Skip to main content
. 2022 Mar 5;10(3):610. doi: 10.3390/biomedicines10030610

Table 2.

Performance metrics for the three considered models in the training and validation sets. LR, linear regression. RF, random forest. FFNN, feed forward neural network. MAE, mean average error. Correlation, Pearson product-moment correlation coefficient. P10/P30, fraction of predictions with an error within the 10%/30% threshold. Best results for each set are highlighted in bold.

Training Set Validation Set Test Set
LR RF FFNN LR RF FFNN LR RF FFNN
MAE 0.2210 0.1801 0.1956 0.1975 0.1894 0.1780 0.2515 0.2257 0.2035
Correlation 0.8402 0.8869 0.8632 0.8732 0.8871 0.9028 0.7922 0.7450 0.8563
P10 0.2635 0.3322 0.3099 0.2699 0.2828 0.2879 0.2530 0.2803 0.3136
P30 0.6901 0.7751 0.7391 0.7044 0.7189 0.7532 0.6394 0.6727 0.6955