Skip to main content
. 2022 Mar 14;14(6):1481. doi: 10.3390/cancers14061481

Table 7.

Summary for the validation BRATS dataset for low grade gliomas (LGG) and high grade gliomas (HGG) with the centrality metrics, clustering coefficient, and average path length for the tumor connectomes modeled. Results are shown with mean with standard deviation. MCC = Matthew Correlation Coefficient, AUC-PR = Precision Recall with Bootstrap Confidence Interval (CI).

Glioblastoma Degree Centrality Betweenness Centrality Eigenvector Centrality Node Strength Average Path Length IsoSVM
Low Grade 0.61 ± 0.15 0.00035 ± 0.00030 0.00021 ± 0.0003 0.10 ± 0.03 1.55 ± 0.31 −0.56 ± 1.04
High-Grade 0.47 ± 0.17 0.00044 ± 0.00033 0.00042 ± 0.0004 0.13 ± 0.04 1.88 ± 0.41 0.53 ± 1.06
p value 0.000001 0.0025 0.0001 0.0001 0.0001 0.0001
Sensitivity (%) 67 77 77 68 71 72
Specificity (%) 75 43 63 72 71 75
MCC 0.41 0.22 0.19 0.40 0.41 0.46
AUC-ROC 0.75
(CI = 0.70–0.79)
0.61
(CI = 0.56–0.65)
0.57
(CI = 0.53–0.62)
0.74
(CI = 0.69–0.77)
0.74
(CI = 0.70–0.78)
0.77
(CI = 0.73–0.81)
AUC-PR 0.82
(CI = 0.77–0.86)
0.67
(CI = 0.61–0.72)
0.61
(CI = 0.55–0.67)
0.80
(CI = 0.75–0.85)
0.80
(CI = 0.74–0.84)
0.82
(CI = 0.77–0.86)