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Abstract: Neonatal jaundice refers to the abnormality of bilirubin metabolism for newborns, and
wearable transcutaneous bilirubin meters for real-time measuring the bilirubin concentration is an
insistent demand for the babies’ parents and doctors. In this paper, a self-powered wearable biosensor
in a baby diaper for real-time monitoring neonatal jaundice has been realized by the hydrovoltaic-
biosensing coupling effect of ZnO nanoarray. Without external power supply, the system can work
independently, and the hydrovoltaic output can be treated as both the power source and biosensing
signal. The working mechanism is that the hydrovoltaic output arises from the urine flowing on
ZnO nanoarray and the enzymatic reaction on the surface can influence the output. The sensing
information can be transmitted through a wireless transmitter, and thus the parents and doctors can
treat the neonatal jaundice of babies in time. This work can potentially promote the development
of next generation of biosensors and physiological monitoring system, and expand the scope of
self-powered technique and smart healthcare area.

Keywords: self-powered; neonatal jaundice monitoring; ZnO nanoarray; hydrovoltaic effect; intelli-
gent diaper

1. Introduction

Neonatal jaundice refers to the abnormality of bilirubin metabolism (the blood biliru-
bin level rising) for newborns [1–3]. Pathological jaundice can make the face and trunk
of the baby appear yellow color, accompanied with anemia, hepatosplenomegaly and
yellow urine. In severe cases, it is manifested as poor response, listlessness, anorexia and
even breathing difficulties [4–6]. Due to unpredictable pathological recurrence in several
weeks after birth, it is inconvenient for the hospital to carry out examinations in a timely
manner [7,8]. Thus, monitoring and uploading the neonatal jaundice status in real time is
an insistent demand for the parents and doctors. At present, the conventional method for
jaundice detection is based on blood sampling and bilirubin analysis [9,10]. This technique
cannot meet the requirement of real-time dynamic monitoring, and the frequent blood
drawing with skin damage is unacceptable for children and their parents. To solve the
problem, a new wearable transcutaneous bilirubin meter that can be conformably attached
on the skin for real-time measuring the bilirubin concentration in body fluid such as urine
is highly expected [11].

The urine bilirubin concentration in the baby with pathological neonatal jaundice
obviously rise [12,13], and the diaper is usually worn on a baby for holding urine. Thus, a
wearable biosensor embedded in baby diaper for continuously detecting bilirubin concen-
tration can realize monitoring neonatal jaundice in real time. Nowadays, some research
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groups and companies have developed intelligent diapers with various bilirubin biosensor
integration. The main working principal of the biosensor is based on traditional electro-
chemical or chemical colorimetric approaches [14–18]. These methods provide relatively
accurate sensing results, but usually need extra and big-sized bulky power supplies, e.g., a
battery or capacitor, which raises the cost of the whole system, enlarges the total volume
of the diaper and may also cause harm to the health of baby. Recently reported self-
powered techniques may potentially remove the power supply from the system [19–24].
The urine bilirubin analyzing sites with wireless, battery-free electronics are promising as
substitutions by coupling the energy harvesting and biosensing processes in the diaper
environment.

In this paper, a self-powered wearable biosensor in a baby diaper for real-time moni-
toring neonatal jaundice has been realized by the hydrovoltaic-biosensing coupling effect
of ZnO nanoarray. The system can work without an external power unit, and has low cost,
small size, noninvasive, and flexible features. The working mechanism is that the urine
flowing on ZnO nanoarray and the enzymatic reaction (bilirubin and bilirubin oxidase)
on the surface can generate bilirubin dependent hydrovoltaic output [25–31]. The output
can be treated as not only the energy for the sensing process but also the biosensing signal.
ZnO nanostructures have the characteristics of hydroelectric effect with high output [32,33].
It also can be easily and efficiently functionalized for sensing by surface chemical modifi-
cation [34]. The main goal of the device is to monitor the bilirubin in urine to determine
whether there is a possibility of jaundice in baby. The signal collected by the sensing
unit can be transmitted to the wireless transceiver module, and then transmitted to the
guardian’s smart device. Once an abnormality is detected, it can be sent to the doctor for
treatment in time. This achievement can play an important role in monitoring neonatal
pathological jaundice, helping parents of newborns to obtain information about the baby’s
fluid in real time, and sending it to the doctor in the event of an early warning. Meanwhile,
this work can expand the scope of self-powered techniques and smart healthcare areas.

2. Experimental
2.1. Fabrication of Self-Powered Bilirubin Biosensing Unit

Bilirubin oxidase and bilirubin were provided by Chongqing Amida Biotechnology
Co., Ltd (Chongqing, China). The other chemicals were provided by Chengdu Keweizhuo
Technology Co., Ltd. (Chengdu, China).

The vertically grown ZnO nanoarray was prepared by a hydrothermal method. A
piece of PDMS film attached to a silicon wafer (for keeping the film steady in the solution)
was cleaned with deionized water and alcohol, and dried at 60 ◦C. 0.5 g of Zn(NO3)2·6H2O
was dissolved in 38 mL of deionized water, then 2 mL of NH3·H2O was dropped into the
solution while stirring. After Zn(NO3)2·6H2O was evenly dissolved, the PDMS film was
immersed in the solution. The beaker was quickly sealed and placed in a dry oven, and
then kept at 80 ◦C for 24 h. The PDMS film with ZnO nanoarray grown was finally taken
out from the beaker, and stripped off from the silicon wafer [25,35].

The ZnO-grown PDMS film was cut into 20 mm × 30 mm in area, and then ZnO
nanoarray were modified with bilirubin oxidase (BOx). Lyophilized bilirubin oxidase pow-
der was dissolved in PBS buffer to form 40 u/mL BOx solution. 0.5 mL BOx solution was
evenly and slowly dropped on the nanowires. The film was naturally dried for 3–4 h, and
the enzyme was modified on the nanowires [36]. Both ZnO and PDMS have been proven
to be nontoxic/biocompatible and can work well on the human body environment [37–39].

2.2. Characterization and Measurements

The morphology and microstructure of ZnO nanoarray were investigated by a scan-
ning electron microscope (Gemini SEM300, Oberkochen, Germany). The output hydro-
voltaic voltage is measured with electrometer (Keithley 6514, Beaverton, OR, USA).
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3. Results and Discussion
3.1. Experimental Design

Figure 1a shows the experimental design and application of self-powered wearable
biosensor in baby diaper for real-time monitoring neonatal jaundice. The biosensing unit
is embedded in a diaper, and urine can flow across the surface of the device. The output
hydrovoltaic voltage of the device can be influenced by the concentration of the target
biomolecule (bilirubin) in the urine, serving as the biosensing signal. Biological sensor
information can be wirelessly transmitted to parents for determining the health of their
baby, realizing immediate treatment in time.
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Figure 1. (a) The experimental design of self-powered wearable biosensor in baby diaper for moni-
toring neonatal jaundice. (b) Manufacturing process of ZnO nanoarray on PDMS film.

Figure 1b shows the typical manufacturing process of the biosensing unit. The
vertically grown ZnO nanoarray on PDMS substrate are prepared by a hydrothermal
method. Then ZnO nanoarray are modified with BOx by dropping BOx/PBS solution on
the nanowires. The detailed process can be found in the experimental section [25,35,36].

3.2. Device and Material

Figure 2 shows the morphology and microstructure of the self-powered wearable
biosensor in the baby diaper. Figure 2a,b show that the device has good flexibility and
small size. The device can be embedded in the absorbent layer of baby diaper, and can fit
well with the diaper, as shown in Figure 2c,d. The top and side views of ZnO nanoarray
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are shown in the SEM image of Figure 2e–h. The length of the nanowires is about 3 µm,
and the cross section of the nanowires is of hexagonal structure with an average diameter
of about 600 nm. The area of the ZnO nanoarray is determined by the size of the substrate.
In practical applications, the output mainly depends on the area of the liquid flowing. The
thickness of ZnO nanoarray is determined by preparation process. The ZnO nanoarray on
the device is densely distributed, which is beneficial for the piezoelectric output.
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Figure 2. Morphology and microstructure of the self-powered wearable biosensor in baby diaper.
(a) Side view of the flexible device. (b) Top view of the device. (c,d) The device embedded in baby
diaper. (e–h) SEM images of ZnO nanoarray.

3.3. Working Mechanism

Figure 3a,b show the power generating process of the self-powered wearable biosensor.
When the liquid is drawn across the surface of ZnO nanoarray, due to the CE (contact
electrification) effect, the free electrons in ZnO can move to the vicinity of the contact
region between the droplet and ZnO, resulting in charge transfer. Studies have shown that
materials with free electrons will be negatively charged due to the solid–liquid contact-
electrification on the surface of various materials [40–44]. In the solid–liquid contact
between ionic solution and solid has both ion transfer and electron transfer, while the
charge transfer between nonionic liquid and solid is substantially contributed to by electron
transfer. A slight increase in ion concentration can increase the amount of CE charge.
Furthermore, a large amount of excessive ion concentration in the solution can cause
electrons to combine with ions, forming a shielding effect, hindering the charge transfer
and inhibiting the amount of CE charge [45–48]. On the surface of ZnO, the transfer of
hydrogen ions and electrons is a competitive process, and hydrogen ions inhibit the transfer
of electrons between ZnO and water molecules. In contrast, hydroxide ions do not inhibit
this process, but promote this process at high concentration [49]. In order to prove this
speculation, we carry out subsequent experiments related to hydroxide ions on the surface
of ZnO nanoarray.
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Figure 3c–f shows the biosensing process of the device. When the device is in contact
with sodium bilirubin, an enzymatic reaction between BOx and bilirubin will occur. The
reaction is as follows [29]:

Bilirubin + O2
BOx→ Biliverdin + H2O2 (1)

Furthermore, hydrogen peroxide is oxidized as follows:

H2O2 → O2 + 2H+ + 2e− (2)

The hydrogen ion neutralizes the hydroxide ion in the solution thereby affecting
the output voltage of the contact electrification. Figure 3d experimentally confirms that
hydroxide ions can indeed affect the output voltage of the device. As the pH value of
aqueous solution is 11, 10, 9 and 8, respectively, the change of the output voltage is 0.013,
0.006, 0.005 and 0.001 V. These results prove that the biosensing behavior of the device can
be attributed to the coupling of enzymatic reaction and hydrovoltaic effect.

3.4. Sensing Performance

Figure 4 shows the biosensing behavior of the self-powered wearable biosensor in baby
diaper. Figure 4a shows the biosensing performance of the device for detecting bilirubin
(ZnO nanoarray are modified with bilirubin oxidase). Since bilirubin is insoluble in water,
NaOH solution (0.004 mol/L) is usually used to dissolve bilirubin in deionized water [50].
The obtained sodium bilirubin is conjugated bilirubin in the solution for the following tests.
As shown in Figure 4a, when the concentration of sodium bilirubin dropped on the surface
of the device is 12.5, 25.0, 37.5 and 50.0 mg/L, the output hydrovoltaic voltage (peak value)
of the device through contact electrification CE is 0.039, 0.030, 0.019 and 0.008 V, respectively.
The output voltage is negatively correlated with the concentration of sodium bilirubin in
the solution, as shown in Figure 4b. There is an approximately linear relationship between
the output voltage and the concentration of sodium bilirubin. The biosensing response can
be simply defined as [51]:

R% =

∣∣∣∣Vi −V1

V1

∣∣∣∣× 100% (3)
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In Equation (3), Vi and V1 are the output voltage of the device in each concentration
and the initial concentration, respectively. As the output voltage is 0.03408, 0.02708, 0.01881
and 0.00914 V (the average peak value of 10 experiments for each concentration), the
response is 0.0%, 20.6%, 44.8%, 73.2%, respectively. By fitting the response scatter plot,
the linear regression equation can be obtained as y = 0.2438x − 0.263 [52]. In order to
eliminate the influence of the primary cell effect, the device is, respectively, immersed in
the solution and taken out (the device is wet in air atmosphere). The output voltage of
the device is shown in Figure 4c. It can be seen that the output voltage of the device in
the solution is much smaller than that in air. This result confirms that the output voltage
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is mainly dominated by the contact electrification (CE) effect between the solution and
nanowires (a kind of hydrovoltaic effect), and the influence of the primary cell effect can be
ignored. Figure 4d shows the repeatability of the device. The device is investigated with
same concentration of sodium bilirubin solution for four times (one-hour interval for each
test). It can be seen that the device can maintain a stable output within a certain period of
time. The repetition number of the device can match the utility of the diaper, and it can be
thrown away with the diaper.

Specificity is also one of the important indicators of biosensors. The output voltage of
our device is only related to the concentration of sodium bilirubin in the solution, and the
device can specifically target bilirubin in solution without being affected by other partial
substances. Figure 4e–k shows the specificity of the device against sodium bilirubin. The
specificity arises from the enzymatic reaction between bilirubin and bilirubin oxidase. Sev-
eral other typical substances in urine are dropped on the device at different concentrations,
and the output voltage almost keeps unchanged. Figure 4e,f show that as the sodium
urate concentration is 62.5, 125.0, 187.5 and 250.0 mg/L, the output voltage (peak value)
of the device is 0.0270, 0.0315, 0.0278 and 0.0286 V, and the response is 0.0%, 16.7%, 2.9%,
5.9%, respectively. In Figure 4h,j, as the urea concentration in solution is 5.0, 10.0, 15.0
and 20.0 g/L, the output voltage of the device is 0.0083, 0.0100, 0.0083 and 0.0092 V, and
the response is 0.0%, 20.4%, 0.2%, 10.8%, respectively. Figure 4j,k show that as the NaCl
concentration in solution is 5.0, 10.0, 20.0 and 40.0 g/L, the output voltage of the device is
0.0048, 0.0040, 0.0035 and 0.0042 V, and the response is 0.0%, 2.3%, 3.8%, 1.8%, respectively.
The above peak values are all taken from the average value of five experiments at the
corresponding concentrations. The results confirm that the output voltage can be slightly
influenced by the other substances in urine.

Figure 5a shows the output voltage of the device at different temperature. The temper-
ature has a slight influence on the output of the device. Figure 5b,c show the biosensing
behavior of the device against small lactate concentration change. As the sodium biliru-
bin concentration in solution is 25.0, 27.5, 30.0 and 32.5 mg/L, the output voltage of the
device is 0.0299, 0.0261, 0.0238 and 0.0214 V, and the response is 0.0%, 12.7%, 20.5%, 28.4%,
respectively. Figure 5d,e show the limit of detection of the device, as the sodium bilirubin
concentration in solution is 8.0, 10.0 and 12.5 mg/L, the output voltage of the device is
0.0361, 0.0359 and 0.0334 V, the response is 0.0%, 0.5%, 7.0%, respectively. The lower limit
of detection concentration of the device is around 8.0 mg/L. Figure 5f shows that when
the approximate urine (97% water, 1.8% urea, 0.05% uric acid, 1.1% inorganic salts and
trace amounts of sodium bilirubin at the concentrations indicated) containing different
concentrations of sodium bilirubin is dropped on the device, the output of the device
changes significantly.
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3.5. Practical Application

Figure 6 shows the practical application of the self-powered wearable biosensor in
baby diaper for real-time monitoring bilirubin concentration. The device is embedded
between the outer cotton cloth and the inner absorbent layer of the diaper. The device
must be placed on top of the absorbent layer, otherwise no liquid can flow on the surface
of the device. For uploading the biosensing information, the device is connected to an
external circuit module, as shown in Figure 6a. The circuit can amplify the sensing signal,
and the single-chip microcomputer can perform analog-to-digital conversion and analysis
of the signal through voltage converter, shifter and low-pass filter. Then the circuit can
control a wireless transmitter for uploading the sensing information. Here, LED lights are
used to exhibit the sensing result. As the single-chip microcomputer detects the amplified
signal, LED lights can be lightened on. In our experiment, eight LED lights are lined up.
The green light indicates that a voltage with a large variation range is detected (>15 mV).
Furthermore, the number of red light represents the output voltage (one red light for 5 mV,
two red lights for 10 mV, three red lights for 15 mV and so on). As shown in Figure 6b,
after dropping sodium bilirubin solution on the diaper, the concentration can be read out
from the number of LED lights. As the solution is prepared to simulate urine containing
1.0 mg/L of sodium bilirubin, three red lights are on. In Figure 6c, as the sodium bilirubin
concentration in the urine is zero, no red lights are on. These data demonstrate that this
system can roughly analyze the bilirubin concentration in urine. In the near future, other
wireless transmitters, such as a Bluetooth module, can be integrated into the system. These
techniques can transmit sensing information (bilirubin in urine) to the smart phones of
babies’ parents. The parents can real-time monitor the baby’s health and will not delay the
treatment of neonatal jaundice.
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4. Conclusions

In summary, we report a self-powered wearable biosensor in a baby diaper for real-
time monitoring neonatal jaundice. The working mechanism is based on the hydrovoltaic-
biosensing coupling effect of ZnO nanoarray. The system can work without an external
power supply, and the hydrovoltaic output can be treated as the biosensing signal. The
biosensor in the diaper can continuously detect bilirubin concentration in urine, and the
sensing information can be wirelessly uploaded, which facilitates the parents and doctors
treating the neonatal jaundice of baby in time. This self-powered biosensing system can
probably expand the scope of intelligent health care.
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