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Following more than a century of phenotypic measurement of natural selection pro-
cesses, much recent work explores relationships between molecular genetic measure-
ments and realized fitness in the next generation. We take an innovative approach to
the study of contemporary selective pressure by examining which genetic variants are
“sustained” in populations as mortality exposure increases. Specifically, we deploy a
so-called “regional GWAS” (genome-wide association study) that links the infant mor-
tality rate (IMR) by place and year in the United Kingdom with common genetic var-
iants among birth cohorts in the UK Biobank. These cohorts (born between 1936 and
1970) saw a decline in IMR from above 65 to under 20 deaths per 1,000 live births,
with substantial subnational variations and spikes alongside wartime exposures. Our
results show several genome-wide significant loci, including LCT and TLR10/1/6,
related to area-level cohort IMR exposure during gestation and infancy. Genetic correla-
tions are found across multiple domains, including fertility, cognition, health behaviors,
and health outcomes, suggesting an important role for cohort selection in modern
populations.

infant mortality j recent natural selection j regional GWAS

A large literature over the past century has explored associations between phenotypic
measures of health and social status and markers of fertility and reproductive success to
draw inference about natural selection processes in the modern era (1). These studies
highlight the still-evolving nature of human populations in low-mortality settings; they
also facilitate prediction about short-run population change (2). Recent work provides
new evidence on selection by leveraging large, biobank-scale genetic information,
alongside new methods to summarize genome-wide measurements into polygenic
scores (3) and tests of associations between summarized genetic information and repro-
ductive success (4, 5). For example, studies have demonstrated associations between
polygenic scores for specific phenotypes and reproductive success in the United States
and in Iceland (6–8). Others have demonstrated single-nucleotide polymorphism
(SNP) correlations with fertility markers through genome-wide association studies
(GWAS) (9). Comparison of ancient genomes and modern human populations have
implicated genetic loci for lactase persistence, skin pigmentation, immunity, and vita-
min D metabolism (10). Still others have established genetic correlations between a
broad set of phenotypes and fertility (11). For example, Sanjak et al. (11) finds genetic
correlations between reproductive success and age at first birth, age at menarche, age at
menopause, educational attainment (EA), and cognition, as well as body mass index
(BMI) and related metabolic measures. In general, the findings are of modest direc-
tional selection that would accumulate into noticeable effects on larger time scales (8).
We advance this field by taking an innovative, complementary approach to the study

of selective pressure. We ask which SNP alleles survive in populations when cohorts are
exposed to better environments—or, in contrast, which alleles “disappear” in particu-
larly harsh environments. We do this by using a “regional” GWAS (12). We measure
the environment experienced by cohorts during gestation and in infancy, two periods
in the life course prior to reproduction when cohort mortality is comparatively high
(13, 14). We index the environment with the prevailing infant mortality rate (IMR) by
place and year. The IMR is a well-established indicator of area-level conditions related
to nutrition, infection, and inflammation, particularly during the early to mid twenti-
eth century (15–17).
The approach builds on decades of demographic and epidemiologic research that

considers how cohort traits are shaped by mortality exposure early in life (18–22).
These studies provide several types of indirect evidence of early-life cohort selection:
the differential survival of robust subpopulations through inhospitable disease environ-
ments during gestation and infancy [e.g., female versus male survival (23, 24)], nonlin-
ear associations between disease environments and phenotypic traits like birth weight
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or height (25), and phenotypic traits among descendants of
people exposed to war and famine in early life (26, 27). We
shed light on these processes by explicitly examining molecular
genetic information (SNPs) among cohorts who survive similar
periods of hardship—and by testing how surviving SNPs are
correlated with an array of complex traits, including the pheno-
types explored in these previous studies.
We begin by examining associations between the early-life

disease environment and the presence of specific loci among
surviving cohort members. We then consider year-specific vari-
ation, including that aligned with particular hardships occur-
ring during World War II. We conduct several sensitivity tests
to rule out alternative explanations for the patterns detected in
the UK Biobank (UKB) sample. We then examine the associa-
tion between detected SNPs and the genetic predictors of an
array of complex traits. We demonstrate that the shifts in
genetic selection associated with improving early-life conditions
are associated with genetic predictors of an array of reproduc-
tive, health, and behavioral traits.

Results

Infant Mortality Data. Area-level infant mortality fell over 60%
over the time period of the UKB respondents’ birth years, between
1936 and 1970. Fig. 1 shows the time trend and the across-county
variation in each year (SI Appendix, Fig. S1). These reductions
were the result of improved living conditions and widespread pub-
lic health efforts, among them, the expansion of prenatal and
infant health care (28) after the war. Significant regional variation
persisted through this period (29, 30). The IMR is highest in
1940 and 1941 when the UK population was exposed to intensive
bombing campaigns during the World War II “Blitz,” alongside
ongoing wartime reductions in nutrition that were particularly
acute for unemployed and poor households (31, 32).
We measured IMR to capture the disease environment in

the year prior to birth and during the year of birth in the
county in which each participant in the UKB was born. We
separately tested effects of these two exposures. The “lagged”
IMR—or IMR during gestation—indexes conditions related to
pregnancy survival in cohorts. The birth year IMR indexes con-
ditions related to infant survival in cohorts. Throughout the
study, we show findings from analysis of the birth year IMR.

The findings of the analysis of gestation year IMR are presented
in the SI Appendix.

GWAS Identifies Genetic Loci Associated with Birth Year IMR.
We conducted a GWAS on birth year IMR using 330,340 inde-
pendent UKB respondents of European descent. To adjust for
population stratification and the nonlinear time trend in IMR,
we performed GWAS using the software BOLT-LMM (33) with
year-of-birth effects included as indicator variables along with
other covariates (Methods). Following previous work (12), we
adjusted SE of SNP effects using the intercept from linkage dis-
equilibrium (LD) score regression (34) to conservatively control
type-I error.

We identified two loci reaching genome-wide significance
(Fig. 2 and Table 1): the lactase (LCT) locus on chromosome 2
(rs1446585; P = 1.26e-15) and the TLR1–TLR6–TLR10 gene
cluster on chromosome 4 (rs5743618; P = 3.12e-19). Three
loci showed suggestive associations (SI Appendix, Fig. S2): one
locus near DHCR7 and NADSYN1 genes on chromosome 11
(rs2852853; P = 3.17e-7), one locus near the EFTUD1 gene
(aka EFL1) on chromosome 15 (rs9944197; P = 2.27e-7), and
one locus near RPGRIP1L and FTO genes on chromosome 16
(rs10521293; P = 9.99e-7). SNP heritability was low but statis-
tically significant (h2 = 0.015, SE = 0.002), with an inflation
factor λ = 1.06 (SI Appendix, Fig. S3). Heritability showed a
twofold depletion in genomic regions annotated as heterochro-
matin but did not reach statistical significance after correcting
for multiple testing (Dataset S1).

Conceptually, in order to focus on measures of the disease
environment in the in utero period of each respondent, we used
the IMR in the year prior to birth to capture the prevailing
nutrition and infection conditions. We refer to this as the
lagged-IMR phenotype. In practice, using the lagged or contem-
poraneous measure of IMR produces results with a genetic corre-
lation of 1.001 (SE = 0.013; SI Appendix, Figs. S4 and S5). The
main results reported in this paper are from the birth year IMR.

In order to guard against spurious findings, we also con-
ducted falsification tests, where we performed a regional
GWAS after randomly shuffling the county IDs and reassigning
each participant’s IMR value (Methods). We found null results
(SI Appendix, Fig. S6), which indicated that our findings were
not driven by an artifact of the regional GWAS design.

Fig. 1. IMR between 1936 and 1970 in England and Wales. (A) Heatmap of average county-level IMR between 1936 and 1970 in England and Wales. IMR is
defined as the percentage of deaths under 1 y of age (per 1,000 live births). The denominator of the IMR does not include stillbirths. (B) Heatmap of IMR in
each county and year.
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GWAS Findings Suggest Recent Selection in the United Kingdom.
Our GWAS on birth year IMR identified two associated loci,
that is, LCT and TLR1/6/10, both of which are well-known tar-
gets of selection in Europeans (10, 35–39). The beneficial
alleles at both loci are associated with higher birth year IMR in
our analyses, which is consistent with positive selection of these
alleles in tougher environments. A recent study of more than
200 ancient genomes identified 12 target loci, including both
LCT and TLR1/6/10, with strong signals of selection, possibly
through their associations with nutrition, immunity, pigmenta-
tion, and other human traits (10). Among these 12 previously
identified natural selection targets, genetic loci associated with
lactase persistence (LCT), resistance to leprosy and other myco-
bacteria (TLR1/6/10), and vitamin D metabolism (DHCR7 and

NADSYN1) showed strong associations with birth year IMR,
whereas previously found loci for pigmentation did not show
associations in our analysis (Fig. 3A and Dataset S2). Addition-
ally, the strength of IMR GWAS associations is correlated with
IMR-increasing single density scores (SDS; Spearman correla-
tion = 0.036, P = 2.6e-13; Fig. 3B and Methods), suggesting
polygenic and positive selection on IMR-associated alleles. We
also confirmed this relationship using bivariate LD score regres-
sion (SI Appendix, Fig. S7; genetic correlation = 0.27; P = 0.
0067). Notably, the LCT locus strongly colocalizes with high
SDS, while the signal at TLR1/6/10 was not as strong (SI
Appendix, Fig. S8).

We further partitioned UKB samples by year of birth and
estimated SNP–IMR associations for each year separately.

Fig. 2. Genetic associations for birth year IMR. (A) Manhattan plot for birth year IMR. The horizontal lines mark the genome-wide significance cutoff of
5.0e-8 and a suggestive cutoff of 1.0e-6, respectively. (B) Genetic associations at the LCT locus. (C) Genetic associations at the TLR1/6/10 locus.

Table 1. Genome-wide significant loci associated with birth year IMR

CHR SNP BP (hg19) A1 A2 EAF* BETA SE P

2 rs1446585 136407479 G A 0.232 �0.157 0.020 1.26E-15
4 rs5743618 38798648 A C 0.233 �0.176 0.020 3.12E-19

*Frequency of A1. Chromosome (CHR), variant ID, base-pair coordinate (BP) based on the genome reference build hg19, allele 1 (A1), allele 2 (A2), effect allele frequency (EAF), effect
size (BETA), standard error (SE), and P value for the two genome-wide significant loci.
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Effect size at the LCT locus peaks in 1942, 1 y after “The
Blitz,” and eventually bounces back to zero. The TLR1/6/10
locus shows a similar trend (Fig. 4A). In particular, the LCT
locus (rs1446585) showed substantially attenuated associations
with birth year IMR before 1941 and after 1942. We compared
the allele frequency of rs1446585 in samples born in the top
10 counties with the highest IMR and in the 10 counties with
the lowest IMR. We found substantial differences in allele fre-
quencies between counties with high and low IMR. Interest-
ingly, even within counties with high IMR, the lactase
persistence–associated allele of rs1446585 (major allele A)
showed increased frequency in the 1940 birth cohort, main-
tained similar frequencies through 1940–1941, further increase
in frequency from 1941 to 1942, and then had significantly
reduced frequency in samples born in 1943 (P = 0.018; Fig.
4B). The year-to-year comparison did not reach statistical sig-
nificance in counties with low IMR (Dataset S3). We found
null results for the TLR1/6/10 locus (SI Appendix, Fig. S9). We
also note that the substantially elevated IMR in 1940 and 1941
is not correlated with the density and frequency of bombing
events (SI Appendix, Fig. S10) and may be instead explained by
other factors such as food scarcity during the war.

Genetic Correlation with 50 Complex Traits. We next exam-
ined genetic correlation (40) between birth year IMR and a set
of 50 traits widely assessed as outcomes of selection processes

(Fig. 5 and Dataset S4). Among known target traits of selection
(10), we found a significant correlation with vitamin D but
found null results on hair and skin color. Our results are consis-
tent with other approaches showing correlations with genetics
of fertility (age at first birth) but do not find effects for number
of children ever born, age at menarche, or age at menopause.
Recall that Sanjak et al. (11) reported inconsistent findings
between reproductive success and age at menarche (positive)
and age at menopause (negative), which the authors label as
“less explicable” than other results; as a comparison, we
obtained null results for these two traits. Similar to earlier find-
ings (6, 8), we show correlations with EA and cognition, but
we extend this finding by showing these results are driven by
the direct-EA component and not by the indirect-EA compo-
nent mediated by family environment (i.e., genetic nurture),
using methods in Wu et al. (41), suggesting that the selection
pressure more directly applies to the child’s genetics on education
rather than parental behavior that affects their children’s educa-
tion. The difference in these findings suggest a broader need for
caution when examining the genetic correlation findings, as we
cannot decouple parental and child genetics in these results. We
also find relationships with anthropometrics, like Sanjak et al.
(11), but substantially extend our domains of interest to show
findings for cardiovascular disease, tobacco use, and a variety of
mental health conditions. The null findings on birth weight are
suggestive that studies linking birthweight to insults akin to those

Fig. 3. Selection patterns at IMR-associated genomic loci. (A) Associations with birth year IMR at 12 target loci for selection in Europeans (10) (also see
Dataset S2). Genetic loci reaching genome-wide significance in the IMR GWAS are highlighted in dark blue. (B) Correlation between GWAS associations of
birth year IMR and SDS matched with IMR-associated alleles. The fitted linear regression line is shown in red.

Fig. 4. Selection on LCT and TLR1/6/10 loci during “The Blitz.” (A) The effect size of the lead SNP (rs1446585) at the LCT locus peaks in 1942 and eventually
bounces back to zero. The lead SNP (rs5743618) at the TLR1/6/10 locus follows a similar trend. Dots and intervals indicate GWAS effect size estimates and
SEs. Years with n < 5,000 were excluded from the analysis. (B) Minor allele frequency (MAF) of rs1446585 in UKB birth cohort in 1939–1943. Major allele at
this locus is known to associate with lactase persistence. Counties with high/low IMR were defined based on IMR in 1939. The MAFs between 1942 and 1943
are statistically different at 0.05 level (*P = 0.018).
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prevailing during the 1930s and 1940s in the United Kingdom
are likely capturing the deleterious effects of the disease environ-
ment (and accompanying wartime conditions) during that time,
versus the differential survival of pregnancies (42, 43).

Discussion

In this work, we implemented an innovative approach to study
natural selection in contemporary populations. We used GWAS
to estimate how the frequency of common SNPs vary with area-
level measures of infant mortality during the in utero period of
UKB respondents and found two genome-wide significant signals
at LCT and TLR1/6/10. These loci accord with previous work on
natural selection comparing ancient and modern populations (10).
We found limited evidence of large effects across the genome, and
we estimated SNP heritability to be less than 2%. We then show
moderate genetic correlations between the IMR GWAS and a

host of phenotypic domains, reinforcing earlier findings related to
fertility (age at first birth), anthropometrics (BMI, height), and
cognition (EA, fluid intelligence), and also extending findings into
psychiatric conditions (major depressive disorder, ADHD, anxiety
disorder, autism) and health conditions (coronary artery disease).

Compared to past studies comparing allele frequencies in
ancestral and modern populations (10, 44) and inferring lengths
of the genealogy (36), this study directly estimates the shift of
allele frequencies in less favorable environments. It identifies spe-
cific genomic loci under very recent selection and provides funda-
mental insights into the mechanism and timing of such selection.
We found evidence for selection on lactase and potential resis-
tance to leprosy and other mycobacteria in the past century and
found null results for pigmentation traits. In particular, we dem-
onstrate accelerated selection on these specific alleles in the
United Kingdom during the mortality conditions caused by the
World War II bombing campaigns during “The Blitz.”

Fig. 5. Genetic correlation between birth year IMR and 50 complex traits. Dots and intervals indicate genetic correlation estimates and SEs. Significant cor-
relations at a false discovery rate cutoff of 0.05 are highlighted with circles. ADHD: attention-deficit/hyperactivity disorder; LDL-C and HDL-C: low (high) den-
sity lipoprotein cholesterol.
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We also note that, because our analysis is tied to area-level
infant mortality, it differs from analysis that links reproductive
success (number of children born) with genetic measurement
(9, 11). In part, this is because the parents of the cohorts studied
here who lose a pregnancy or an infant during periods of high
infant mortality may have a subsequent successful pregnancy and
surviving infant and thereby achieve levels of reproductive success.
Instead, the focus here is on the genetic characteristics of people
born between 1936 and 1970 who survive through reproductive
age. We find that these survivors have genetic traits that are corre-
lated with early initiation of childbearing. Like past research, we
generally are unable to separate child (direct) and parental (indi-
rect) genetic relationships (45) in the analysis. The results for EA
suggest the effects are direct; that is, selection is occurring at the
level of the child’s genetics rather than through family-level corre-
lates of childbearing and survival, such as socioeconomic status.
Our study has a few limitations. First, although we provide

evidence on the timing of selection and its ongoing nature, the
specific mechanisms underlying such selection remain unclear.
Even in the World War II example, we cannot parse out effects
of stress, nutrition, or other related mechanisms. Although we
demonstrate that these findings are unlikely due to participa-
tion bias, we cannot distinguish infant death from mortality
later in life, although we note that infant mortality accounts for
a large share (30 to 40%) of cohort mortality before age 55 y
(average age of samples) in these birth cohorts. More generally,
the study is not intended to pin down the effects of IMR
specifically, but rather to describe how the cohorts’ mortality
exposure, indexed here by IMR, is associated with the genetic
composition of survivors at older ages.
Second, a limitation for most current research using genetic

information is the focus on respondents of European ancestry.
This study also faces this key limitation. Approximately 10% of
the UKB sample was born in the United Kingdom but has Afri-
can, Asian, or other ancestry. Data to support estimation of
GWAS in populations with ancestry outside of Europe is growing
and much needed. At present, the findings of this study are limited
in applicability to the UK population with European ancestry.
Third, it remains a challenge to account for nonrandom partic-

ipation of UKB (46, 47). We conducted several falsification tests
to assess the impact of participation bias in our analysis. Adjust-
ing for participation activities in GWAS and conditioning on a
latent proxy factor for participation of optional UKB question-
naires (Methods) yielded highly consistent association results com-
pared to our primary findings (SI Appendix, Figs. S11–S13).
However, the latent propensity of participating additional ques-
tionnaires may be different from the propensity of participating
UKB itself. Additionally, migration behavior in the UK is known
to have a genetic basis (12), and the design of UKB will lead to
undersampling in counties far from assessment centers, which
makes migration another potential factor contributing to partici-
pation bias. We performed two additional GWAS using only 1)
counties of birth with sufficient samples and 2) samples whose
county of birth is identical to the county of current address
(Methods). These GWAS revealed very similar associations com-
pared to our initial analysis (SI Appendix, Fig. S14), with LCT
and TLR1/6/10 being the genome-wide significant loci. Based on
these results, we are cautiously optimistic that nonrandom sample
selection in UKB may not severely bias our results. But, in gen-
eral, participation bias remains a challenging open issue that
remains to be investigated in the future.
Fourth, in order to guard against population confounding in

our analysis, we employed the state-of-the-art linear mixed
model approach (33) in conjunction with a conservative

genomic control based on the software LDSC (48), and per-
formed GWAS on a relatively homogeneous subpopulation in
the UKB (49). However, unmeasured long-run characteristics
at the county level (e.g., regional differences in socioeconomic
status) may still partially confound genetic associations for
IMR. To investigate this, we adjusted for household income,
education years, and lagged IMR in GWAS (Methods) and
obtained highly consistent association results (SI Appendix, Fig.
S15), suggesting that long-run regional differences that can be
captured by these covariates may not severely confound the
IMR GWAS. Still, other county-level factors not included in
our analysis remain to be investigated in the future. It is also
important to note that, even if the approaches we have taken
can effectively guard against false associations at the SNP level,
it is not obvious whether minimal yet pervasive biases across
the genome would lead to false findings in polygenic analyses
such as genetic correlation (49, 50). It has been shown that bivar-
iate LDSC provides robust estimates for genetic correlations,
except when the population stratification biases in both input
GWAS are correlated with LD scores (51). This strengthens our
confidence in the genetic correlation results, since residual con-
founding in the IMR GWAS alone will not lead to biased genetic
correlations as long as GWAS of other complex traits do not
share a similar confounding. To further demonstrate this, we
adjusted the IMR GWAS effect sizes by regressing out SDS
which has been shown to have population stratification biases
(49) (Methods), and we recomputed the genetic correlations with
50 complex traits. We obtained almost identical results compared
to our primary analysis (SI Appendix, Fig. S16). Similarly, adjust-
ing for socioeconomic status and lagged IMR also revealed consis-
tent genetic correlations (SI Appendix, Fig. S17), suggesting
limited evidence that our polygenic results are severely biased by
unadjusted confounding.

Taken together, the research makes multiple contributions to
the study of selective pressure using molecular genetic data. For
example, several landmark studies (10, 36) have found specific
genomic loci under selection over the time span of several mil-
lennia. The approach we use here, a regional GWAS, is designed
to be exploratory and hypothesis-free, facilitating detection of
previously undescribed relationships for contemporary cohorts.
It is remarkable, then, that the approach in this study finds evi-
dence of selection on the same loci as previous explorations
using ancient genomes. In doing so, we demonstrate that selec-
tion described over the long arc of human history is occurring in
the contemporary era. Further, we aggregated SNPs into
domains of phenotypes through genetic correlation assessments
and demonstrated that the shifts in genetic selection associated
with improving early-life conditions are associated with an
array of reproductive, health, and behavioral traits. These results
shed important light on how selective pressure is correlated with
complex traits in contemporary populations.

Methods

IMR Data in England and Wales. We used a mortality table (“mort_lgd_ew”)
produced by A Vision of Britain through Time (52) to obtain IMR and lagged
IMR (i.e., IMR 1 y prior to the birth). A Vision of Britain through Time provides
the year-specific number of births and deaths under age 1 y at the district level
with the administrative county information from 1911 to 1974. We constructed
a county–year-specific IMR from 1930 to 1970 by aggregating the number of
births and deaths under age 1 y of all districts within each administrative county.
Then the IMR was computed as 1,000 times the ratio of the number of deaths
under age 1 y to the number of births for each county–year combination.

Using the publicly available boundary data for administrative counties as of
1931, 1951, 1961, and 1971 from A Vision of Britain, we classified the UKB
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participants in the administrative counties to cross-walk the county–year-specific
IMR. Because the county–year-specific information on births and infant mortality
was collected annually, while the boundary information was available only for the
census years (i.e., 1931, 1951, 1961, and 1971), we classified UKB participants
based on the year nearest to the (lagged) birth year, except for IMR in 1965 and
lagged IMR in 1966 in which Greater London was established. Specifically,
although the year nearest to the birth year of the 1965 cohort is 1961, we used
the 1971 boundary data to classify the UKB respondents, since the data for 1961
did not have the boundary information for Greater London. Overall, to construct
the IMR variable, we used the 1931 boundary data for those who were born
between 1934 and 1941, the 1951 boundary data for those who were
born between 1942 and 1956, the 1961 boundary data for those who were born
between 1957 and 1964, and the 1971 boundary data for those who were born
between 1965 and 1971. We constructed the lagged IMR in the same way. We
dropped UKB participants born outside of England and Wales, because the mor-
tality table produced by A Vision of Britain covered information only for England
and Wales. Further, UKB participants who were born outside of the places the
boundary data covered were also excluded from the analytical sample.

For visualization purposes, we downloaded county polygon shape files for
England and Wales from A Vision of Britain through Time. We used the “sf” R
package to process spatial data and plotted maps. We used the counties and
boundaries for 1961 in Fig. 1. Middlesex and London became part of “Greater
London,” Soke of Peterborough and Huntingdonshire became “Huntingdonshire
and Peterborough,” and Cambridgeshire and Isle of Ely became “Cambridge
and Isle of Ely” in 1964. In Fig. 1, we used the records from “Greater London”
between 1965 and 1970 for Middlesex and London. Similarly, we “recovered”
the 1965–1970 records for Soke of Peterborough, Huntingdonshire, Cambridge-
shire, and Isle of Ely.

GWAS Analysis in the UKB. Following Abdellaoui et al. (12), we deployed a
regional GWAS in UKB to test associations between genetic measures at the
individual-level and regional-level IMR, where all subjects reporting the same
place of birth (data fields 129/130) and same year of birth (data field 33) had
the same regional phenotypic value assigned. Of the 500,000 participants in
UKB, we focused on the respondents with European ancestry defined as the prin-
cipal component analysis inferred “Caucasian” participants (UKB data field
22006) which is a subset of self-reported “White British” individuals (data field
21000), and those with places of birth in England and Wales (data field 1647)
in order to match with our contextual data. We excluded the participants who
are recommended by UKB to be excluded from analysis (data field 22010),
those with conflicting genetically inferred (data field 22001) and self-reported
sex (data field 31), and those who withdrew from UKB. UKB samples with Euro-
pean ancestry were identified from principal component analysis (data field
22006) of the genotypes. We used software KING (53) to infer the pairwise fam-
ily kinship among UKB samples and identified 154 pairs of monozygotic
twins, 242 pairs of fraternal twins, 19,136 full sibling pairs, and 5,336
parent–offspring pairs among 408,921 individuals of European descent. A total
of 330,340 independent samples from 65 unique counties who were born
between 1934 and 1970 were used in the IMR GWAS. We used BOLT-LMM (33)
to perform GWAS with sex, genotype array (data field 22000), and year of
birth as covariates. Year of birth was dummy coded to account for the nonlinear
time trend in IMR (SI Appendix, Fig. S1). We kept only the SNPs with a missing
call rate ≤ 0.01, minor allele frequency ≥ 0.01, and Hardy–Weinberg equilib-
rium test P value ≥ 1.0e-6 in GWAS. We also applied LD score regression-based
genomic control where we inflated the SE of SNP effects using seGC ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
se × LDSC intercept

p
to conservatively control unadjusted confounding in

association tests.
To estimate the effect sizes for the top loci in each birth year cohort (Fig. 4A),

we used only samples born in the same year to run the IMR GWAS. Although
we restricted birth year cohort with n > 5,000, we could not use BOLT-LMM due
to its technical limitations. Instead, we ran the GWAS for each birth year cohort
using Plink (54) with sex, genotyping array, and top 20 principal components as
covariates.

Heritability and Genetic Correlation Estimation. We used LD score regres-
sion (34) implemented in the LDSC software to estimate heritability of IMR,
quantify heritability enrichment in 52 baseline functional annotations, and

estimate genetic correlations of birth year IMR with 50 complex traits using
GWAS summary statistics as input. Details of the 50 traits used in genetic correla-
tion analysis are shown in Dataset S4.

Adjusting for Confounding due to Regional Characteristics. To assess the
potential confounding from long-run county differences, we performed addi-
tional GWAS adjusting for 1) socioeconomic status measures including house-
hold income (data field 738; n = 283,663) and educational years (data field
6138; n = 327,252) and 2) lagged IMR (n = 330,340). We coded household
income following Hill et al. (55) into five ordered categories and modeled it as a
fixed effect in the IMR GWAS. “Education years” was coded following Lee et al.
(48) and used as a continuous covariate in the GWAS.

Quantifying and Removing Participation Bias. We performed two second-
ary analyses to account for participation bias in GWAS. First, we conditioned the
analysis on participation status of the optional mental health questionnaire
(MHQ) in UKB. We categorized GWAS samples into three strata: MHQ = 0
(received the invitation but did not participate; n = 111,276), MHQ = 1
(received the invitation and participated; n = 107,364), or “NA” (did not receive
the invitation due to unavailable email addresses; n = 111,700). Samples who
did not receive invitations are enriched for older age, lower education (56).
Within each MHQ stratum, we performed GWAS on birth year IMR using the
same settings described above for the main GWAS.

We also used genomic structural equation modeling (GSEM) (57) to remove par-
ticipation bias. Our model jointly regressed three GWAS of participation of optional
questionnaires, that is, MHQ, food frequency questionnaire, and physical activity
study, in UKB on a latent factor F representing participation behavior (SI Appendix,
Fig. S12). The latent factor F and IMR were then regressed on each SNP to estimate
participation-adjusted genetic association with birth year IMR. Since the coefficients
and SEs in GSEM were on the scale of standardized phenotypes, we transformed
GSEM results to the same scale of BOLT-LMM outcomes for comparison.

To guard against the participation bias due to migration behavior and under-
sampling in counties far from the assessment centers, we repeated the IMR
GWAS using only the counties with sufficient samples. We tabulated the number
of samples born in each of the 65 counties, and then performed the IMR GWAS
using only the counties with at least 5,000 samples. This gave us n = 269,085
total samples from 17 counties. We also performed an additional IMR GWAS
using only the samples whose region of birth is identical to the region of current
address (n = 209,852). Results are shown in SI Appendix, Fig. S14.

IMR GWAS with Shuffled County ID. As a sensitivity analysis, we ran the
regional IMR GWAS with county ID shuffled (SI Appendix, Fig. S6). When we per-
form the shuffling analysis, a county has a vector of IMR values for different
years. This whole vector is randomly assigned to a different county after shuf-
fling. Then, we follow the same procedure from our primary analysis to assigned
each UKB individual an IMR value based on the county and year combination.
This way, two participants born in the same year and in the same county will still
have identical phenotype values in GWAS. Finally, there are n = 327,100 sam-
ples in the GWAS. Since three new counties were formed in 1964, they do not
have IMR records before 1964. To maintain maximum possible samples, we
excluded these three new counties when shuffling.

SDS Data and Analysis. SDS were computed using 3,195 individuals from the
UK10K project (36). To match alleles between SDS and IMR GWAS, we first chose
effect alleles in GWAS to always have positive associations with birth year IMR.
Then, we obtained trait-SDS (tSDS) by transforming SDS such that tSDS = SDS if
the derived allele in SDS is the effect allele in GWAS and tSDS = �SDS if the
derived allele in SDS is the noneffect allele in GWAS. We set tSDS to “NA” other-
wise. Following Berg et al. (49), we estimated Spearman correlations between
tSDS and GWAS z scores and used a block jackknife approach to obtain the SEs
and P values for the Spearman correlation. To remove spurious correlations
caused by unadjusted confounding (e.g., population stratification), we also
applied LD score regression (40) to compute genetic correlations between SDS
and IMR GWAS associations.

To remove from IMR GWAS the population stratification captured by SDS, we
adjusted the IMR GWAS effect sizes by regressing out SDS using the following steps:

1) Temporarily hold out the SNPs with P value of <0.1 in the IMR GWAS.
2) Using the remaining SNPs, regress the effect size estimates against the SDS

to get the regression coefficient for SDS.
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3) Update the effect size estimates for all the SNPs: raw effect size minus SDS
times its regression coefficient from step 2.

Then, estimate the genetic correlations with 50 complex traits using the
updated effect sizes.

Data on Air Raids during World War II. Detailed data on German air raids on
the United Kingdom during World War II were obtained from ref. 58. We accessed
the coordinates of bombing events and marked their locations on the map of UK
using the “sf” R package with the maps and spatial data for the UK downloaded
from the “GADM” (Database of Global Administrative Areas) website (59). We
defined bombing density as the number of bombing events with casualty during
1940–1942 within a 10-km radius of each UKB participant’s place of birth.

Data Availability. GWAS summary statistics for birth year IMR are available
at http://qlu-lab.org/data.html or at the GWAS catalog: http://ftp.ebi.ac.uk/pub/
databases/gwas/summary_statistics/GCST90095001-GCST90096000/GCST90095047.
Previously published data were used for this work (60).
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