Skip to main content
. 2022 Mar 16;14(6):1524. doi: 10.3390/cancers14061524

Figure 2.

Figure 2

Example of a single-hidden-layer ANN architecture. (1) The smoking status in pack years and lung nodule size (mm) are entered as the two input nodes. (2) In the hidden layer, each node multiplies the values from incoming neurons by a weight (shown as decimals at incoming neurons) and aggregates them. (3) The results are passed to an activation function, converting the output to a probability of cancer between 0 and 1. Multiple learning cycles are used to update the hidden layer weights to improve performance.