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Abstract: According to the International Diabetes Federation, 530 million people worldwide have
diabetes, with more than 6.7 million reported deaths in 2021. Monitoring blood glucose levels
is essential for individuals with diabetes, and developing noninvasive monitors has been a long-
standing aspiration in diabetes management. The ideal method for monitoring diabetes is to obtain
the glucose concentration level with a fast, accurate, and pain-free measurement that does not require
blood drawing or a surgical operation. Multiple noninvasive glucose detection techniques have
been developed, including bio-impedance spectroscopy, electromagnetic sensing, and metabolic heat
conformation. Nevertheless, reliability and consistency challenges were reported for these methods
due to ambient temperature and environmental condition sensitivity. Among all the noninvasive
glucose detection techniques, optical spectroscopy has rapidly advanced. A photoacoustic system
has been developed using a single wavelength quantum cascade laser, lasing at a glucose fingerprint
of 1080 cm−1 for noninvasive glucose monitoring. The system has been examined using artificial skin
phantoms, covering the normal and hyperglycemia blood glucose ranges. The detection sensitivity
of the system has been improved to ±25 mg/dL using a single wavelength for the entire range of
blood glucose. Machine learning has been employed to detect glucose levels using photoacoustic
spectroscopy in skin samples. Ensemble machine learning models have been developed to measure
glucose concentration using classification techniques. The model has achieved a 90.4% prediction
accuracy with 100% of the predicted data located in zones A and B of Clarke’s error grid analysis.
This finding fulfills the US Food and Drug Administration requirements for glucose monitors.

Keywords: noninvasive glucose detection; photoacoustic spectroscopy; mid-infrared spectroscopy;
machine learning

1. Introduction

Diabetes mellitus, commonly known as diabetes, is a metabolic disorder that elevates
the glucose percentage in the blood, caused by a dysfunction in the production (type-1) or
effectiveness (type-2) of insulin in the body. Worldwide, 530 million people have diabetes,
causing more than 6.7 million deaths, according to the International Diabetes Federation
(IDF) in 2021 [1]. The number of diagnosed diabetics is rapidly and continuously growing,
which draws attention to the demand for developing better functional blood glucose
monitors. In addition, hypoglycemia is a condition where the blood glucose concentration
is dangerously low. Typical blood glucose levels in adults, under various conditions, are
shown in Table 1. Both diabetes mellitus and hypoglycemia conditions significantly impact
human life and need to be continuously monitored. The current traditional technologies for
measuring blood glucose are based on invasive methods. These methods are considered to
be painful and inconvenient due to multiple daily blood drawings. Hence, there is demand
for the development of new noninvasive technologies that will improve the life quality of
those living with diabetes.
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The blood glucose concentration can be potentially measured directly from blood,
serum, plasma, urine, saliva, and tear liquid, as per [2–6]. Furthermore, it can be directly
determined from the interstitial fluid (ISF) [7], located underneath the skin in the epidermis
layer. The ISF is a thin layer of bio-fluid located between the cells, composed of water
solvent and blood vessels. It contains sugars, fats, amino acids, hormones, coenzymes,
white blood cells, and cell waste-products [8]. The glucose diffuses from the blood to the
ISF layer within a 5 to 15 min delay period, creating a significant opportunity for the ISF to
be a promising target for noninvasive blood glucose monitoring systems [9].

Table 1. Typical blood glucose levels of adult humans.

Condition Fasting mg/dL Just Ate mg/dL 3 h after Eating
mg/dL

Normal 80–100 170–200 120–140
Pre-diabetic 101–125 190–230 140–160

Diabetic >= 126 220–300 >200

Researchers have explored different approaches, including Raman spectroscopy [10–12],
optical tomography [13,14], and impedance spectroscopy [15,16]. Nevertheless, none of
these approaches have yet met the physiological necessity because of their operational
instability and low accuracy [17]. Other minimally invasive techniques have been devel-
oped. However, they require iterative surgical implantation for the sensors and raise a skin
irritation dilemma [18]. The minimally invasive glucose monitoring requires extracting the
ISF from the human body without pricking. Figure 1 shows some of the current techniques
and active research areas for invasive and noninvasive in vivo glucose detection.

Infrared (IR) spectroscopy, including the NIR and MIR regimes, is being developed as
an alternative approach to invasive glucose meters [17]. Both NIR and MIR spectroscopies
show strong and broad glucose fingerprint absorption, which draws attention to the
implementation of these regions in glucose detection applications. NIR spectroscopy is
a cost-effective technique that provides longer light path length in biological samples
compared to the MIR. However, the MIR region has distinct glucose fingerprints with less
interference with other blood components compared to the NIR region.

The combination of MIR and PA spectroscopy has demonstrated promising potential
for substituting the invasive glucose monitoring technology [19–22]. PA spectroscopy can
be employed in the vibration modes of the glucose molecules in the NIR and MIR regions
as an alternative approach to compensate for the optical losses in both regions. Specifically,
water absorption is much weaker for acoustic signals compared to MIR signals. Quantum
cascade lasers (QCLs) in the MIR region have the advantage of generating stronger PA
signals and demonstrating stability in the measurements. Therefore, acoustic signals can
travel deeper with minimum water scattering and easily reach the ISF in the epidermis
layer. The absorption of the acoustic waves increases by raising the glucose concentration
because of the vibration mode of the C-O-H bonds of sugar [23]. Other blood components
were tested by a PA spectroscopy to characterize their vibration frequencies in order to
determine the compatible wavenumbers to be employed for glucose detection, as listed in
Table 2 [24].

The combination of PA spectroscopy with MIR spectroscopy for glucose measurements
was first investigated in 2005 by Lilienfeld-Toal et al. [20]. Two separate QCLs were used to
generate heat pulses in the forearm of a human body. The first laser was used at a glucose
absorption peak at 1080 cm−1, while the second one was used to remove any background
noise at 1066 cm−1 due to strong water absorption. A sensitive microphone was placed
inside an acoustic cell to detect the PA signals from the skin, achieving a correlation factor
of 0.61. In 2011, Pleitez et al. [25] published a paper to move progress forward with the
use of three QCLs in order to detect the glucose level in the palm at two glucose peaks
(1084 and 1054 cm−1) and 1100 cm−1 for the background. A twin Helmholtz gas-cell was
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used as an acoustic cell with a resonance frequency at 2 kHz. The correlation factor (R) was
improved to 0.7 compared to their previous experiment [20].

Blood Glucose
Monitoring

Invasive Noninvasive

Non-Optical OpticalBlood Analysis Implantable
Sensors

Continuously Raman Spct
MIR, NIR
& PA SpctIntermittently

Scattered
Light Spct

Diffuse Refle-
ction Spct

Polarimetry

Electromgnetic

Bio-impedance
Spct

Amperometry

Fluorescence

Viscosimetry

Spct=Spectroscopy

Figure 1. Overview of various techniques and active research areas for in vivo and in vitro glucose
monitoring.

Table 2. Vibrational absorption frequencies for some blood components of the skin [24].

Wavenumber Component Intensity

1080 cm−1 β D-glucose absorption Medium
1080 cm−1 v(PO2−2 ) symmetric Medium

1077 cm−1 v(CC) skeletal trans
conformation Medium

1054 cm−1 α D-glucose absorption Very weak
1052 cm−1 Albumin absorption Weak
1047 cm−1 v(C–OP) Weak

1035 cm−1 v(CC) skeletal cis
conformation Medium

1034 cm−1 α&β D-glucose absorption Medium
1020 cm−1 Albumin absorption Very weak

v = stretch.

Epidermal skin samples in contact with a glucose solution were studied in vitro
with a broadly tunable External cavity (EC) QCL by Kottmann et al. [21]. The tuning
range was 1010–1095 cm−1 with an 0.90 cm−1 tuning step and an open-ended PA cell
of 78 mm3 volume. A glucose detection limit of 100 mg/dL was obtained with a signal
to noise ratio (SNR) of 1 and R2 = 0.998 at a glucose peak of 1034 cm−1 and 1080 cm−1.
The cell was ventilated by constant N2 gas circulation to overcome humidity and water
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condensation. However, the glucose detection’s sensitivity is considered to be inadequate
compared to the US Food and Drug Administration (FDA) requirement of a ±15 mg/dL
accuracy limit for detection. A year later, a flexible, non-toxic silver halide optical fiber was
proposed by Kottmann et al. [21] for proper light delivery to different spots on the body. A
detection limit of 57 mg/dL and SNR = 1 in an aqueous glucose solution was achieved with
R2 = 0.993. Three years later, a dual-wavelength aspect was employed by the same research
group [26] at 1080 cm−1 for the glucose peak and 1180 cm−1 for the background. The
acoustic signals were obtained for in vivo glucose detection from the forearm and fingertip
of a healthy, fasting volunteer. The prediction limit was improved to ±30 at a confidence
level of 90% for a glucose concentration between 90 and 170 mg/dL. To date, this is the
highest glucose prediction sensitivity achieved in PA spectroscopy [11]. Nevertheless,
the detection sensitivity is still unsatisfactory for clinically approved glucose monitors.
Moreover, using two QCLs, or a tunable EC-QCL, overpriced the system cost. Table 3
summarizes recent progress in PA and MIR combined spectroscopy for glucose detection.

In this paper, a photoacoustic (PA) system has been developed using a single wave-
length QCL, lasing at a glucose fingerprint of 1080 cm−1 for noninvasive glucose moni-
toring. Artificial biomedical skin phantoms with similar properties to human skin have
been prepared with different glucose concentrations as test models for the setup. The
glucose concentrations in the phantoms cover the range of interest for blood glucose levels
in healthy individuals and those living with diabetes. The detection sensitivity of the PA
and MIR system has improved to ±25 mg/dL for the glucose range of 75 to 300 mg/dL.
An ensemble machine learning model has been developed to detect the glucose concen-
tration of the skin samples using classification techniques. The model has achieved 90.4%
prediction accuracy with 100% of the predicted data located in zones A and B of Clarke’s
error grid analysis (EGA). This finding fulfills the FDA requirements for glucose monitors.

Table 3. Recent progress in PA and MIR combined spectroscopy for glucose detection.

Date Reference Source Wavenumber
(cm−1) Samples G. conc.

(mg/dL)
Correlation or
Sensitivity M.L. Main Contributions

2005 Toal et al. [20] QCL P:1080
Bg:1066 Forearm 0–300 R = 0.61 No The PA and MIR com-

bination

2012 Kottmann et al. [21] QCL P:1034 Epidermal samples 0–2000 ±100 mg/dL No Using tunable QCLs
and N2 ventilation

2012 Pleitez et al. [25] EC-QCL P:1054&1084
Bg:1100 Palm 80–260 R = 0.70 R.O. Selecting three wave-

lengths

2013 Kottmann et al. [24] EC-QCL P:1034 Glucose solution 0–5000 ±57 mg/dL No Fiber optics for light
delivering

2013 Pleitez et al. [27] EC-QCL 1000–1220 Hypothenar 40–240 - R.O. Removing noise by
multivariate models

2016 Kottmann et al. [26] EC-QCL P:1080
Bg:1180 Fingertip & forearm 90–170 ±30 mg/dL R.O. Stability improved by

increasing pulse rate

2017 Sim et al. [28] EC-QCL 950–1245 Fingertip & palm 100–250 30% R.O. Studying skin effect
on measurement

G. conc.: glucose concentration, P: peak, Bg: background, R.O.: regression only.

2. Materials and Methods

PA spectroscopy is one of the most promising imaging and detecting technologies
to have been well developed over time. The extraordinary sensitivity of PA spectroscopy
assists in employing this technique in various fields ranging from biomedical and chemical
to biology and physics [29–31]. The PA spectroscopy concept relies on generating acoustic
waves by an electromagnetic source (particularly modulated light). The radiated electro-
magnetic waves are absorbed by an object, generating acoustic waves through thermal
expansion or pressure. These acoustic waves are distinguishable from one material to
another and can be detected by sensitive ultrasonic or piezoelectric sensors. The intensity
of the light source plays a critical role in generating acoustic waves. Thus, replacing the



Biosensors 2022, 12, 166 5 of 19

regular light source with an intensive light source, such as a QCL, improves the intensity of
acoustic signals.

A model has been developed by Rosencwaig and Gersho [19] to study solid samples
by PA spectroscopy. In this model, six special cases of the generated PA signals of the
sample can be distinguished, based on the ratio of sample length (l), thermal diffusion
of the sample (µs), and optical absorption depth (µa). The PA signal amplitude has an
identical dependency on the light intensity and gas coupling properties in all cases. This
dependency is defined by a factor (F) as follows [24]:

F =
γ · P0 · t(λ) · I0 · µg

4
√

2 · lg · T0
(1)

where P0 is the ambient pressure, t(λ) is the wavelength-dependent fiber transmission, I0
is the laser intensity, µg is the coupling gas thermal diffusion length, lg is the length of the
coupling gas, and T0 is the ambient temperature. The gamma factor (γ) is the specific heat
ratio at constant pressure and volume (γ = Cp/Cv). The thermal diffusing length of the
coupling gas, or sample, is defined as follows:

µg,s =

(
Dg,s

π · f

) 1
2

(2)

where Dg, s is the gas, or sample, thermal diffusivity and f is the modulation frequency of
the laser. For biological samples, i.e., human skin, which contain high water content, the
penetration depth of the NIR or MIR light is small compared to the sample’s length. In
the MIR light, the penetration depth is even smaller due to the stronger water absorption
in this region. However, this permeation is adequate for creating informative acoustic
signals from the skin, where the glucose molecules are diffused. Therefore, the combination
of PA spectroscopy with MIR spectroscopy shows potential for a noninvasive glucose
detection system.

The amplitude of the periodical acoustic signal (APA) is directly proportional to the
laser intensity (Io) and absorption coefficient of the sample (α) as follows:

APA ∝
I0 · α

V0 · f
3
2

, (3)

where V0 is the volume of the cell and f is the modulation frequency. Accordingly, by
developing an appropriate design of the PA cell and selection of the modulation frequency,
the acoustic signals can be improved, leading to enhanced glucose detection sensitivity.
Here, the developed system relies on detecting the deviations of the acoustic signals due
to the variations of absorption coefficient in the glucose phantoms. Increasing the glucose
concentration in the phantoms heightens the absorption coefficient, thus stimulating the
absorbance in the sample to generate higher acoustic signals.

2.1. Experimental Setup

The MIR and PA experimental setup for the noninvasive glucose detection is shown
in Figure 2. In this setup, a single wavelength QCL (QD9500CM1, Thorlabs, Newton,
NJ, USA) was employed as a light source, lasing at 1080 cm−1 where the glucose has a
strong fundamental vibration rotation. The maximum laser power in pulse operating
mode was about 60 W with a pulse width of 33 to 100 µs. The laser was operated at
25 °C and had a threshold current of 180 mA. The laser current was frequency-modulated
from 10 to 30 kHz with square waves of a duty cycle of 40% by a function generator
(Agilent 55321A). The output light of the laser was collimated using an MID lense and
placed close to the lasing facet. The beam diameter of the laser was estimated to be less
than 2 mm. This laser beam was then reflected upwards to the incident on the PA cell
using a gold-coated parabolic mirror with more than 95% reflectivity. A custom-made
thermo-electrical cooling (TEC) system was added to the setup to control the temperature
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during the measurement to provide a sustainable environment. The TEC was controlled
by a custom-made proportional-integral-derivative (PID) feedback loop circuit in order to
achieve a real-time adjustment [32]. Furthermore, a ventilation system with N2 flow was
added to the setup to control the inside humidity of the chamber, preventing moisture from
building up on the biological samples.

Figure 2. Schematic of the setup used for glucose detection using MIR and PA spectroscopy.

The PA cell was designed and simulated using COMSOL [33] to collect and amplify
the acoustic signals generated in the skin sample or human skin. The PA cell sketch is
shown in Figure 3a–c, and the fabricated cell is shown in Figure 3d. The PA cell was made
from oxygen-free copper, and the surface was electroplated with gold to prevent oxidation,
which may cause a degradation in the thermal conductivity. The length of the laser cavity
of the PA cell was 5 mm with a diameter of 3 mm, and the length of the microphone channel
was 13.5 mm with a 1.5 mm length diameter. The resonance frequencies of the cell were at
16.50 kHz and 21.80 kHz, as shown in Figure 3e. A slight shift to the resonance frequency
is expected while conducting the in vivo and in vitro measurements due to the applied
pressure on the cavity. A sensitive analog microphone (SPU0410LR5H-QB, Knowles) was
attached to the absorption cell for collecting the acoustic signal from the PA cell. The
microphone has a maximum sensitivity between 15 to 30 kHz in order to synchronize with
the PA cell resonance frequencies. The PA cell was designed to accommodate both human
fingertips and phantom samples to be perpendicularly irradiated by the MIR laser through
the PA cavity. Moreover, the PA cell was surrounded by acoustic absorption panels in order
to eliminate any environmental background acoustic noises.

2.2. Skin Sample Preparation

Human skin consists of complex components that interfere with each other, influencing
the PA signals from glucose. The impact of each blood component on glucose was not
thoroughly studied in the literature. In biomedical applications, phantoms are widely
used as test models to substitute targeted body objects. Here, following the work of
Lazebnik [34], artificial skin phantoms were prepared at different glucose concentrations to
be used as the test models for a developed system. The skin phantoms can also cooperate in
studying the blood components’ interference with glucose in a well-controlled environment
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by studying the effect of each component individually. This advantage assists in studying
the effect of human skin variation and blood components on glucose detection.

Figure 3. (a) PA cell sketch. (b) PA off-resonance. (c) PA on-resonance. (d) Fabricated copper acoustic
cell. (e) Simulated resonance frequencies of the PA cell.

The oil-in-gelatin phantoms represent the dielectric properties of various human soft
tissues over broadband frequency for biomedical studies purposes. A 200 bloom gelatin
derived from calfskin (Sigma-Aldrich, Oakville, ON, Canada) was used as the substantial
material for the artificial skin samples. A p-toluic acid (powder) and n-propanol were
added to deionized (DI) water and mixed with the gelatin before heating the mixture in a
double boiler. After the mixture becomes transparent, the desired ratio of oil is added when
the mixture reaches 50 °C. An Ivory ultra liquid detergent surfactant was then added with a
formaldehyde solution to provide cross-linking with gelatin. Finally, a D(+)-glucose powder
(Sigma-Aldrich) was added to produce glucose concentrations that ranged from 75 to
300 mg/dL with a glucose step of±25 mg/dL. The mixture was then poured using syringes
(to reduce blistering) into specific silicon molds to consolidate for five days. These molds
were selected to provide shapes similar to human fingertips (20 mm × 20 mm × 10 mm).
Three samples of each glucose concentration were made. Different bakers, syringes, and
molds were used for each glucose concentration in the sample preparation procedure. In
addition, thinner samples at 0 and 1000 mg/dL were prepared for a compatibility test with
the optical properties of human skin. The transmission spectra of the thinner samples were
measured by an FT-IR (NICOLET iS50R).

2.3. Glucose Measurements

The prepared glucose phantoms, ranging from 75 to 300 mg/dL at ±25 mg/dL
glucose differences, were used to investigate the ability of the system for noninvasive
glucose detection. The glucose range in the samples covers the scope of interest for blood
glucose levels in healthy individuals and those with diabetes. Furthermore, the±25 mg/dL
glucose differences in the phantoms aim to raise the detection sensitivity within FDA
specifications [35].

The phantom skin samples were individually placed on the PA cell over the resonator
cavity at room temperature. A sensitive pressure transducer (400 FSR, Interlink Electronics,
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Toronto, ON, Canada) was set beneath the samples to measure the applied pressure and
ensure appropriate contact with the cell. Pressure was applied to the samples using a vice
that moves in an XYZ direction. The pressure effect on the acoustic signals was investigated
before detecting glucose. The appropriate applied pressure was determined by applying
various pressure levels to the sample of the highest glucose concentration, which generates
the strongest acoustic signal. The pressure level ranged from 0 to 9 N/cm2 in order to exam-
ine the pressure effect on the acoustic spectrum of the samples. A consistent pressure level of
6 N/cm2 was eventually applied to all glucose phantoms in the measurements.

The modulated laser beam was focused into the PA cell by a gold-coated parabolic
mirror. Each sample was scanned from 10 to 30 kHz with a frequency step of 150 Hz.
The absorbed laser pulses generate thermal expansions in the skin samples, which are
converted to acoustic waves. These waves are amplified inside the PA cavity and detected
by a sensitive microphone (SPU0410LR5H-QB) channeled through the PA cell. A lock-
in amplifier (SR830) processed the collected PA signals to increase the SNR with a time
constant of 300 ms. The measurements were repeated ten times, and the collected acoustic
signals were transmitted to the PC through a data acquisition system for further analysis.
The experiment was repeated for three days with new samples following similar procedures.
Table 4 shows the summary of the three-day measurements. The in vitro experiment is
considered as an initial and essential approach in examining the feasibility of the system for
noninvasive glucose detection using a single wavelength MIR laser before implementing
and developing the setup for in vivo measurements.

Table 4. Summary of the measurement procedures for glucose detection.

Index Sample No. Glucose Level Round 1 Round 2 . . . Round 10 Class Label

Day 1 1st sample 75 mg/dL 10–30 kHz 10–30 kHz . . . 10–30 kHz 75
Day 2 2nd sample 75 mg/dL 10–30 kHz 10–30 kHz . . . 10–30 kHz 75
Day 3 3rd sample 75 mg/dL 10–30 kHz 10–30 kHz . . . 10–30 kHz 75
Day 1 1st sample 100 mg/dL 10–30 kHz 10–30 kHz . . . 10–30 kHz 100

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .
Day 3 3rd sample 275 mg/dL 10–30 kHz 10–30 kHz . . . 10–30 kHz 275
Day 1 1st sample 300 mg/dL 10–30 kHz 10–30 kHz . . . 10–30 kHz 300
Day 2 2nd sample 300 mg/dL 10–30 kHz 10–30 kHz . . . 10–30 kHz 300
Day 3 3rd sample 300 mg/dL 10–30 kHz 10–30 kHz . . . 10–30 kHz 300

2.4. Machine Learning Techniques for Glucose Detection

Despite the recent outstanding development, machine learning (ML) has not been
utilized in MIR and PA spectroscopy for noninvasive glucose detection. ML models can
assist in improving the detection sensitivity to meet FDA requirements. Furthermore, the
employment of ML can help to solve the complexity of detecting glucose in the presence
of different blood components or at various environmental conditions. In noninvasive
optical spectroscopy, ML models can be developed to distinguish glucose signals despite
the variations in human skin properties for in vivo measurements.

Both classification and regression techniques can be employed for noninvasive glucose
detection applications. The classification techniques result in discrete outputs labeled by
distinct classes, while the regression models extract quantitative information. In other
words, the prediction output of the classification models is a discrete glucose value com-
pared to the regression methods that predict continuous glucose levels. Consequently, the
regression methods are constrained to correlate the entire range of interest for glucose
measurements. This results in associating the hyperglycemia, normal, and hypoglycemia
range of blood glucose levels, which is one of the challenges in regression techniques. In
contrast, the classification techniques address each discrete value independently, with no
influence on other glucose levels. Therefore, reducing the differences in glucose levels
between the discrete classes results in high prediction sensitivity.
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Different regression models have been employed for glucose detection, such as par-
tial least square (PLS) [26,36], principal component (PC) [28], multiple linear regression
(MLR) [37], and artificial neural networks (ANNs) [38,39]. However, these regression mod-
els were used only to reduce the correlation coefficient error in associating predicted glucose
levels with actual values for the range of interest. In contrast, classification techniques,
which have been proposed recently for glucose detection, overcame the challenges in the
regression methods [40] based on simulated results. The hidden Markov classification
(HMM) model was trained to binary classify the simulated results as normal or abnormal
blood glucose levels. A similar approach was followed later, using data obtained from the
literature [41], as well as toenail samples [42]. Jernelv et al. later employed convolutional
neural networks for in vitro glucose detection measurements obtained from online datasets,
including NIR and FTIR measurements [43]. However, no actual experimental measure-
ments were conducted. Liu et al. employed four different regression models, namely
forward propagation (FP), radial basis function (RBF), recurrent neural networks (RNNs),
and back propagation (BP) to detect glucose in aqueous solutions using PA spectroscopy.

In May 2021, Shokrekhodaei et al. employed both regression and classification
models in VIS-NIR transmission spectroscopy for in vitro glucose detection in aqueous
solutions [44]. Five different methods were used, namely MLR and feed-forward NN for
regression models, while K-nearest neighbor (KNN), decision tree (DT), and support vector
machine (SVM) were used as classification models. The study concluded that classification
models are more efficient in detecting broad glucose ranges from hypoglycemia to hyper-
glycemia. The classification-based models outperform regression methods because of their
ability to address each range independently.

In the proposed modality, an ensemble classification model was used to investigate the
capability of ML for measuring the glucose level in the skin samples using the unprocessed
raw data of the acoustic spectrum. After enhancing the system performance, the classifica-
tion technique was applied to consolidate the power of both the built optical system and
ML. The main objective of involving ML is to enhance glucose detection sensitivity in the
presence of other blood components.

Ensemble Classification Model

The architecture of the ensemble classification model, using subspace sampling, is
presented in Figure 4. Since not all frequencies in the acoustic spectrum provide relevant
information for glucose signals, random subspace sampling [45] for the ensemble method
was used. The subspace sampling algorithm extracts random features from the spectrum,
providing varied outlooks on the data. Thus, individual classifiers are trained using
different subspace datasets. The ensemble learning combines several individual models
that operate inherently parallel in order to achieve better prediction performance. The
ensemble classification learning has shown encouraging results in predictive modeling of
type-1 diabetes [46].

In order to generate adequate data for ML, each glucose sample was scanned ten
times from 10 to 30 kHz, with a frequency step of 150 Hz. The measurement was then
repeated for two more days using different samples, creating 4020 datasets for each glucose
concentration, which led to 40,200 datasets for the entire glucose samples, ranging from 75
to 300 mg/dL. Generating a large number of data points assists the training development
of ML models, while the arrangement of these data plays a critical role in the efficiency of
the models. In ML, each column represents a feature while each row represents a dataset.
Therefore, it is essential to ensure that each value in the column is correlated to create one
feature for the algorithm. In this work, the data points at every frequency were assigned
to one column to create a unit feature for the model with a given class label. In other
words, each round of the measurements was converted into a vector before combining
them in one matrix. This data arrangement produced 134 features with 30 datasets for each
glucose class, as shown in Table 5. The 134 columns represent the frequency range of the
measurements from 10 to 30 kHz with a 150 Hz frequency step.
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Figure 4. Overview of ensemble machine learning technique using random subspace sampling.

Table 5. Dataset arrangement of the glucose acoustic spectrum for ML training purposes.

Index 10 kHz 10.15 kHz 10.30 kHz . . . 20.05 kHz 2.20 kHz . . . 30 kHz Class Label

Day 1 round 1 round 1 round 1 . . . round 1 round 1 . . . round 1 75 mg/dL
. . . . . . . . . . . . .
. . . . . . . . . . . . .

round 10 round 10 round 10 . . . round 10 round 10 . . . round 10 75 mg/dL

Day 1 round 1 round 1 round 1 . . . round 1 round 1 . . . round 1 100 mg/dL
. . . . . . . . . . . . .
. . . . . . . . . . . . .

round 10 round 10 round 10 . . . round 10 round 10 . . . round 10 100 mg/dL

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

Day 2 round 1 round 1 round 1 . . . round 1 round 1 . . . round 1 75 mg/dL
. . . . . . . . . . . . .
. . . . . . . . . . . . .

round 10 round 10 round 10 . . . round 10 round 10 . . . round 10 75 mg/dL

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

Day 3 round 1 round 1 round 1 . . . round 1 round 1 . . . round 1 300 mg/dL
. . . . . . . . . . . . .
. . . . . . . . . . . . .

round 10 round 10 round 10 . . . round 10 round 10 . . . round 10 300 mg/dL

The measured acoustic spectrum for skin phantoms was classified into ten classes
based on the glucose concentration of each phantom set. The first six classes cover the
glucose level in the normal range (75–200 mg/dL), and the other four classes include the
hyperglycemic range (225–300 mg/dL) for fasting and after eating conditions. The data
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points of the measurements serve as training data for the machine learning classification
algorithm, while the glucose class serves as the training data response.

The classification models are trained to predict the class labels using the unprocessed
acoustic spectrum of the skin glucose samples in the presence of water and lipids. The
aim was to examine the ability of the ML algorithm to classify precisely each glucose
concentration without preprocessing to the obtained acoustic signals from the skin samples.
The number of learners and the subspace dimension were tuned over the training to
maximize the prediction accuracy. The number of learners for the current dataset was
tuned between 20 to 50, and 50 to 75 for the subspace dimension. The model was evaluated
using the k-fold cross-validation mechanism with 10-fold cross-validation. The dataset
is split into ten folds with the same approximate size. One of the nine folds serves as a
validation set to evaluate the classifier, while the other nine are used to train the model.
This process is repeated until each of the ten folds is employed as a validation set.

In the previous step, the ensemble model was trained with the raw acoustic data to
investigate the ability of the optimized system to detect glucose without preprocessing the
data. A model to remove the outlier using the moving median was then built to preprocess
the acoustic spectrums. The moving median detection method was adopted because of the
significant variation in the acoustic signal due to the amplification around the resonance
frequency. The asymmetric moving window of the model was 10.2 with a threshold factor
of 2.3.

3. Results and Discussion
3.1. Optical Properties for the Artificial Skin Phantoms

The prepared tissue-mimicking phantoms, simulating human fingertip size, are shown
in Figure 5a. The optical properties of phantoms compared to real human skin are shown
in Figure 5b for 0 and 1000 mg/dL glucose concentrations. The dielectric properties of
the phantoms were already tested in the work of Lazebnik [34], where the phantoms were
prepared for the first time to confirm the similitude of these phantoms to human skin. Here,
the optical properties of the tissue-mimicking phantoms were examined and verified to
have properties similar to human skin. Furthermore, the sample with a higher glucose
concentration shows higher absorbance due to the glucose molecules. The phantoms that
were prepared to examine the optical properties were made thinner to allow the IR lights
to be transmitted through the samples using the FT-IR. The C-H absorption peak is clearly
shown in the fresh samples due to the presence of oil compared to the dry human skin
obtained by Delbeck et al. [47]. The oil was added to the sample to examine the glucose
detection feasibility in the presence of lipids. This finding enables the employment of these
phantoms as test models for biomedical applications that employ optical spectroscopy.

3.2. System Optimization

The acoustic absorption panels, which were successfully added to the system, suspend
the acoustic background noises with an average of 78% for the entire spectrum, as shown in
Figure 6a, which increases the SNR of the system. Furthermore, reducing the background
noise around the peaks aids in exposing the glucose buried signals in the acoustic spec-
trum. The pressure effect is another component that can enhance the SNR of the system.
Figure 6b shows the collected acoustic signals at different pressure levels for the 300 mg/dL.
The acoustic signal was doubled around the second peak when applying 9 N/cm2 pressure
to the sample compared to 0 N/cm2. Increasing the applied pressure level amplifies the
acoustic spectrum, which enhances the SNR and the measurement compatibility of the
system. However, at the amplification limit of the PA cell, the acoustic signal reaches
saturation point, and increasing the applied pressure will not further amplify the collected
signals. These findings lead to a significant consequence: the applied pressure has to be
lower than the cell’s amplification limit at the highest glucose concentration sample. When
the applied pressure exceeds the amplification limit, the acoustic spectrum of the samples
will be saturated and will not be further amplified. Thus, the glucose differences among the
acoustic spectrum of the samples will be reduced or eliminated. The same concept applies
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to other parameters that may increase the acoustic signal beyond the amplification limit,
such as laser intensity, modulation frequency, and ambient temperature.

Figure 5. (a) Tissue-mimicking phantoms. (b) Absorption spectrum for the phantoms compared to
the real human skin spectrum.

Figure 6. (a) Background noise with and without acoustic absorption foam. (b) Acoustic spectrum at
different pressure levels.

3.3. Glucose Detection

The acoustic spectrum of the glucose phantoms, ranging from 75 to 300 mg/dL, is
shown in Figure 7, which shows the average of 10 rounds of measurement for each glucose
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sample using a single QCL, lasing at 9.25 µm. The glucose difference in the samples was set
to ±25 mg/dL, aiming to achieve detection sensitivity that fulfills the FDA requirements.
Phantoms with higher glucose concentrations are expected to generate stronger acoustic
signals due to the higher absorption of the glucose molecules. The second peak of the
collected acoustic spectrum, ranging from 19 to 23 kHz, was found to be sensitive to the
glucose levels in the samples. Preliminary results reveal an increment in the acoustic signals
along with an increase in the glucose concentrations of the samples. However, frequency
shifts were noticed in the spectrum as shown in Figure 8a, which induced glucose detection
results. These frequency shifts are attributed to the surface contact of the samples with the
PA cell. Accordingly, the acoustic signals must be rectified before obtaining the glucose
differences from the signals for the selected frequency range. In the rectification process, all
acoustic signals were rectified to have their maximum amplitude at the same frequency.
The acoustic spectrums were then normalized with the carbon signal, which was used for
the calibration process. The rectification and normalization process is shown in Figure 8b,c.

Figure 7. Acoustic spectrum for each glucose skin sample from 75 to 300 mg/dL.

Figure 8. (a) Non-rectified acoustic spectrum of the second peak. (b) Rectified acoustic spectrum.
(c) Normalized acoustic spectrum with carbon.
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After obtaining the normalized spectrum for the phantoms, the area under the curves
was integrated to show the relationship between the acoustic signal to the corresponding
glucose sample, as shown in Figure 9. The results, which were conducted without further
processing, show that the system was able to distinguish the glucose differences in the
skin samples in each of the three days. The presence of glucose molecules in the phantoms
increases the absorption of the MIR light, which intensifies the PA of the samples that have
higher glucose concentrations. The linear correlation factor of the three-day measurement
is R = 0.993. The average resolution between the acoustic spectrum of two glucose samples
with±25 mg/dL is 2.3%. These findings raise the detection sensitivity to±25 mg/dL using
a single wavelength QCL for the first time. Moreover, it shows that the system is able to
detect glucose for the entire range of interest for blood glucose levels in healthy individuals
and those with diabetes.

The system shows sustainability in detecting glucose in the presence of other blood
components such as water and lipids. Table 6 shows the standard deviation for the three-day
measurements. The deviation in the measurements is associated with a slight degradation
in the glucose phantoms over time for the three-day measurements. Moreover, the PA
system is sensitive to environmental conditions, causing a variation in the measurements
from one day to another. Nevertheless, introducing the temperature and pressure sensors to
the setup successfully minimized the deviation in the measurements. Further advancement
is required for the in vivo measurements to affirm the system steadiness, in the form of
attaching fiber optics and humidity sensors to the setup. Moreover, a comprehensive study
is needed to investigate the effect of different skin conditions such as hydration levels and
melanin contents on the acoustic signals.

Figure 9. Relationships between the acoustic signals to the corresponding glucose samples for the
three-day measurements.

Table 6. Standard deviation of the three-day measurements using different skin samples.

Glucose Concentration (mg/dL) 75 100 125 150 175 200 225 250 275 300

Standard Deviation 2.55× 10−2 2.71× 10−2 3.10× 10−2 2.69× 10−2 2.76× 10−2 3.11× 10−2 2.64× 10−2 2.54× 10−2 2.17× 10−2 1.94× 10−2

3.4. Glucose Detection Using Machine Learning

After demonstrating the system’s feasibility to detect glucose in the skin phantoms
using a single light source, ML has been involved in substituting the calibration process for
the obtained data. The ensemble classification model was developed using the unprocessed
data of the acoustic signals with no rectification or normalization. The ensemble classifier
successfully predicted each of the ten classes of glucose concentration from 75 to 300 mg/dL
with a prediction accuracy of 86.7%, and an average F1-score of the prediction results of
92.5%. The optimum number of learners was 30, with a subspace dimension of 67. All
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features were used to train the ensemble model to detect glucose in the samples. The
produced confusion matrix of the ensemble classifier is shown in Figure 10. The confusion
matrix visualizes the classifier’s performance by representing the true class labels versus
the predicted classes. The main diagonal of the confusion matrix demonstrates the number
of data samples that are correctly classified. The right-hand side of the confusion matrix
shows the percentage of the true-positive rate (TPR) and the false-negative rate (FNR).

According to the FDA, 99% of predicted results have to be located within zones A and B
in Clarke’s EGA [35], which is used to quantify clinical accuracy for predicted blood glucose
measurements to the reference value. In order to evaluate the model’s prediction accuracy, the
confusion matrix is converted into Clarke’s EGA, as shown in Figure 11a. The figure shows
how many times the classifier predicts the glucose class for each data sample. This results in
93% of the predicted results being located in zone A, while 6.67% and 0.33% are in zones B
and D, respectively. A majority voting algorithm was subsequently applied to the prediction
data, resulting in reproducing the data in the diagonal line of zone A with 100% accuracy, as
shown in Figure 11b. The majority voting algorithm nominates the prediction class based on
the number of votes of each class in order to determine the final results.

Dataset Preprocessing for ML

The unprocessed acoustic data has demonstrated sufficient means to train ML models
in order to achieve conclusive outcomes that fulfill the FDA guidelines. Nevertheless, the
acoustic signals are suspected of environmental conditions, which can introduce unrelated
inputs to the system. Therefore, building an algorithm that removes outliers from the data
is necessary, particularly when merging in vivo measurements. Removing outliers reduces
the validation dataset of the model yet enhances the prediction accuracy. The median
moving algorithm improves the ensemble model’s prediction accuracy to 90.4% over the
entire glucose range and an average F1-score of 94.5%. The confusion matrix of the new
ensemble model with the preprocessed data is shown in Figure 12. The confusion matrix
was converted into Clarke’s EGA to quantify clinical accuracy for predicted blood glucose
measurements. This results in 96.1% of the predicted results being located in zone A, and
with 3.9% in zone B, as shown in Figure 13a. Following similar procedures, the majority
voting algorithm was applied to the prediction data to obtain 100% accuracy, as presented
in Figure 13b.

Figure 10. Confusion matrix of the ensemble model for glucose detection.
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Figure 11. (a) Clarke’s EGA of the prediction model of glucose detection before applying the majority
voting algorithm. (b) Clarke’s EGA of the prediction model after applying the majority voting
algorithm.

Figure 12. Confusion matrix of the ensemble model trained with preprocessed data of glucose
detection.
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Figure 13. (a) Clarke’s EGA of the prediction model with preprocessed data of glucose detection
before applying the majority voting algorithm. (b) Clarke’s EGA of the prediction model with
preprocessed data after applying the majority voting algorithm.

4. Conclusions

A single wavelength QCL has been employed in a PA and MIR spectroscopy on the
glucose fingerprint of 1080 cm−1 for noninvasive glucose monitoring. Artificial biomedical
skin phantoms, having similar properties to real human skin, have been prepared to
cover the normal and hyperglycemia blood glucose range. The SNR of the system has
been effectively enhanced by introducing acoustic absorption panels and pressure sensors.
The pressure level applied to the skin phantoms plays a critical role in detecting glucose
differences in the PA signals. The PA signals of the highest glucose concentration sample
have to be lower than the amplification limit of the PA cell in order to detect the glucose
differences. The signal rectification proposed in this work significantly explicates the
glucose signal differences in the PA spectrum. The proposed techniques, added to the PA
spectroscopy, enable quantifying the glucose level in the samples with the unprocessed
acoustic data. The detection sensitivity has been enhanced to ±25 mg/dL using a single
wavelength QCL.

An ensemble machine learning model has been developed to classify the glucose
concentration in the samples with a 40,200 dataset. The ensemble models trained with
an unprocessed and processed dataset achieved 86.7% and 90.4% prediction accuracy,
respectively. A majority voting algorithm was applied to both prediction models, resulting
in reproducing the data in the diagonal line of zone A of Clarke’s EGA with 100% accuracy.
These findings satisfy the FDA standards for glucose monitors.

In vitro measurements conducted in this study are considered to be a significant step
in demonstrating the feasibility of the developed PA and MIR system for noninvasive
glucose detection. In future works, the glucose sensitivity will be further enhanced before
merging into in vivo experiments. The effect of other blood components, such as protein,
urea, and cholesterol, on glucose will be investigated using machine learning algorithms.
Furthermore, different classification models, such as SVM, NN, and KNN, will be employed
and developed for glucose detection.
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