incon-
gruent with the chloroplast genome trees and may be caused
by interspecific hybridization or incomplete lineage sorting of
nuclear gene copies (see ‘Placement of section Longifoliae’).
Salix triandra is the only species in C4, and appears as a sister
to C3 and the other Vetrix representatives, which is consistent
with previous studies (Chen et al., 2010; Hardig et al., 2010;
Wu et al., 2015; Lauron-Moreau et al., 2015a; Wagner et al.,
2021b; see also ‘Placement of Salix triandra’).

Members of subg. Salix as circumscribed by Argus (2010)
formed the C5 grade, which is paraphyletic to the Verrix clade.
Hence, subg. Salix sensu Argus is a paraphyletic grade when
the polyploid C5 group is included. In contrast, in the chloro-
plast genome trees the species of C5 were embedded within
Salix, subclades P2 and P3 (Figs 1 and 4; Supplementary Data
Figs S2 and S5). This C5 grade comprises representatives
of sections Pentandrae, Salix and Salix shihtsuanensis (and
its varieties). Salix shihtsuanensis was incorrectly placed in
section Sieboldianae based on morphological characters (Fang
et al., 1999). The position of C5 is similar to the ITS tree of
Lauron-Moreau et al. (2015b, correction ‘fig. 3’), in which
the clade mainly consisting of subg. Salix species formed a
sister group to clades Longifoliae and Chamaetia/Vetrix. The
sampled taxa of C5 (Fig. 1; Fig. S2, Table S2) were all iden-
tified as polyploids, which may have affected their positions
in the two nuclear-based trees. Polyploidy is further a major
cause of paraphyly because parental diploid species and poly-
ploid derivatives coexist, whereas reciprocal monophyly es-
tablishes only after extinction of ancestors (Horandl, 2007;
Horandl and Stuessy, 2010). Salix matsudana of C5 appeared
~4 Mya and was predicted to be allotetraploid (Zhang et al.,
2020). Considering the conflict of the nuclear and chloroplast
trees (Figs 1 and 4; Figs S2 and S5), it is possible that mem-
bers of the C5 subclade arose from allopolyploid offspring of
crosses between species from clades Salix and Vetrix; admix-
ture analysis of nuclear data support the hypothesis of a hybrid
origin (L. He, unpubl. res.). However, at present no final taxo-
nomic conclusion can be drawn on the C5 group, and how sex


http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac012#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac012#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac012#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac012#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac012#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac012#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac012#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac012#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac012#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac012#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac012#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac012#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac012#supplementary-data
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is determined in polyploid systems also need to be clarified, as
well as the SDSs of more species.

Although chloroplast genome-based analysis supports two
major robust clades within Salix, nuclear-based alternative top-
ologies suggest a more complex subgeneric evolution, as ex-
pected. Nevertheless, the four trees based on diploid species
only supported both Vetrix and Salix as monophyletic (Figs 2
and 3; Supplementary Data Figs S3 and S4). Taken together,
representatives of Chamaetia/Vetrix grouped together in all
our trees, suggesting their close affinity and supporting their
merging into one clade Vetrix, despite the uncertain place-
ments of Salix triandra and section Longifoliae (see below). It
is also of note that since willows are widely distributed across
the Northern Hemisphere (Skvortsov, 1999), for further in-
vestigation it is important to extend the geographical range of
sampling in order to obtain a phylogeny that would more pro-
foundly reflect subgeneric relationships within the genus on a
worldwide scale.

Placement of Salix triandra

Although SDSs of a few species have been identified so far,
representatives of two major groups (Salix and Vetrix) already
exhibit different heterogamety. Species in clade Salix have an
XX/XY system, whereas species in clade Vetrix have a ZW/
7.7 system, which may act as a barrier to gene exchange (Stock
etal.,2021).

Salix triandra formed a sister branch to the rest of the Verrix
clade in all trees. For the past decade S. triandra has attracted
great interest from willow taxonomists. The affiliation of this
species to subg. Salix was put in doubt by Trybush et al. (2008),
in whose study it fell out with Salix and Vetrix and formed a
third cluster with approximately equal genetic similarity to
both subgenera. Chen et al. (2010) and Wu et al. (2015) dis-
tinguished Triandrae clade (= sect. Amygdalinae), including
S. triandra, as sister to the whole Chamaetia/Vetrix clade. Salix
triandra has a female heterogamety (ZW) SDS (Li et al., 2020),
the same as all the tested species of Vetrix (Table 1). Moreover,
hybrids of Salix triandra and S. viminalis can produce viable
seeds; however, no fertile cross was recorded with species of
subgenus. Salix (S. alba, S. pentandra) (Karp et al., 2011).
Nevertheless, diploid Salix triandra can hybridize with tetra-
ploid S. fragilis from subg. Salix, resulting in a triploid hybrid
(8. x alopecuroides), which is often found in Europe, because
the two parental species frequently co-occur along rivulets
(Rechinger, 1957; Neumann and Polatschek, 1972; Neumann,
1981; Dobes et al., 1997; Wagner et al., 2021a). Interestingly,
Neumann (1981) reported that these hybrids often have catkins
with both male and female flowers, which highlights the com-
plexity of sex determination in polyploid willows as a result
of interspecific crosses. The homomorphic sex chromosomes
of willows may not act as a complete reproductive barrier
(He et al., 2021b; Stock et al., 2021). However, the SDS of
S. fragilis has not yet been characterized, and it is unknown
how SDRs actually work in polyploids. The fertility and abun-
dance of S. x alopecuroides are unknown, but it does not form
populations (E. Horandl, pers. obs.).

The separated phylogenetic position and the high genetic di-
vergence of Salix triandra from the other Vetrix species speaks
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against an inclusion of the species in subg. Vetrix. However, its
inclusion in subg. Salix also seems unwarranted. Although we
assigned it under the Vetrix clade in this study according to its
SDS, further studies with more samples of the ‘Amygdalinae’
clade are needed to decide on a final taxonomic placement.

Placement of section Longifoliae

Skvortsov (1968) treated Longifoliae as a section of subg.
Salix. He was the first to propose raising it to a subgenus, but
he did not classify species outside Eurasia. He also claimed that
species from this section possess a hypodermis lacking chloro-
plast on both sides of the leaves, which is similar to Chosenia
(8. arbutifolia), which, in turn, belongs to the Chamaetia/Vetrix
clade (Chen et al., 2010; Hardig et al., 2010). However, Azuma
et al. (2000) considered the possibility of independent evolu-
tion of this morphological feature in different lineages.

In hybridization experiments, Mosseler (1989, 1990) used a
selection of species from the Salix and Vetrix clades, including
S. exigua/interior (Argus, 2010). The latter exhibited pollen—
pistil incongruity in crosses with members of clade Salix, re-
sulting in seed abortion. In contrast, S. exigua/interior did not
show a pollination barrier in crosses with diploid representa-
tives of clade Vetrix (S. eriocephala and S. petiolaris), and pro-
duced viable F'| progeny. These studies suggest a closer affinity
of S. exigua/interior with clade Vetrix than with Salix.

No previous molecular phylogenetic studies of Salix have
proposed to treat Longifoliae as a part of Vetrix. Chong et al.
(1995), examining allozyme variation in order to estimate gen-
etic distance between S. exigua and other North American wil-
lows, found that the species was equally distant from both Vetrix
and Salix, suggesting the revision of its taxonomical placement.
In Leskinen and Alstrom-Rapaport (1999), S. exigua fell out
of the main group of Salix species, so the authors suggested
its earlier divergence. In the ITS tree of Lauron-Moreau et al.
(2015b), four major clades were formed. One of them consisted
of most Longifoliae species and appeared as a sister clade to
Chamaetia/Vetrix, which, however, was not consistent with the
plastid-based tree, in which Longifoliae perfectly grouped with
members of clade Salix.

If we assume that differences in the SDSs lead to repro-
ductive barriers between two clades (clade Salix and clade
Vetrix), S. exigua/interior, which was found to inter-cross
successfully with clade Vetrix species producing viable and
vigorous F, progeny (Mosseler, 1989; 1990), probably has a fe-
male heterogamety as do species in the Vetrix clade investigated
so far. However, due to the lack of research on SDSs of any
species of Longifoliae, this hypothesis needs to be tested. It is
highly likely that phylogenetic incongruence between S. exigua
and S. interior in chloroplast and nuclear trees appeared be-
cause of early interspecific hybridization or incomplete lineage
sorting of nuclear gene copies (Figs 1 and 4; Supplementary
Data Figs S2 and S5). Therefore, whether S. exigua and S. in-
terior are the only two unique species of Longifoliae, or all
species of this subgenus (section) have the same pattern of
sex incapability when used in interspecific hybridizations, re-
mains in question. Further identification of the SDSs will help
to investigate our hypothesis, especially of species of sections
Longifoliae and Amygdalinae.


http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac012#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac012#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac012#supplementary-data
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Reproductive barriers via SDSs in willows

In recent years, both male and female heterogamety have
been found within Salix (see Table 1). Based on our analyses,
we hypothesize that the two major groups, Salix and Vetrix,
might have different male and female heterogamety, respect-
ively. One exception is Salix triandra (female heterogamety; Li
et al., 2020), whose taxonomic position remains uncertain (see
‘Placement of Salix triandra’ above). We next discuss whether
the sex-determination difference between the two major clades
in Salix might act as a reproductive barrier.

Various mechanisms can limit plant hybridization, and both
pre- and postzygotic barriers are known (Baack et al., 2015);
and prezygotic reproductive barriers such as different elevation
preferences (Wagner et al., 2021a) have been documented be-
tween willow species in the subgenera Vetrix and Salix. Mosseler
and Papadopol (1989) concluded that common prezygotic bar-
riers, such as ecological or spatial isolation, did not act, since a
wide range of hybrids was found in natural populations within a
100-km area around Toronto. On the other hand, the same study
recorded the flowering times of seven species from the sub-
genera Vetrix and Salix, and revealed two phenological groups:
early-flowering Vetrix species and late-flowering willows be-
longing to Salix, suggesting that this could be a prezygotic bar-
rier preventing interspecific hybridization between these two
groups of species. Moreover, Mosseler (1989) demonstrated
pollen—pistil incongruity between species of Vetrix and Salix,
as successful pollinations were rare between representatives of
these subgenera.

Given the impact of polyploidy on hybridization, in gen-
eral, different ploidy levels produce strong crossing barriers in
willows (Wagner et al., 2021a). On the other hand, homoploid
crosses of species within the same subgenus usually yield vi-
able seeds (Argus, 1974; Mosseler, 1990; Choudhary et al.,
2013; Gramlich and Horandl, 2016). For postzygotic barriers
it is difficult to disentangle crossing barriers produced by dif-
ferent ploidy levels from those produced by putative different
SDSs, and hence we focus here on crosses on the same ploidy
level between the groups.

Data concerning postzygotic barriers and viability of seeds
and hybrids obtained from interspecific crosses are scarce.
Argus (1974) carried out pollinations between four Salix spe-
cies. Among them, in crosses between tetraploid S. discolor
from subg. Vetrix and S. lucida from subg. Salix (4x; Dorn,
1976), no seeds were produced. Diploid Salix exigua (sect.
Longifoliae, subg. Salix, Argus, 2010) expressed neither pre-
nor postzygotic barriers with diploid representatives of subg.
Vetrix (Mosseler and Papadopol, 1989; Mosseler, 1989, 1990),
suggesting that it may belong to this subgenus (which is con-
sistent with the trees based on nuclear sequences in Figs 1-3
and Supplementary Data Figs S2—S4, but not with the chloro-
plast result in Fig. 4 and Fig. S5). Salix humboldtiana, a diploid
South American species from subg. Salix (Argus, 1997), not
studied here, was used in breeding experiments for developing
multipurpose willows. When used as a pistillate parent, it
produced progeny, though weak, when pollinated by diploid
S. viminalis, S. purpurea and S. daphnoides (also from the
Vetrix clade; not studied here) (Argus, 2010; Bubner et al.,
2018; Forster et al., 2021). Finally, the allopolyploid origin of
the C5 grade in our phylogeny could have resulted from par-
ental lineages of the diploid Verrix and Salix clades.
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Salix fits a single-factor model of the SDS (He et al., 2021b;
Renner and Miiller 2021; Sanderson et al., 2021). According
to Renner and Miiller (2021), females in the ZW system are
heterozygous for a dominant W-linked femaleness factor. In
the XY system, a Y-linked specific factor in the heterozygous
males dominantly suppresses female functions. A hypothetical
scheme in Supplementary Data Figure S6 shows the four off-
spring genotype classes when a zZW female is inter-crossed with
an xY male. Only two of them, with W (15, dominant) and x
(7, recessive), and z (15, recessive) and Y (7, dominant) have
no conflict between the dominance of the SD factors on the dif-
ferent chromosomes, and (assuming that presence of a chromo-
some 7 has no effect on sex in the species whose SD locus is
on chromosome 15 unless it carries a dominant factor, and vice
versa) might be expected to be female and male, respectively.
The zx lacks the W femaleness-specific factor, but also lacks
the Y-specific factor, so it could be female. Although WY were
observed in fish (Xiphophorus maculatus) (Kallman 1984),
its YW individuals can be female or male. However, SDSs in
plants and animals evolved in different ways (Mank, 2022). The
outcome cannot be predicted with certainty for the WY of wil-
lows, too. In the reciprocal cross (zz male x xx female), all off-
spring are xz. Hence, even if these hybrids were viable, fertility
would be very low, especially in competition with the parental
population. Even if fertile, there would probably be an excess
of female genotypes. Eventually, polyploidy could overcome
expression bias of the diploid hybrid by gene duplication, or
two locus systems could evolve; such mechanisms could have
helped the allopolyploid C5 group to establish and to evolve
fertile species, but this needs to be studied.

The rate of sex chromosome divergence is neither unidirec-
tional nor correlated with time (reviewed by Mank, 2022). In
willows, homomorphism of sex chromosomes does not mean
that they have recently evolved (He et al., 2021b; Mank, 2022).
Although turnover events are possible within each clade of
Salix (Renner and Miiller, 2021), it is reasonable to assume
that species within each clade share the same ancestral SDS
on the same chromosome (Almeida et al., 2020). SDSs of wil-
lows may have contributed to isolation of the two major groups.
A comprehensive dated tree of willows and divergence time es-
timation of X (Z) and Y (W) with a broader sampling should
further aid our understanding of the correlation between SDSs
and Salix diversification.

CONCLUSIONS

Overall, within the genus Salix there are the two clearly de-
fined groups, Vetrix and Salix. The former comprises four
subclades: endemic Asian species (C1); Eurasian and North
American species (C2); two species of sect. Longifoliae (C3);
and Salix triandra (C4). The Salix group becomes paraphy-
letic by inclusion of the mainly polyploid species (C5), and
includes a group with mainly species of subg. Protitae (C6).
Our analysis suggested that species expressing female or male
heterogamety belong to different clades. However, it is not
clear whether the difference in heterogamety is a barrier to
hybridization. This uncertainty is partly due to the fact that
the SDSs of only seven species have been identified, while the
type of heterogamety remains unknown for many species used
in breeding experiments, and partly because it remains unclear
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how ploidy affects interspecific mating (see ‘Placement of
Salix triandra’). Furthermore, the C5 polyploids (Fig. 1;
Supplementary Data Fig. S2, Table S2) could have originated
from hybridization of species of Salix and Vetrix. If so, this
would support incompleteness of the postzygotic reproductive
barriers due to different SDSs between willows of the Salix
and Vetrix clades.

SUPPLEMENTARY DATA

Supplementary data are available online at https://aca-
demic.oup.com/aob and consist of the following. Figure S1:
Selected flow cytometry histograms of the estimated sam-
ples. Figure S2: Phylogeny inferred for 70 taxa and 91 sam-
ples of the genus Salix and the outgroup Populus euphratica
based on maximum-likelihood analyses of the AR-pur
dataset using RAXML. Figure S3: Phylogeny inferred for
38 diploid taxa and 49 samples of the genus Salix and the
outgroup Populus euphratica based on maximum-likelihood
analyses of the AR-Di-pur dataset using RAXML. Figure S4:
Phylogeny inferred for 38 taxa and 49 diploid samples of
the genus Salix and the outgroup Populus euphratica based
on the SCG-Z-LR dataset analysed with ASTRAL species
tree methods. Figure S5: Phylogeny inferred for 70 taxa
and 91 samples of the genus Salix and the outgroup Populus
euphratica based on maximum-likelihood analyses of the
CP-pur dataset using RAXML. Figure S6: Hypothetical
scheme of crosses between the ZW/ZZ and XX/XY sys-
tems. Table S1: Recent significant treatments of Salix with
a focus on subgeneric classification. Table S2: Details of
plant materials used in this study. Table S3: Statistics of
quality control results of whole genome sequencing datasets
of 91 samples. Table S4: Summary of mapping results of
91 samples using Salix dunnii as a reference genome. Table
S5: Summary of mapping results of 91 samples using Salix
purpurea as a reference genome.
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