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Abstract

Mycobacterium tuberculosis (Mtb) and SARS-CoV-2 (CoV2) are the leading causes of

death due to infectious disease. Although Mtb and CoV2 both cause serious and sometimes

fatal respiratory infections, the effect of Mtb infection and its associated immune response

on secondary infection with CoV2 is unknown. To address this question we applied two

mouse models of COVID19, using mice which were chronically infected with Mtb. In both

model systems, Mtb-infected mice were resistant to the pathological consequences of sec-

ondary CoV2 infection, and CoV2 infection did not affect Mtb burdens. Single cell RNA

sequencing of coinfected and monoinfected lungs demonstrated the resistance of Mtb-

infected mice is associated with expansion of T and B cell subsets upon viral challenge. Col-

lectively, these data demonstrate that Mtb infection conditions the lung environment in a

manner that is not conducive to CoV2 survival.

Author summary

Mycobacterium tuberculosis (Mtb) and SARS-CoV-2 (CoV2) are distinct organisms which

both cause lung disease. We report the surprising observation that Mtb-infected mice are

resistant to secondary infection with CoV2, with no impact on Mtb burden and resistance

associating with lung T and B cell expansion.

Introduction

The world is currently in the midst of two lung disease pandemics: COVID19 and tuberculosis

(TB), the causative agents of which are SARS-CoV-2 (CoV2) and Mycobacterium tuberculosis
(Mtb), respectively. Although COVID19 and TB both pose enormous health challenges, espe-

cially in countries where COVID19 vaccines are scarce, it unknown what if any effect Mtb
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infection has on host responses to CoV2 as there are few clinical reports of Mtb/CoV2 coinfec-

tion in the absence of other comorbidities [1,2]. On the one hand, CoV2 infection may exacer-

bate the inflammatory response and pulmonary complications experienced by individuals

with TB [3], analogous to that which is observed in the Mtb/Influenza A or Mtb/CMV coin-

fected individuals [4–7]. On the other hand, there is an inverse relationship between TB inci-

dence rates and COVID19 mortality in numerous countries [8], and Mycobacterium spp

express several proteins homologous to CoV2 antigens [9–11], raising the possibility that

adaptive immune responses to Mtb may confer heterologous immunity against CoV2. To

definitively address whether Mtb-infection impacts CoV2 elicited lung disease in a controlled

setting, we applied two mouse models of COVID19 (CoV2 infection of K18-hACE2 mice [12],

and mouse-adapted CoV2 [MACoV2] infection of C57BL/6 mice [13]), using mice that were

chronically infected with Mtb. The results below support a model wherein Mtb infection con-

fers resistance to secondary infection with CoV2 and its pathological consequences. The impli-

cations of these data for our understanding of COVID19 susceptibility and the limitations of

our study are discussed.

Results

Details regarding the origin, culture, preparation and authentication of CoV2 (strain

USA-WA1/2020), MACoV2 (strain MA10) and Mtb (strain H37Rv) are provided in our Mate-
rials & Methods. To determine if host responses to CoV2 are affected by Mtb-infection,

K18-hACE2 (ACE2) and C57BL/6 (B6) mice were infected with low dose Mtb (~90 CFU) via

aerosol delivery; thirty days later, the ACE2 mice were challenged with CoV2 (~25K PFU) via

intranasal delivery (Fig 1A). These Mtb/CoV2 co-infected (MtbPOSCoV2POS) ACE2 mice were

monitored daily for changes in weight, as were two control groups: ACE2 mice which were

Mtb-infected at the same time (Day -30) but challenged with sterile media (MtbPOSCoV2NEG),

and ACE2 mice which were not Mtb-infected prior to CoV2 challenge (MtbNEGCoV2POS). On

post-challenge Days 4, 7 and 14, groups of mice were euthanized and the lungs and other tis-

sues were removed to assess Mtb and CoV2 burdens, as well as a number of immunological

readouts. All mice were identically housed for the duration of the entire experiment. As antici-

pated, MtbNEGCoV2POS ACE2 mice lost a significant portion of body weight by post-challenge

Day 7 (�20%) (Fig 1B). MtbPOSCoV2POS ACE2 mice, however, did not lose significant body

weight and were otherwise indistinguishable from MtbPOSCoV2NEG controls (Fig 1B). On

post-challenge Day 4, lung CoV2 burdens were lower in MtbPOSCoV2POS mice relative to

MtbNEGCoV2POS mice, as assessed by either plaque assay (Fig 1C) or CoV2 N protein mea-

surement (Fig 1D). Challenge with CoV2 did not affect Mtb growth, as Mtb CFU burdens in

MtbPOSCoV2POS and MtbPOSCoV2NEG lungs did not differ after challenge (Fig 1E), nor did

they differ in spleen (Fig 1F) or liver (Fig 1G). Consistent with the above Mtb CFU results, the

abundance of acid fast bacilli (AFB) was also similar between MtbPOSCoV2POS and MtbPOS-

CoV2NEG lungs (Fig 1H). Transgenic human ACE2 expression also does not affect Mtb

growth, as CFU burdens in MtbPOSCoV2NEG ACE2 mice were indistinguishable from Mtb-

infected B6 controls (Fig 1E, 1F and 1G).

We next assessed the impact of Mtb infection on CoV2-elicited immune responses in the

lung, using tissue from the same ACE2 transgenic mice described above. CoV2 infection elicits

the expression of multiple inflammatory genes in mouse lungs [12]. Consistent with this, pro-

tein levels of IFNγ, IL6 and IL1β were elevated in MtbNEGCoV2POS lungs post-challenge Day 4

and/or Day 7, relative to uninfected (UI) controls (Fig 2A, 2B and 2C). In MtbPOSCoV2NEG

mice, lung protein levels of IFNγ, IL6 and IL1β were even higher, and were not affected by

CoV2 challenge (Fig 2A, 2B and 2C, compare MtbPOSCoV2NEG and MtbPOSCoV2POS levels).
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Fig 1. Mtb-infected ACE2 mice are resistant to secondary infection with CoV2. (A) Experimental overview of our

ACE2:CoV2 model studies, wherein mice were infected via aerosol with Mtb (Day -30) and challenged 30 days later

(Day 0) with CoV2. On post-challenge Day 4, Day 7 and Day 14, tissues were collected for microbiological and

immunological assessments. Experimental groups included ACE2 mice which were not infected with Mtb prior to

CoV2 challenge (MtbNEGCoV2POS), ACE2 mice which were infected with Mtb but challenged with sterile saline

(MtbPOSCoV2NEG), ACE2 mice which were infected with Mtb prior to CoV2 challenge (MtbPOSCoV2POS), and B6

controls which were infected with Mtb (to determine what if any impact human ACE2 transgene expression alone has

on Mtb burdens). (B) The percent weight change experienced by each group of ACE2 mice following CoV2 challenge,

as normalized to the original weight of each mouse. (C) CoV2 PFU burdens and (D) CoV2 N protein levels in the

lungs of MtbNEGCoV2POS and MtbNEGCoV2POS mice. (E-G) Mtb CFU burdens in the (E) lungs, (F) spleen and (G)

liver of MtbPOSCoV2NEG and MtbPOSCoV2POS mice, as well as B6 controls throughout the experiment time course. In

each graph the following legend applies: MtbNEGCoV2POS, black circles or bars; MtbPOSCoV2NEG, gray circles;

MtbPOSCoV2POS, white circles or bars. (H) Representative micrographs of AFB stained lung sections, as collected from

MtbPOSCoV2NEG and MtbPOSCoV2POS mice at the indicated times post-challenge. In each micrograph, the large scale

bar is 20 μM and inset scale bar is 5 μm. This experiment was repeated twice, each with similar results (4 mice/group/

timepoint). �, p� 0.05 as determined by either Student’s t-test or ANOVA; n.s., not significant.

https://doi.org/10.1371/journal.ppat.1010093.g001
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This pattern, wherein Mtb monoinfection induces high levels of a gene expression that are

unchanged upon CoV2 challenge, was also observed for IFNγ and TNFα at the mRNA level

(Fig 2D and 2E); however and notably, the resistance of MtbPOSCoV2POS mice did not associ-

ate with elevated expression of the antiviral genes IFIT2 and IFIT3, which are otherwise

induced in MtbNEGCoV2POS mice (Fig 2F and 2G), nor was CoV2 able to induce CCL2

expression in the presence of Mtb (Fig 2H). Expression of the anti-inflammatory cytokine

IL10 was low in all experimental groups relative to UI controls (Fig 2I).

At a histological level, the lungs of MtbNEGCoV2POS mice exhibited a number of previously

reported features [14] by post-challenge Day 4 (Fig 3A) and Day 7 (Fig 3B), including diffuse

alveolar damage with inflammatory infiltrates and alveolar necrosis. Since these features were

also observed in granulomatous lesions of MtbPOSCoV2NEG lungs, a hallmark of Mtb infection,

Fig 2. CoV2-elicted cytokine responses are muted in the presence of Mtb infection. On the indicated days, lung

tissue from MtbNEGCoV2POS, MtbPOSCoV2NEG, MtbPOSCoV2POS and uninfected (UI) ACE2 mice was used to

measure (A-C) protein levels of (A) IFNγ, (B) IL6 and (C) IL1β, as well as (D-I) mRNA levels of (D) IFNγ, (E) TNFα,

(F) IFIT2, (G) IFIT3, (H) CCL2 and (I) IL10. This experiment was repeated twice, each with similar results (4 mice/

group/timepoint). �, p� 0.05 as determined by either Student’s t-test or ANOVA; §, significant relative to UI protein

levels.

https://doi.org/10.1371/journal.ppat.1010093.g002
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Fig 3. CoV2 infection of the airways and associated pneumonia are attenuated in the presence of Mtb. (A-B)

Representative micrographs of H&E stained lung sections, sections from each experimental group, as collected on (A)

Day 4 or (B) Day 7 post challenge. (C-D) Quantitative analysis of H&E stains demonstrating (C) the size of each

individual TB granuloma relative to the total lung area, with each dot representing an individual TB granuloma on the

indicated Days, as well as (D) the cumulative area taken up by all granulomas in an individual mouse lung, with each

dot representing an individual mouse on the indicated Days. Bars represent the mean +/- SD. (E-F) Representative

micrographs of CoV2 N protein IHC stained lung sections from each experimental group, as collected on (E) Day 4 or

(F) Day 7 post challenge. In each micrograph the large scale bar represents 200 microns; insets are 50 microns.

https://doi.org/10.1371/journal.ppat.1010093.g003

PLOS PATHOGENS Mycobacterium tuberculosis and SARS-CoV-2 coinfection in mice

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010093 March 24, 2022 5 / 17

https://doi.org/10.1371/journal.ppat.1010093.g003
https://doi.org/10.1371/journal.ppat.1010093


we could not use histology to observe whether Mtb inhibits CoV2-induced inflammation and

alveolar necrosis. What could be observed, however, were differences between MtbNEGCoV2-
POS and MtbPOSCoV2POS lungs with regards to hyaline membrane formation and pneumonia

in the terminal bronchioles by Day 7 (Fig 3B inset), which were notable in MtbNEGCoV2POS

lungs but absent from MtbPOSCoV2POS lungs (pneumonia is not typical of Mtb-infected mice

on the B6 background until ~1 year after infection [15]). The sizes of each individual TB gran-

uloma in MtbPOSCoV2NEG and MtbPOSCoV2POS mice were similar at all time points (Fig 3C),

as were the cumulative lung area taken by all TB granulomas (Fig 3D). Consistent with our

assessment of lung CoV2 burdens (Fig 1C and 1D), anti-N protein immunohistochemistry

(IHC) staining demonstrated fewer and less intense IHC+ regions within MtbPOSCoV2POS

lungs, relative to MtbNEGCoV2POS lungs (Fig 3E and 3F). Notably, the few IHC+ regions

which were observed in MtbPOSCoV2POS lungs were distal to granulomatous lesions that con-

tain Mtb (Fig 3E).

To determine whether Mtb-induced resistance to CoV2 was specific to the ACE2 transgenic

model of COVID19, we performed the same set of experiments using a second mouse model

of COVID19: MACoV2 infection of B6 mice [13]. As before, our experimental groups

included B6 mice which were uninfected prior to MACoV2 challenge (MtbNEGMACoV2POS),

or Mtb-infected 30 days prior to challenge with MACoV2 (MtbPOSMACoV2POS) or vehicle

control (MtbPOSMACoV2NEG) (Fig 4A). Whereas ACE2 mice which lost�20% body weight

within 7 days of CoV2 challenge (Fig 1B), MACoV2 induced weight loss was less dramatic,

with MtbNEGMACoV2POS mice losing�10% body weight within 7 days of MACoV2 challenge

(Fig 4B). Nevertheless and consistent with our ACE2 model results, MtbPOSMACoV2POS were

resistant to MACoV2-elicited weight loss (Fig 4B), had lower viral burdens compared to

MtbNEGMACoV2POS mice (Fig 4C and 4D) and no change in lung Mtb burdens following

virus challenge (Fig 4E). Following virus challenge, MtbNEGMACoV2POS lungs exhibited tran-

sient increases in protein and mRNA levels of IFNγ (Fig 4F and 4G), IL6 (Fig 4H), IFIT3 (Fig

4I), IFITM3 (Fig 4J) and ACE2 (Fig 4K), consistent with previous reports of CoV2 inducing

expression of its own receptor [16]. As was also observed in the ACE2 model (Fig 2A and 2B),

protein levels of IFNγ and IL6 were already high in MtbPOSMACoV2NEG lungs and unaffected

by MACoV2 challenge (Fig 4F and 4H). MACoV2 elicited IFIT3 expression in both MtbNEG-

MACoV2POS and MtbPOSMACoV2POS lungs, albeit lower in the latter group (Fig 4J). The

resistance of Mtb-infected B6 mice to CoV2 was not attributable to an absence of lung ACE2

expression, as MtbPOSMACoV2POS mice expressed higher than UI levels of ACE2 (Fig 4K);

unlike MtbNEGMACoV2POS mice, however, ACE2 expression in MtbPOSMACoV2POS lungs

was not affected by MACoV2 challenge (Fig 4K).

Finally, to discern the lung immune environment associated with MACoV2 resistance in

Mtb-infected mice, we used scRNA-seq to analyze live CD45+ cells from the lungs of each

group (UI, MtbNEGMACoV2POS, MtbPOSMACoV2NEG and MtbPOSMACoV2POS) on post-

challenge Day 7. This timepoint enabled us to analyze immune cells after PFU are no longer

detectable (Fig 4C). Live CD45+ cells were purified from the lungs of each group (4 mice per

group) and used to prepare single-cell transcriptome datasets. These datasets separated into 12

clusters using the dimensionality reduction and clustering algorithms in the 10X Cell Ranger

pipeline (Fig 5A, 5B and 5C). The expression profile of 20 myeloid and lymphoid lineage

markers (S100a4, S100a9, Cd8b1, Cd4, Cd79a, Ms4a1, Cybb, Mafb, Cd3g, Fcgr3, Cst3, Nme1,

Itgam, Cd8a, Lig1, Ccna2, Ccr7, Il7r, Ncr1 and Nkg7) allowed us to assign biological identities

to each cluster (Fig 5D). For each lineage marker, the average expression and percent positivity

within each cluster were similar across all experimental groups (S1 Fig). We identified four T

cell clusters (clusters 0, 2, 4 and 7), two B cell clusters (clusters 3 and 9), three myeloid-cell

clusters (clusters 6, 8, and 10), one basophil cluster (cluster 11), one neutrophil cluster (cluster
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Fig 4. Mtb-infected B6 mice are resistant to secondary infection with MACoV2. (A) Experimental overview of our

B6:MACoV2 model studies, wherein mice were infected via aerosol with Mtb (Day -30) and challenged 30 days later

(Day 0) with MACoV2. On post-challenge Days 4, 7 and14 we collected lung tissue for microbiological and

immunological assessments. Experimental groups included B6 mice which were not infected with Mtb prior to

MACoV2 challenge (MtbNEGMACoV2POS), B6 mice which were infected with Mtb but challenged with sterile saline

(MtbPOSMACoV2NEG), and B6 mice which were infected with Mtb prior to CoV2 challenge (MtbPOSMACoV2POS).

(B) The percent weight change experienced by each group of B6 mice following MACoV2 challenge, as normalized to
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the original weight of each mouse. (C-D) Lung viral burdens in MtbNEGMACoV2POS and MtbPOSMACoV2POS mice,

as measured by (C) MACoV2 PFU or (D) MACoV2 N protein concentration on the indicated days, as well as (E) lung

Mtb CFU burdens at the same timepoints. (F, H) Lung protein levels of (F) IFNγ and (H) IL6, as well as (G, I-K)

mRNA levels of (G) IFNγ, (I) IFIT3, (J) IFITM3 and (K) ACE2. This experiment was repeated twice, each with similar

results (4 mice/group/timepoint). �, p� 0.05 as determined by either Student’s t-test or ANOVA; §, significant relative

to UI protein levels.

https://doi.org/10.1371/journal.ppat.1010093.g004

Fig 5. Lung T and B cell subsets expand upon challenge of MtbPOS mice with MACoV2. As an unbiased means to

define and compare the lung immune landscape, live CD45+ cells were purified from the lungs of four experimental

groups (Uninfected, UI; MtbNEGMACoV2POS; MtbPOSMACoV2NEG; MtbPOSMACoV2POS) on post-challenge Day 7

and used for scRNA analysis. (A-C) t-SNE plots of the resulting data, either (A-B) pooled across groups or (C)

segregated by group to show (A) the extent of overlay and (B-C) clustering of data into 12 immune lineages. (D) The

distribution and expression patterns of lineage defining genes which we used to annotate each cluster, as pooled from

all group data (individual group data are shown in S1 Fig). (E) The proportion of each immune lineage in the lungs of

each experimental group. MØ, macrophage; DC, dendritic cell; NK, natural killer.

https://doi.org/10.1371/journal.ppat.1010093.g005
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5), and one natural killer–cell cluster (cluster 1) (Fig 5A). The extent to which these clusters

were represented among all CD45+ cells varied by group (Fig 5C and 5E). We observed that

innate clusters (i.e. NK, neutrophil, DC, MØ, CD11b+ MØ and basophils) comprised 50% of

the UI lung, with T cells (42%) and B cells (8%) making up the difference (Fig 5D). In MtbNEG-

MACoV2POS lungs, the representation of T cell (51%) and B cell (16%) clusters was higher, as

were DC (4%) and MØ (7%) clusters. Relative to UI lungs, the MtbPOSMACoV2NEG lung was

characterized by the expansion of nearly all immune clusters (CD8 T cells, 8!15%; B cells,

6!13%; CD8 memory T cells, 7!9%; DCs, 2!4%; CD4 T cells, 3!6%; CD11b+ MØ,

1!2%; activated B cells, 2!4%; MØ, 1!5%) at the expense of neutrophils (17!7%), NK

cells (28!15%) and naïve T cells (24!21%). Importantly, the profile of MtbPOSMACoV2POS

lungs closely resembled that of MtbPOSMACoV2NEG lung, with the exception of expanded B

cell (17%), CD8 memory T cell (10%), DC (6%) and activated B cell (5%) clusters, again at the

expense of neutrophils, NK cells and naïve T cells (Fig 5D). Collectively, our scRNA seq data

demonstrates the resistance of Mtb-infected mice to MACoV2 is associated with a lung

immune environment that is largely similar to that observed in Mtb monoinfected lungs, with

the exception of expanded T and B cell clusters.

Discussion

Our results demonstrate that Mtb infected mice on the C57BL/6 genetic background are resis-

tant to secondary infection with CoV2 and its pathological consequences. With regards to the

mechanism of resistance, we believe the inflammatory nature of Mtb infection creates a lung

environment that is inhospitable to CoV2 propagation. In the absence of Mtb, CoV2 enter

cells via ACE2, propagates and triggers and inflammatory response that extends after CoV2

clearance and causes declines in lung function and death [17]. In the presence of Mtb, CoV2

entry is likely unaffected since ACE2 is abundantly expressed in the Mtb-infected lung, but the

extent of CoV2 propagation is low and the immunopathological responses typically triggered

in mice (i.e. weight loss, pneumonia) are muted. This is likely due to one or both of the follow-

ing reasons: (1) Mtb infected lungs already contain an array of immune innate lineages which

restrict CoV2, or (2) Mtb elicits an adaptive immune response that cross reacts with CoV2

antigens and offers heterologous immunity. This latter explanation is supported by recent epi-

demiological studies of COVID among individuals vaccinated with M. bovis BCG [18–20],

which depending on the strain has significant antigenic overlap with Mtb [21,22]. The limita-

tions of our study include its being performed in mice, which of course do not recapitulate all

aspects of TB or COVID in humans, nor have we examined the long term impact of CoV2 on

the host response to Mtb as we terminated our study fourteen days after CoV2 challenge. That

said, we believe animal models of TB and COVID are ideal for studies of this nature because—

if studies of COVID in individuals with other chronic lung diseases are any guide [23,24]—it

will likely be difficult to tease apart the impact of TB on COVID outcomes in humans given

that individuals with TB often have numerous other comorbidities (e.g. malnourishment,

HIV) that confound interpretation. Translated to human COVID susceptibility, our results

suggest that individuals infected with Mtb generate an immune response that offers a degree of

protection from subsequent or secondary infection with CoV2.

We believe our study raises a number of important questions which can be answered by

future research, including (but not limited to) the following:

Do our findings extend to other models of TB which better recapitulate the range of human
disease? As expertly reviewed elsewhere [25], mice are an imperfect model of TB because they

do not display the spectrum of pathology observed in humans with TB. This is especially true

of mice on the C57BL/6 genetic background, which are resistant to TB in the absence of any
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induced or genetic immunodeficiency [26]. It will be important to test if our results can be

generalized to other models which do display a greater range of TB and COVID disease forms

(e.g. NHP, Diversity Outbred mice) [27–29]. Related to this is the question of whether the

resistance we observed varies with the stage of TB disease, as the cellular composition, cytokine

milieu and protective capacity of the TB granuloma waxes and wanes over time [30].

What is the mechanism of acute COVID disease resistance in Mtb-infected mice? Whether

the expansion of B cell or CD8 T cells we observed in MtbPOSCoV2POS mice is indicative of

their having protective properties in the context of co-infection can be determined via classic

immunology methods such as lineage depletions and/or adoptive transfers. So too can sera

from Mtb infected animals be tested for neutralizing or protective capacity against CoV2 chal-

lenge, since there may be antibodies present to the numerous mycobacterial proteins that are

homologous to CoV2 antigens [9–11].

How is the human immune response to TB affected by COVID? As the acute crisis stage of

the COVID pandemic has (hopefully) begun to move into the past with the advent of effective

vaccines, scattered reports are emerging of interesting associations between COVID and Inter-

feron-Gamma Release assay (IGRA) results. IGRAs are whole-blood tests which detect secre-

tion of IFNγ in response to two or three synthetic, Mtb-specific peptides depending on the

manufacturer (QuantiFERON-TB Gold In-Tube test: ESAT-6, CFP-10 & TB7.7; T-SPOT TB

test: ESAT-6 & CFP-10), relative to a negative control antigen (nil) and a positive control anti-

gen (the polyclonal mitogen phytohemagglutinin, PHA). A “positive IGRA” is indicative of

active or prior Mtb infection; an “indeterminate IGRA” can stem from either an insufficient

response to the positive control, or too high a background response to the negative control.

Consistent with our present animal model study, Gupta et al observed that a cohort of 20

asymptomatic COVID patients were more likely to have a positive IGRA than 20 severely ill

COVID patients [31], suggesting those with prior TB exposure are less likely to develop symp-

toms following CoV2 infection. Equally interesting are elevated rates of indeterminate IGRA

in hospitalized COVID patients, due to too low IFNγ levels in the positive control blood collec-

tion tubes [32,33]. Another recent study [34] of 10 COVID patients with active TB and 11

COVID patients with latent TB shows that both groups retain their ability to respond to Mtb

antigens as measured via IGRA, but (compared to 63 COVID patients with no history of TB)

the blood of those with active TB (not latent TB) are less responsive to CoV2 antigens. Our ani-

mal model data would suggest this later result could be due to either the inflammatory envi-

ronment limiting CoV2 replication (resulting in less viral antigens for generating an adaptive

response in the first place). Alternatively since most of the T cell compartment localizes to the

lung (away from the circulation) in those with active TB, due to the array of chemokines that

attract both Mtb-specific and non-Mtb-specific T cells alike [35], lower CoV2 antigen respon-

siveness in the blood may reflect lower T cell numbers in the blood. That hospitalized individ-

uals with COVID are often treated with corticosteroids is an additional confounder of human

TB/COVID co-infection studies.

Finally, TB and COVID are ongoing pandemics and our results should not be used to sup-

port any assertion that those with TB (or history of TB) will not get COVID, nor should they

be used to support any assertion that those with TB (or history of TB) should not get vacci-

nated against COVID. Hospitalization and severe forms of COVID can now be prevented by

several vaccines; the US Centers for Disease Control and Prevention, European Centre for Dis-

ease Prevention and Control, and World Health Organization each maintain updated lists of

these vaccines on their respective websites (https://www.cdc.gov, https://www.ecdc.europa.eu,

https://www.who.int). We do hope and anticipate that our results will be used to support

future studies of patient populations and animal models to improve knowledge of the TB/

COVID interaction.
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Materials & methods

Ethics statement

All animal studies were reviewed and approved by the local Institutional Animal Care and

Use Committee (OSU IACUC) prior to their onset (Approval # 2018A00000076 and

2020A00000044).

SARS-CoV-2 culture, preparation and authentication

All experiments involving SARS-CoV-2 followed procedures and protocols that are approved

by The Ohio State University (OSU) Institutional Biosafety Committee. SARS-CoV-2, isolate

USA-WA1/2020, was obtained from Biodefense and Emerging Infections Research Resources

Repository (BEI Resources, Batch # 70034262). Mouse adapted SARS-CoV-2 variant strain

MA10 [36] was likewise provided by BEI Resources (Cat # NR-55329). Virus was cultured,

prepared and authenticated as we recently reported [37]. Namely, to establish the viral stocks

used in our studies, a virus aliquot was thawed, diluted 1:10,000 in incomplete DMEM (Gibco;

supplemented with 4.5 g/L D-glucose, 110 mg/L sodium pyruvate) and added to confluent

VeroE6 cells (ATCC). Cells were incubated with virus for 1h (37˚C, 5% CO2), after which time

the media was replaced with complete DMEM (i.e. DMEM prepared as above, further supple-

mented with 4% heat-inactivated fetal bovine serum) and the cells were incubated for 3 days

(37˚C, 5% CO2) to allow virus propagation. After that period, visual inspection under light

microscopy demonstrated near complete death of the infected VeroE6 cells. The supernatant

was collected into 50mL conicals, centrifuged at low speed to remove cell debris and subse-

quently aliquoted, frozen and stored at -80˚C. These frozen aliquots served as the stock tubes

for all subsequent experiments. The live virus titer of our frozen aliquots was determined via

the plaque assay described below. SARS-CoV-2 stocks were authenticated using a clinically

validated clinical next-generation sequencing assay [38].

Mycobacterium tuberculosis culture, preparation and authentication

All experiments involving M. tuberculosis (Mtb) followed procedures and protocols that are

approved by The Ohio State University (OSU) Institutional Biosafety Committee. The virulent

Mtb strain H37Rv (Trudeau Institute, Saranac Lake, NY) was grown in Proskauer Beck

medium containing 0.05% tyloxapol to mid-log phase (37˚C, 5% CO2) and frozen in 1-ml ali-

quots at −80˚C. The live bacteria titer of our frozen aliquots was determined via plating serial

dilutions on 7H11 agar media. To authenticate our Mtb stock we confirmed that the colony

morphology, in vitro growth characteristics and in vivo virulence were consistent with our pre-

vious studies using the H37Rv strain [39].

Mice

All mice were treated in accordance with OSU Institutional Animal Care and Use Committee

(IACUC) guidelines and approved protocols. C57BL/6 and hemizygous K18-hACE C57BL/6J

mice (strain: 2B6.Cg-Tg(K18-ACE2)2Prlmn/J) were purchased from Jackson Laboratory (Bar

Harbor, ME) and housed at OSU within an AALAC-accredited facility (University Laboratory

Animal Resources, ULAR).

Aerosol Mtb infection

Mice were aerosol infected with Mtb H37Rv per our previous studies using the Glas-Col inha-

lation system [39]. For bacterial load determinations, the lungs, spleen, and liver were asepti-

cally removed and individually homogenized in sterile normal saline (Gentle Macs system,
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program “RNA” run 2X). Serial dilutions of each organ were then plated on 7H11 and colonies

counted after 2–3 weeks incubation at 37˚C 5% CO2. Lungs from control mice were plated on

post-infection Day 1 to verify the delivery of ~80 Mtb CFU.

Intranasal CoV2 challenge

Mice that were either uninfected (UI) or previously infected with aerosol Mtb (MtbPOS) mice

were challenged with either CoV2 or MACoV2. At the time of challenge, mice were anesthe-

tized with isoflurane, weighed and held at a semi-supine position while 50 μL of CoV2-con-

taining PBS (2.5 × 104 PFU) or MACoV2 (2.5 × 104 PFU) was given via intranasal (i.n.)

instillation. Control mice were given the same volume of sterile PBS, using the same anesthesia

and i.n. instillation protocol. After i.n. instillation, each mouse was returned to its home cage,

house and monitored daily for changes in weight or body condition. For viral load determina-

tions, the lungs of challenged animals were aseptically removed and individually homogenized

as described above; serial dilutions were then used in the plaque assay described below.

CoV2 plaque assay

A modified version of the plaque assay developed by the Diamond laboratory [40] was used to

determine lung viral burdens in challenged animals, the details of which we have reported

[41]. Namely, one day prior to the assay start we seeded 12-well with VeroE6 cells and incu-

bated overnight (37˚C 5% CO2) such that each well was confluent by the assay start. On the

day of the assay, serial dilutions of virus-containing material (e.g. lung homogenate) were pre-

pared in cDMEM and warmed to 37˚C. Media from each well of the 12-well plate was gently

removed via pipette and replaced with 500uL of each virus sample dilution, the volume

pipetted down the side of the well so as not to disturb the VeroE6 monolayer. The plate was

incubated for 1 hr at 37˚C 5% CO2. During this incubation period, a solution comprising a

1:0.7 mixture of cDMEM and 2% methylcellulose (viscosity: 4000 cP) was freshly made and

warmed to 37˚C in a water bath. After the 1 hr incubation period was over, the supernatant

was removed from each well and replaced with 1 mL of the pre-warmed cDMEM:methylcellu-

lose mixture. The culture plate was then returned to the incubator and left undisturbed for 3

days. On the final day, the cDMEM:methylcellulose mixture was removed from each well, cells

were fixed with 4% para-formaldehyde in PBS (20 minutes, room temperature), washed with

PBS and stained with 0.05% crystal violet (in 20% methanol). After rinsing plates with distilled

water, plates were dried, and plaques were counted under a light microscope.

Histology

The inferior lung lobe was removed from mice and fixed in 10% formalin. Sample processing,

paraffin embedding, H&E and acid fast bacilli (AFB) staining was performed by the OSU

Comparative Pathology & Mouse Phenotyping Shared Resource (CPMPSR). Immunohis-

tochemistry (IHC) was performed using a monoclonal antibody specific to SARS-CoV-2

Nucleocapsid (clone B46F; ThermoFisher) per previously reported methods [42]. Histology

slides were imaged using a Nikon Ti2 widefield microscope fitted with 4x, 10x and 60x CFI

Plan Fluor objectives and a DS-Fi3 color camera. Images were processed using FIJI [43] and

compiled using BioRender.com. The individual and cumulative areas of each TB granuloma in

MtbPOSCoV2NEG and MtbPOSCoV2POS lungs were determined using our previously reported

methods [44].
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ELISA

CoV2 N protein levels in lung homogenates were determined using a commercially available

ELISA kit (ADS Biotec), as were protein levels of the cytokines IL1β, IL6 and IFNγ (Biole-

gend). ELISA kits were used per manufacturer protocols.

Quantitative Real Time PCR

Lung RNA was extracted from the superior lung lobe using the RNeasy Mini Kit method (Qia-

gen) and reverse transcribed using the SuperScript VILO cDNA Synthesis Kit method (Ther-

moFisher). Quantitative real time PCR (qRT-PCR) was performed on a C1000 Touch

Thermocycler (Bio-Rad) using SYBR Select Master Mix (Applied Biosystems) per manufac-

turer protocols. The primer sequences used to amplify cDNA for genes of interest were previ-

ously published [45,46]. Each biological replicate was performed in technical duplicate and

data were analyzed using the ΔΔCt method.

Cell purification

To purify live CD45+ cells for single cell RNA sequencing, lungs from uninfected, Mtb- or

MACoV2-monoinfected and Mtb/MACoV2 coinfected mice were removed and treated in an

identical manner. Lungs were first digested in a DNase/collagenase mixture [47]; dead cells

from the resulting slurry were then removed via negative magnetic selection using the Dead

Cell Removal kit method (Miltenyi). The live cells were then mixed with CD45 microbeads

(Miltenyi) and used for positive magnetic selection of live CD45+ cells. Trypan blue staining

was used to confirm cell viability. Cells were the prepared for single cell partitioning via a 10X

Genomics Chromium Controller using manufacturer provided protocols (10x Genomics Doc-

ument Number CG000136). 1 x 104 cells per experimental group were loaded onto the Con-

troller and partitioned, as carried out by the OSU Genomics Shared Resource core.

Single cell RNA sequencing (scRNA seq)

scRNA-seq libraries were prepared and analyzed using the 10X Genomics and Illumina plat-

forms, respectively, per previously reported methods [48].

Statistical analysis

All experiments were performed using randomly assigned mice without investigator blinding.

All data points and p values reflect biological replicates from at least two independent experi-

ments per figure (4 mice per group per timepoint). Statistical analysis was performed using

GraphPad Prism. Unpaired, two-tailed Student t tests and one-way ANOVA tests with post

hoc Tukey-Kramer corrections were used to assess statistical significance. Graphs were like-

wise generated in GraphPad Prism. The only exception to this were the t-distributed stochastic

neighbor embedding (t-SNE), annotation and graphing associated with our scRNA analysis,

which was performed with Cell Ranger and RStudio.

Supporting information

S1 Fig. Lineage defining markers were similarly expressed across uninfected (UI), MtbNEG-

MACoV2POS, MtbPOSMACoV2NEG and MtbPOSMACoV2POS groups. The distribution and

expression patterns of lineage defining genes that were used to annotate each t-SNE cluster, as

shown for each individual experimental group (pooled group data are shown in Fig 5).

(TIF)
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