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Abstract

Sensitivity and specificity are key aspects in evaluating the performance of diagnostic tests. 

Accuracy and AUC are commonly used composite measures that incorporate sensitivity and 

specificity. Average Weighted Accuracy (AWA) is motivated by the need for a statistical measure 

of diagnostic yield that can be used to compare diagnostic tests from the medical costs and clinical 

impact point of view, while incorporating the relevant prevalence range of the disease as well 

as the relative importance of false positive versus false negative cases. We derive the variance/

covariance estimators and testing procedures in four different scenarios comparing diagnostic 

tests: (i) one diagnostic test vs. the best random test, (ii) two diagnostic tests from two independent 

samples, (iii) two diagnostic tests from the same sample, and (iv) more than two diagnostic 

tests from different or the same samples. The impacts of sample size, prevalence, and relative 

importance on power and average medical costs/clinical loss are examined through simulation 

studies. Accuracy has the highest power while AWA provides a consistent criterion in selecting the 

optimal threshold and better diagnostic tests with direct clinical interpretations. The use of AWA 

is illustrated on a three-arm clinical trial evaluating three different assays in detecting Neisseria 

gonorrhoeae (NG) and Chlamydia trachomatis (CT) in the rectum and pharynx.
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Introduction

Accurate and timely diagnostic information is critical for successful medical management. 

Traditional assessment of a diagnostic accuracy such as sensitivity, specificity, positive 

predicted value (PPV), negative predicted value (NPV) [1,2] focus on one aspect of the 
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performance of diagnostic tests. Unless synthesized it is difficult to pragmatically evaluate 

and choose between diagnostic tests. For instance, both high sensitivity and specificity are 

desirable, but increases in one usually leads to decreases in the other. This creates challenges 

in choosing the optimal thresholds for biomarkers. When deciding between different tests, 

there is often no winner that is superior in all aspects, which again creates a challenge 

for diagnostic selection. We illustrate the difficulty in evaluating diagnostic tests using a 

hypothetical example of two diagnostic tests: one with a higher sensitivity (Diagnostic Test 

A: Sensitivity=0.90, specificity=0.60) and the other with a higher specificity (Diagnostic 

Test B: Sensitivity=0.70, specificity=0.65). Which diagnostic should be selected to optimize 

clinical decision-making? Clearly, the answer depends on the purpose of the tests and the 

clinical context including the relative importance of sensitivity and specificity, and the 

prevalence of disease. Global assessment that accounts for sensitivity and specificity, disease 

prevalence, and the relative importance of false positive and negative errors is needed to 

inform decision-making.

Clinically, composite statistical measures that integrate the two pieces of information 

and provide a global assessment that non-composed sensitivity and specificity analyses 

cannot provide are desirable in evaluating performances of diagnostic tests and choosing 

appropriate thresholds. Area under the receiver operating characteristics curve (AUC) [3] 

incorporates sensitivity and specificity by integrating true positive rates over the possible 

range of false positive rate values when the threshold between positive and negative 

diagnostic results moves from minimum to maximum. However, the prevalence of the 

disease status dictates the absolute numbers in the population affected by false negative rate 

(i.e. 1-sensitivity) or false positive rate (i.e. 1-specificity), respectively, which are key in 

evaluating the performance of a diagnostic test. For example, when prevalence is high, a 

good diagnostic procedure would place more emphasis on sensitivity rather than specificity. 

But in cases of rare infectious diseases, greater emphases would be switched to specificity. 

Furthermore, prevalence often varies across different patient populations and across studies. 

But AUC does not incorporate prevalence information, hence it is invariant to different 

prevalence values or distributions. That is, researchers making selections based on the AUC 

are ignoring potentially valuable prevalence information.

Accuracy, the percent of correct diagnosis in the pooled sample of infections and uninfected 

controls, is another composite measure incorporating both sensitivity and specificity, which 

further reflects prevalence [4,5]. In the example above, the accuracy values for the two 

hypothetical diagnostic tests A and B in discriminating an infection with prevalence of 20% 

are, respectively,

AccuracyA = Prevalence ⋅ Sensitvity + 1 − Prevalence ⋅ Specificity
= 0.2 ⋅ 0.9 + 0.8 ⋅ 0.6 = 0.66;

AccuracyB = Prevalence ⋅ Sensitvity + 1 − Prevalence ⋅ Specificity
= 0.2 ⋅ 0.7 + 0.8 ⋅ 0.65 = 0.66.
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This example shows that different sensitivity and specificity combinations may produce the 

same accuracy. However, do equal accuracy values infer equivalent clinical performances? 

Not necessarily because the accuracy measurement assumes that sensitivity and specific 

are equally important. Therefore, accuracy does not reflect the difference in medical costs 

and quality of life associated with a false negative versus those with a false positive. It is 

important for pragmatic assessment to reflect the relative importance between sensitivity and 

specificity, since the impacts of mistakenly identifying a non-infected individual and missing 

a truly infected case could be dramatically different. Take bacterial infection as an example, 

false positive error could result in unnecessary prescription of antibiotic while false negative 

error could result in wrongly withholding the necessary antibiotic. Patients and clinicians 

weigh these two types of errors quite differently according to individual-specific situations.

Recently, Evans et al (2016) [6,7] proposed the average weighted accuracy (AWA) method 

to incorporate the relative importance of diagnostic errors as well as a plausible range of 

the prevalence of disease, to produce a pragmatic evaluation of diagnostic yield. AWA can 

be used to choose the optimal threshold for biomarkers, evaluate the global utility of a 

diagnostic test and compare test alternatives. This manuscript evaluates the three composite 

measures, AUC, accuracy and AWA, studying the pros and cons of each measure and 

guiding the choice of appropriate statistical measures in evaluating diagnostic tests. Section 

2 provides an overview of the concepts, formulation and hypothesis testing procedures 

using AUC, accuracy and AWA, respectively. Typical clinical scenarios are simulated and 

the performances of the three statistics are compared in Section 3. We use a three-arm 

cross-sectional diagnostic study to illustrate the applications of AWA in clinical studies in 

Section 4, followed by extra discussion in Section 5.

Methods

We lay out the mathematical definition, variance derivation and hypothesis testing procedure 

of AWA in detail. We summarize the properties of the accuracy and AUC statistics, where 

the hypothesis testing procedures are similar except the variance and covariance formula.

Sensitivity and specificity are denoted by Se and Sp, respectively.

Se ≡ P (diagnosis positive  infection positive),

Sp ≡ P (diagnosis negative infection negative) .

We estimate Se and Sp by the positive percentage agreement and negative percentage 

agreement in the sample, denoted by Se and Sp, respectively. Where  Se = ∑i = 1
n+ I Dxi = 1

n+

and  Sp = ∑i = 1
n− I Dxi = 0

n−
, that is, the observed percentage of positive diagnostic (i.e. 

Dxi = 1) results among the truly infected samples and the observed percentage of negative 

diagnostic (i.e. Dxi = 0) results among the true non-infection samples, respectively. Here 
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n+ and n− represent the number of true infections and non-infections in the sample, 

respectively; and Dxi is the diagnostic test result on the ith subject (1 for positive and 0 

for negative).

Let r be the relative importance of false positive versus false negative. For example, 

when r=0.5, it is assumed that the costs and damages resulting from reporting two false 

positive cases are equivalent to those from missing one true positive case. Let p denote the 

percentage of subjects without the infection under study in the population, that is, one minus 

the prevalence of the target infection. The weighted accuracy is defined as follows

W A =
rpSp + 1 − p Se

rp + 1 − p .

Accuracy can be viewed as a special case of WA where the relative importance is one, which 

is usually not true in most clinical situations. If we integrate the percentages of non-disease 

cases over the plausible and relevant range of the infection, say [a,b], we get the average 

weighted accuracy (AWA), estimated by

AW A = cseSe + cspSp,

cse = − 1
r−1 + r

r − 1 2 b − a
ln 1 + b r − 1

1 + a r − 1 ,

csp = r
r − 1 − r

r − 1 2 b − a
ln 1 + b r − 1

1 + a r − 1 .

The standard error of AW A is calculated as

SE AW A =
cse2Se 1 − Se

n+
+

csp2Sp 1 − Sp
n−

.

(1) Compare a diagnostic test vs. the best random test

In the case of a random test,

Se = P (test positive disease positive) = P test positive

Sp = P (test negative disease negative) = P test negative .

Let the probability of the diagnostic test giving a positive result be pr,. The AWA 

corresponding to a random test is
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AW ART = csepr + csp 1 − pr .

The best random test (BRT) refers to the random test with the choice of pr maximizing 

AWART

AW ABRT = maxpr ∈ 0,1 AW ART =
cse,   csp < cse
csp,   csp ≥ cse

The performance of a diagnostic test under evaluation is first compared to that of the BRT 

because only diagnostic tests significantly superior than the free BRT are worth further 

pursuing. In the comparison of a diagnostic (Dx) test versus BRT in terms of AWA, the test 

statistic goes as follows

AW ADx − AW ABRT
SE AW ADx

=
cseSeDx + cspSpDx − AW ABRT

cse2SeDx 1 − SeDx
n+

+
csp2SpDx 1 − SpDx

n−

,

which follows a standard normal distribution under the null.

(2) Compare two diagnostic tests on two independent samples

The difference between two AWA estimates is

AW A1 − AW A2 = cseSe1 + cspSp1 − cseSe2 + cspSp2 .

Here subscripts 1 and 2 denote the two diagnostic tests, respectively. The standard error of 

the difference goes as follows

SE AW A1 − AW A2 =
cse2Se1 1 − Se1

n1 +
+

csp2Sp1 1 − Sp1
n1 −

+
cse2Se2 1 − Se2

n2 +
+

csp2Sp2 1 − Sp2
n2 −

,

where n1 and n2 refer to the two independent samples for maker 1 and marker 2, 

respectively. Under H0, the test statistics is

AW A1 − AW A2
SE AW A1 − AW A2

N 0,1 .

(3) Compare two diagnostic tests on the same sample

The numerator of the test statistic measuring the difference between two AWA values is the 

same as the numerator in the case of two tests on two samples

AW A1 − AW A2 = cseSe1 + cspSp1 − cseSe2 + cspSp2 .
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But the variance of the difference estimator from the same sample needs to incorporate the 

covariance between  Se1,  Se2  and the covariance between  Sp1,  Sp2 .

V ar AW A1 − AW A2 = cse2 Se1 1 − Se1 /n+ + Se2 1 − Se2 /n+ − 2cov Se1, Se2 + csp2
Sp1 1 − Sp1 /n− + Sp2 1 − Sp2 /n− − 2cov Sp1, Sp2 .

Here the covariances are estimated from the observed percentage of agreement between the 

two diagnostic tests Dx1 and Dx2 in the sample

cov Se1, Se2 ≡ E Se1Se2 − E Se1)E(Se2 = ∑
i = 1

n+ I Dx1i = 1 I Dx2i = 1
n+

− Se1Se2 /n+,

cov Sp1, Sp2 ≡ E Sp1Sp2 − E Sp1)E(Sp2 = ∑
i = 1

n− I Dx1i = 0 I Dx2i = 0
n−

− Sp1Sp2 /n− .

Where Dx1i = 1 and 0 represent positive and negative diagnosis from diagnostic test one on 

subject i, and Dx2i = 1 or 0 represents the diagnostic result from test two.

(4) Test the equality of AWAs from multiple (K) diagnostic tests

The variance and covariance estimators in subsection (2) and (3) can also be used to 

construct the covariance matrix of AW A = AW A1, ⋯, AW AK , denoted by ∑. Then a linear 

combination L*AW A can be used to test H0: AWA1 = ⋯ = AWAK. Here * denotes matrix 

multiplication; and L is a (K − 1) × K matrix with one 1 − 1
K  value in each row and − 1

K   

otherwise, furthermore all 1 − 1
K  values locate in different columns. The variance-covariance 

matrix of L*AW A is L * Σ * L`, then L * AW A ` * L * Σ * L` −1 * L * AW A  follows a χ2 

distribution with degree of freedom K-1 under the null hypothesis of K equal AWAs.

(5) Variance and covariance of accuracy

Accuracy is the weighted average of sensitivity and specificity where the weights are the 

proportions of population with and without the infection of interests

Accuracy = pSe + 1 − p Sp .

The standard error of estimated accuracy for a single diagnostic marker is

SE Accuracy =
p2Se 1 − Se

n+
+

1 − p 2Sp 1 − Sp
n−

.
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The standard deviation of the difference between two accuracy measures for two diagnostic 

markers estimated from two independent samples is

SE Accuracy1 − Accuracy2

=
p2Se1 1 − Se1

n1 +
+

1 − p 2Sp1 1 − Sp1
n1 −

+
p2Se2 1 − Se2

n2 +
+

1 − p 2Sp2 1 − Sp2
n2 −

.

Furthermore, the variance of the difference between two correlated accuracy measures for 

two diagnostic markers estimated from the same sample is

Var Accuracy1 − Accuracy2 = p2 Se1 1 − Se1 /n+ + Se2 1 − Se2 /n+ − 2cov Se1, Se2
+ 1 − p 2 Sp1 1 − Sp1 /n− + Sp2 1 − Sp2 /n− − 2cov Sp1, Sp2

The testing procedures using the accuracy statistic under the four scenarios in subsections 

(1) to (4) use similar formula as those derived for AWA except that we plug in the variance 

and covariance of accuracy instead of those of AWA.

(6) Variance and covariance of AUC

AUC is usually estimated by the percent of concordant pairs, that is, pairs whose case has 

a higher marker value than the control, among all the possible pairs made of one infected 

subject and one uninfected subject. Let i=1,…, n+ be the sample of participants with the 

infection condition and j=1,…, n− be the sample of participants without the infection. The

AUC = 1
n+n− ∑j = 1

n− ∑i = 1
n+ ψ Xi, Y j , where ψ X, Y =

1 X > Y
0.5 X = Y
0 X < Y

.

Let θ = E AUC = Pr X > Y + 0.5 Pr X = Y  . We employ the variance and covariance 

formula in DeLong, DeLong & Pearson (1988) [8],

Var AUC

=
n+ − 1 E ψ Xi, Y j ψ Xi, Yk − θ2 + n− − 1 E ψ Xi, Y j ψ Xk, Y j − θ2 + E ψ Xi, Y j ψ Xi, Y j − θ2

n+n−

COV AUCA, AUCB

=
n+ − 1 E ψ XiA, Y jA ψ XiB, Yk

B − θAθB + n− − 1 E ψ XiA, Y jA ψ Xk
B, Y jB − θAθB + E ψ XiA, Y jA ψ XiB, Y jB − θAθB

n+n−

Here the subscripts i, j and k indicate independent and different subjects in the samples; the 

superscripts A and B indicate the two diagnostic tests under comparison; and the test results 

X and Y are 1 for positive and 0 for negative.
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Simulation Design

A simulation study was conducted to evaluate the performance of AWA under the first 

three scenarios in subsections (1)–(3). The biomarker value of the patients with and 

without the disease of interests are assumed to follow bivariate normal distributions with 

mean (μA, μ0) and covariance Σ =
σA

2 ρAσA
2

ρAσA
2 σA

2 . Without loss of generality, we center 

and standardize the data so that μ0=0 and σA = 1. Similarly, the values of marker B 

among the infected and uninfected populations are distributed as bivariate normal with 

mean (μB, 0) and covariance Σ =
σB

2 ρBσB
2

ρBσB
2 σB

2 . Here we assume the variances of the 

same marker in the diseased and non-diseased populations are the same to single out the 

effects of distance in means and the effects of the sizes of variances. The conclusions can 

be borrowed into cases where the diseased and non-diseased populations have different 

variances. Two sets of optimal thresholds are calculated by maximizing either AWA or 

accuracy, respectively, under each parameter setting. The sensitivity and specificity are 

calculated using the survival probabilities and the cumulative distribution probabilities of 

the underlying distributions at the selected optimal thresholds. Similarly, AWA, accuracy 

and their variances and covariances are calculated at the two sets of optimal thresholds. 

The AUC and the corresponding variances and covariances are calculated using the joint 

probability of a pair of marker values from the infected population are both larger or both 

smaller than the markers’ values from a random uninfected subject, which are obtained 

by two-dimensional numeric integration over the joint probability density function of the 

bivariate normal distributions. In addition, the ROC curve, which the AUC is based on, 

is plotted to illustrate the diagnostic ability of the binary classifier as its discrimination 

threshold is varied.

Three scenarios corresponding to subsections (1), (2) and (3) in the Methods section are 

examined – a diagnostic test where the biomarker values in the diseased population have 

mean 0.5 and variance 1 vs. best random test, two diagnostic tests from two independent 

samples, and two diagnostic tests from the same sample, whose biomarkers are distributed 

as N(0.6, 1) and N(0.5, 0.5), respectively, in the infected populations. Two different sample 

sizes 500 and 1000, low (5%, 10%) and high (10%, 30%) prevalence ranges, as well as 

two common relative importance levels 0.1 and 0.25 are tested. The powers from the three 

statistics (AWA, accuracy and AUC) are compared. Furthermore, we put the medical costs 

and clinical loss associated with one false negative case to be one and the medical costs 

and clinical loss associated with one false positive case be r. The relationship between total 

medical costs and clinical loss versus AWA, accuracy and AUC are further compared side by 

side.

Simulation Result

In Figure 1, we plot the relationships between average medical costs and the three statistics 

(AWA/Accuracy/AUC) when the threshold of the biomarker changes from minimum to 

maximum. Four different scenarios examining high and low prevalence as well as high and 
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low relative importance are plotted. In all scenarios, AWA is reversely related to medical 

cost. And the value of AUC is invariant to the choice of thresholds which are expected 

to incur quite different medical costs. The pattern of accuracy versus medical cost varies 

depending on the prevalence and relative importance of the diagnostic errors. For low 

prevalence and high relative importance, accuracy goes down while the medical cost goes 

up; in cases with high prevalence and low relative importance, accuracy goes up together 

with medical cost. For the other two scenarios, minimum medical costs occur in the middle 

of the range of possible accuracy values, that is, neither the highest nor the lowest accuracy. 

If clinicians aim for an “optimal” threshold using the criterion of minimum medical costs, 

AUC provides no information about medical costs, accuracy provides confusing information 

about medical costs because the relationship between accuracy and medical costs could 

be either positive or negative. AWA can be used as a reliable criterion to choose optimal 

threshold because the threshold that maximizes AWA also minimizes expected medical costs 

at the same time. When the importance of the false positive and false negative are equivalent 

(relative importance r=1), the AWA is the same as accuracy, the two lines overlap. (Figure 1, 

r=1)

Combinations of specificity and sensitivity are determined by placing cut-offs on biomarker 

distribution under null and alternative respectively. Regardless of the choice of optimal 

relative importance (r) and prevalence (p), the corresponding ROC remains the same. (Figure 

2)

The results of the simulations from the three scenarios in subsection (1)–(3) of the Methods 

section are listed in Tables 1–3, respectively.

The impacts of sample size, prevalence and relative importance on the performance of 

the three statistical measures are similar throughout the three tables. Larger sample sizes 

increase the precision of all three estimators, which leads to greater power. Larger sample 

sizes also require higher medical cost due to the increased number of misdiagnosis cases. 

There is an interaction between the relative importance of the diagnostic error (r) and 

prevalence (p). When r is small (0.1), a higher prevalence is associated with a lower optimal 

threshold of biomarker that maximizes AWA, and it leads to a higher sensitivity and lower 

specificity. AWA of the diagnostic test increases but power decreases with prevalence. On 

the other hand, when r is relatively large (0.25), AWA is maximized at a greater threshold 

for biomarker value, hence lower sensitivity and higher specificity. For large r values, 

AWA decreases and power increases with the prevalence rate. Both higher prevalence and 

higher relative importance lead to a greater medical cost. For the accuracy measure, higher 

prevalence lead to lower thresholds and specificity, but higher sensitivity, power and medical 

costs.

In terms of power in detecting differences between tests, accuracy has the highest power and 

AUC has the lowest power for evaluating the diagnostic test against best random test, or two 

diagnostic tests from either two independent samples or the same sample. AWA has higher 

power than AUC, but lower power than accuracy.
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Impact of Relative Importance

Table 4 shows the power of AWA under the three scenarios in Table 1–3. When r is 

misspecified, the power may be higher or lower than the AWA using the correct r because 

r is selected for clinical interpretability, not based on minimum variance or maximum 

power. Therefore, it is possible that misspecified r leading to an AWA with higher power 

in comparing diagnostic tests. For example, when comparing two diagnostics applied in 

two independent samples, when prevalence is in the 5%−10% range, using r value of 0.1 

would give higher power than r value of 0.25, even if the true value of r is 0.25. However, 

misspecified r will lead to choosing threshold too high (when r is over-estimated) or too low 

(when r is under-estimated) for the biomarker as well as bias in the estimation of AWA and 

the corresponding medical costs.

The performance of AWA varies by the choice of relative importance (r). However, 

in practice, the relative importance of r can often be accurately determined using cost-

effectiveness analysis or clinicians’ clinical judgement. This information can often be 

accurately measured and should reflect the clinical representation of such value. [9] For 

instance, the relative importance can be by the expert opinion from the clinicians through 

a survey of experts. Even in cases of misspecified r, as long as the difference between the 

chosen r and the true r is not too large, the estimates of medical costs are close, especially 

for infections with low prevalence (5%−10%).

Example Application

Diagnostic Assays to detect Neisseria gonorrhoeae and Chlamydia trachomatis (GC) 
infection

The master protocol for multiple infection diagnostics (MASTERMIND) GC study [10] was 

a cross-sectional, single visit study evaluating the performance of three commercial nucleic 

acid amplification tests (NAATs including Xpert® Assay (Cepheid), APTIMA Combo 2® 

Assay (Hologic) and Abbott RealTime Chlamydia trachomatis and Neisseria gonorrhoeae 
assay (Abbott)) to detect Neisseria gonorrhoeae (NG) and Chlamydia trachomatis (CT) in 

the rectum and pharynx. The study enrolled 2767subjects who had four pharyngeal and four 

rectal swabs collected as part of a one-time study visit. Each swab was used for a specific 

NAAT testing. A composite reference standard, defined by the results of two other NAATs, 

was used to determine the anatomic site infected status (ASIS). For a full description of the 

study, see [11].

169 subjects were excluded due to protocol violation and after applying the exclusion 

criteria. The final study population included 2598 participants, who attended a participating 

clinic for evaluation of STDs, and were ≥ 18 years of age at date of screening, be willing 

to provide informed consent, and comply with study procedures including collection of 

4 swabs each from the pharynx and rectum for NG and CT testing. The subjects who 

received any systemic antibacterial drug in the past 14 days, or received myelosuppressive 

chemothrerapy in the past 30 days were excluded from the study. The estimated sensitivity 

and specificity, and associated 95% confidence intervals of the three assays at two locations 

for the two target infections are listed in Table 5.
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The estimated AWA is calculated using the estimated sensitivity and specificity of each 

NAAT platform assay, assuming the relative importance of diagnostic error of 0.25, and 

disease prevalence of NG in the rectum, NG in the pharynx, CT in the rectum and CT in the 

pharynx to be of 10% each, ranging from 7.5% to 15%. We first compare each of the three 

platforms to BRT at each specimen sites and for each specie type. Four additional statistical 

tests are performed for comparing the equality of the AWAs using the three platforms for the 

two specimen sites and two species, respectively. The testing procedures for the hypotheses 

of three equal AWAs follow the derivations in subsection (4) of the Methods section.

TEST versus BRT

The null and alternative hypotheses are as follows:

H0:AW Ai = AW ABRT vs . Ha:AW Ai ≠ AW ABRT , i = 1,2, 3

For all species and sites, the estimated AWA of the platform test is greater than the AWA 

of BRT at the significance level of 0.004 (note: the significance level is adjusted based on 

Bonferroni correction 0.05/12) (Table 6).

Comparison the equality of the AWAs from the three TESTs

The null and alternative hypotheses are as follows:

H0:L * AW A =
AW A1 − AW A
AW A2 − AW A

= 0
0   vs . Ha:L * AW A ≠ 0

0 ,

wℎere AW A =
AW A1 + AW A2 + AW A3

3 and L = 1 − 1/3 −1/3 −1/3
−1/3 1 − 1/3 −1/3 .

Furthermore, the variance and covariance matrix for AW A  is

Σ =

Var AW A1 Cov AW A21 Cov AW A31
Cov AW A12 Var AW A2 Cov AW A32
Cov AW A13 Cov AW A23 Var AW A3

Therefore, the test statistics are calculated as x2 = L*AW A ′* L*Σ*L` −1* L*AW A , which 

follow a chi-square distribution with degree freedom of 2, as shown in Table 7. Except for 

the species CT and rectal site, in all the other scenarios, the AWAs from the three platforms 

are not equal at significance level 0.05. Using AWA as the measure of performance, the 

Abbott platform seems to be inferior than the other two although the highest AWA may be 

from either Panther or Xpert.

Discussion

The clinical impact of diagnostic test should be evaluated in the context of diagnostic 

yield, which depends not only on the test’s ability to discriminate disease from non-
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disease (sensitivity and specificity), but also on the prevalence of disease and the relative 

importance of a false positive vs. false negative. AWA is a measure of diagnostic yield 

that incorporates these components and provides a pragmatic evaluation of the diagnostics 

under investigation. AWA is expected to yield a better power than cases when sensitivity 

or specific is used alone, as it utilizes entire study sample (both disease and non-disease 

population) in estimation and hypothesis testing compared to the segmented evaluation 

of sensitivity and specificity. The criterion of evaluating the performance of a diagnostic 

test should not be based only on the statistical properties (etc. power), but also on its 

clinical value (e.g. measured by medical cost or clinical importance). This paper examined 

the statistical properties and practical value of AWA as compared to two other composite 

statistical measures, AUC and accuracy, with respect to power and clinical cost. AWA is not 

the statistical measure with the highest power but it always has a simple reverse relationship 

with medical cost and is most informative in selecting the optimal biomarker thresholds and 

best diagnostic tests in terms of clinical importance based on optimizing diagnostic yield. 

AWA is an effective measure of cost-utility reflecting the relative cost between false positive 

and false negative diagnosis of a diagnosis test and providing a pragmatic evaluation of the 

diagnostic test based on the disease population.
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Figure 1. 
Relationships between AWA, Accuracy and AUC versus medical costs.
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Figure 2. 
ROC for evaluating true positive/false positive value of the diagnostic test.
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Table 4:

Power and medical costs using AWA in hypothesis testing.

Scenario Prevalence Range Relative Importance Power Medical Cost

Diagnostic vs Best Random Test 5%−10% 0.1 0.627 66

5%−10% 0.25 0.072 75

10%−30% 0.1 0.126 79

10%−30% 0.25 0.998 161

Independent sample: Diagnostic 1 vs Diagnostic 2 5%−10% 0.1 0.455 63

5%−10% 0.25 0.294 74

10%−30% 0.1 0.474 78

10%−30% 0.25 0.742 153

One sample: Diagnostic 1 vs Diagnostic 2 5%−10% 0.1 0.738 63

5%−10% 0.25 0.491 74

10%−30% 0.1 0.74 78

10%−30% 0.25 0.959 153
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Table 5.

Estimated specificity and sensitivity and associated 95% confidence intervals for each platform by specimen 

site and specie type.

Panther Abbott Xpert

Se Sp Se Sp Se Sp

CT
pharynx 0.900 (0.786,0.956) 1 (0.998,1) 0.840 (0.715, 0.917) 1 (0.998,1) 0.959 (0.863, 0.989) 1 (0.998,1)

rectal 0.894 (0.846,0.928) 0.998 (0.995,0.999) 0.846 (0.792, 0.888) 1 (0.998,1) 0.874 (0.824,0.911) 1 (0.998,1)

NG
pharynx 0.960 (0.923, 0.980) 0.999 (0.997, 1) 0.865 (0.818,0.905) 1 (0.998,1) 0.955 (0.917,0.976) 1 (0.998,1)

rectal 0.965 (0.929, 0.983) 0.999 (0.997, 1) 0.887 (0.836, 0.924) 1 (0.998,1) 0.921 (0.876,0.951) 1 (0.998,1)
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Table 6.

Testing AWAs of the three platforms versus BRT by specimen site and species (AWA of the BRT=0.666).

Platform Species Sites AWA Difference(95% CI) in AWA between platform and BRT Test statistics p-value

Panther

CT
pharynx 0.966 0.301 (0.273,0.328) 21.213 <0.001

rectal 0.963 0.297 (0.284,0.311) 42.520 <0.001

NG
pharynx 0.986 0.320 (0.311,0.329) 69.175 <0.001

rectal 0.988 0.322 (0.313,0.330) 73.555 <0.001

Abbott

CT
pharynx 0.946 0.281 (0.247,0.314) 16.202 <0.001

rectal 0.948 0.283 (0.267,0.298) 34.843 <0.001

NG
pharynx 0.955 0.289 (0.273, 0.304) 36.429 <0.001

rectal 0.962 0.296 (0.282,0.311) 39.928 <0.001

Xpert

CT
pharynx 0.986 0.320 (0.302,0.339) 33.854 <0.001

rectal 0.958 0.292 (0.277,0.306) 39.330 <0.001

NG
pharynx 0.985 0.319 (0.310,0.329) 65.474 <0.001

rectal 0.974 0.308 (0.295,0.320) 48.648 <0.001
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Table 7.

AWAs from three platforms by specimen site and species and the Chi-square test for the equality of the three 

AWAs.

Panther Abbott Xpert Chi-square statistic p-value

CT
pharynx 0.966 0.946 0.986 19.002 <0.001

rectal 0.963 0.948 0.958 4.601 0.100

NG
pharynx 0.986 0.955 0.985 37.069 <0.001

rectal 0.988 0.962 0.974 7.896 0.019
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