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Simple Summary: We present a systematic review of published reports on machine learning (ML)
applications for the differentiation of gliomas from brain metastases by summarizing study charac-
teristics, strengths, and pitfalls. Based on these findings, we present recommendations for future
research in this field.

Abstract: Glioma and brain metastasis can be difficult to distinguish on conventional magnetic
resonance imaging (MRI) due to the similarity of imaging features in specific clinical circumstances.
Multiple studies have investigated the use of machine learning (ML) models for non-invasive dif-
ferentiation of glioma from brain metastasis. Many of the studies report promising classification
results, however, to date, none have been implemented into clinical practice. After a screening
of 12,470 studies, we included 29 eligible studies in our systematic review. From each study, we
aggregated data on model design, development, and best classifiers, as well as quality of reporting
according to the TRIPOD statement. In a subset of eligible studies, we conducted a meta-analysis of
the reported AUC. It was found that data predominantly originated from single-center institutions
(n = 25/29) and only two studies performed external validation. The median TRIPOD adherence was
0.48, indicating insufficient quality of reporting among surveyed studies. Our findings illustrate that
despite promising classification results, reliable model assessment is limited by poor reporting of
study design and lack of algorithm validation and generalizability. Therefore, adherence to quality
guidelines and validation on outside datasets is critical for the clinical translation of ML for the
differentiation of glioma and brain metastasis.
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1. Introduction

Gliomas and brain metastases are the most common brain malignancies and account
for a substantial proportion of cancer-related mortality [1]. Brain metastases (BM) occur
in 2% of patients with cancer at the point of diagnosis, appear in 12.1% of patients with
metastatic disease to any site [2], and occur with the site of primary tumor being unknown
in up to 15% of patients at first presentation with cerebral metastasis [3]. Gliomas make up
more than 30% of the overall tumors of the central nervous system (CNS) and account for
81% of total CNS malignancies [4]. Clinical management of gliomas and brain metastases
varies immensely, thus requiring differential diagnosis early in the course of evaluation.

Magnetic resonance imaging (MRI) is currently regarded as the reference standard
for evaluation of cerebral malignancies and their effects on the brain, therapeutic response,
and overall disease progression [5]. Classic metastatic disease to the brain can be easily
differentiated in clinical practice from gliomas in the setting of multiple metastases and
imaging features of defined lesion borders and prominent surrounding edema. On the
contrary, solitary parenchymal brain metastases, which are seen in approximately 30% of
patients with CNS metastasis [5–7], can mimic the appearance of higher-grade gliomas,
in particular glioblastoma (GBM), and complicate accurate diagnosis, especially when the
primary site of cancer is unknown upon first discovery of metastasis. In conventional high-
resolution MRI, definitive diagnosis of the lesion can be ambiguous. For example, rim-
enhancing lesions in contrast-enhanced T1 sequences are most often found to be high-grade
gliomas (40%), closely followed by brain metastases (30%) [7]. While recent research has shown
added value of advanced MR imaging techniques, such as MR perfusion and spectroscopy,
for tumor differentiation, these methods are not always implemented in standard clinical
practice, and standard imaging protocols often feature conventional MRI only.

The increasing volume of medical imaging data and the exponential growth of compu-
tational power over the course of the last years has propelled the investigation of machine
learning (ML) applications in neuroradiology, especially for tasks that require specialized
expertise. ML algorithms can perform complex tasks without explicit programming, but
instead by learning analytically through exposure to data with the subsequent ability to
model complex associations, e.g., for image segmentation or image interpretation [8]. Sev-
eral studies have developed predictive ML models for increased diagnostic performance in
differentiation of cerebral metastatic disease from glioma, however, incorporation of these
algorithms into clinical practice has not been achieved yet, as per the ACR Data Science
Institute AI Central [9].

We present a literature review, as well as summary reports on average model perfor-
mance to identify the most promising approaches reported in the current body of literature.
We aim to detect shared pitfalls to clinical implementation in the field of differentiation
of brain metastases and gliomas. Through our assessment of quality of reporting, we
aim to systematically analyze the shortcomings that are common in the literature and,
ultimately, formulate recommendations for researchers engaging in this growing field. We
aim to identify, to which degree the opacity of reporting and lack of standardization in
algorithm development prevail in the literature, which, as pointed out previously [10,11],
are detrimental to clinical translation and FDA clearance of ML models.

2. Materials and Methods
2.1. Database Search

This systematic review was registered with the International Prospective Register of
Systematic Reviews (PROSPERO) under the registration number CRD42020209938 and
conducted according to the guidelines of the PRISMA (Preferred Reporting Items for Sys-
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tematic Reviews and Meta-Analyses of Diagnostic Test Accuracy) [12] statement. To collect
all relevant original research on the applications of AI in neuro-oncology, database searches
of Ovid Embase, OVID MEDLINE, Cochrane trials (CENTRAL), and Web of Science—Core
Collection were conducted by a clinical librarian (A.B.) in September 2020, January 2021,
and September 2021, respectively. The search strategy included both keywords and con-
trolled vocabulary combining the terms for: “artificial intelligence”, “machine learning”,
“deep learning”, “radiomics”, “magnetic resonance imaging”, “glioma”, as well as related
terms. The search strategy was independently reviewed by a second institutional librar-
ian. All publications identified by the search were subjected to a screening in Covidence
software (Veritas Health Innovation Ltd. Melbourne, Australia). The search identified
12,470 candidate articles (Figure 1). 152 duplicates were removed and screening of the
remaining 12,318 articles was conducted by a neuroradiology attending (M.A.), radiology
resident (H.S.) and three graduate students (L.J., W.B. and M.v.R.). The board-certified neu-
roradiology attending (M.A.) resolved ambiguous screening conflicts. The abstract review
further excluded 10,995 articles that lacked pertinence to neuro-oncology and ML. A total
of 1323 articles were reviewed at full-text level and evaluated for eligibility for inclusion in
the review. For reviewer-independent uniformity in screening, 8 exclusion criteria were
predefined: (1) Abstract-only; (2) No application of ML reported; (3) Not an original article;
(4) Not published in English; (5) No investigation of glioma/glioblastoma; (6) Unrelated to
MRI, magnetic resonance spectroscopy (MRS), and positron emission tomography (PET)
imaging; (7) No human research subjects; (8) Duplicates. Due to fulfilment of at least one of
those criteria, 437 additional studies were excluded. 886 eligible full text studies were then
reviewed by either a radiology resident (H.S.) or a graduate student (L.J., W.B. and G.C.P.),
in addition to a second review by the board-certified neuroradiologist (M.A.). Twenty-nine
studies that were identified to specifically investigate the differentiation of glioma from
brain metastasis were then analyzed in the present study. The search strategy is provided
in the Supplementary Materials (Figure S1).

2.2. Data Extraction and Aggregation

The data extraction was performed independently by two reviewers (L.J., W.B.) us-
ing predefined tables in Microsoft Excel. Disagreements were discussed in regular team
meetings and were resolved with a supervising neuroradiology attending (M.A.) until con-
sensus was reached. Data points compiled in this study include: article characteristics (title,
author, publication year), data characteristics (data source, dataset size, types and number
of tumors for training/testing/validation, model validation technique), class balancing
(ratio of glioma to brain metastases), model characteristics (best performing ML classifier,
classification task, type of features and imaging sequences used for classification, outcome
measures for classifier performance) (Table 1), and reporting characteristics. Whenever
referred to in this study, internal validation describes measures for assessment of quality
and robustness of the model and its ability to predict outcomes on unseen data. Some
studies report three-way partitioning of their dataset into training, validation, and testing
sets. In this context, validation data serves to mathematically optimize and finetune model
hyperparameters and should not be confused with overall internal validation.
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Figure 1. Characterization of search strategy using PRISMA. This flowchart represents the search
and screening workflow and the eligibility criteria applied to the studies. BM = brain metastasis.
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Table 1. Overview of study characteristics and best performing classifier from each study. Abbreviations: GBM = Glioblastoma; MET = Brain metastasis; PCNSL = Primary
central nervous system lymphoma; MEN = Meningioma; MED = Medulloblastoma; CV = Cross-validation; LOOCV = Leave-One-Out cross-validation; ML = Machine
learning; DL = Deep learning; T1CE = contrast-enhanced T1-weighted sequence; DWI = Diffusion weighted imaging; DTI = Diffusion tensor imaging; PWI = Perfusion
weighted imaging; rCBV = relative cerebral blood volume; FLAIR = Fluid-attenuated inversion recovery; TE = Time to echo; AUC = Area under the receiver operating
characteristic curve; ADC = Apparent diffusion coefficient; LASSO = Least absolute shrinkage and selection operator; SVM = Support vector machine; MLP = Multilayer
perceptron; NNW = Neural networks; LogReg = Logistic Regression; DNN = Deep neural network; LDA = Linear discriminant analysis; NB = Naïve Bayes; VFI = Voting
feature intervals; KNN = k-nearest neighbors; PNN = Probabilistic neural networks; RF = Random Forest; RBF = Radial basis function kernel; n/a = not available.
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Swinburne
et al., 2019

[13]
26 9 9 1.000 no yes

GBM vs.
MET vs.
PCNSL

8
(PCSNL) LOOCV no single-

center ML SVM,
MLP Pathology Perfusion

MLP (Ktrans on
T1CE mask)

Accuracy: 83.3%
AUC: 0.83

Park et al.,
2020 [14] 276 137 59 2.322 no yes

GBM vs.
MET vs.
PCNSL

80
(PCSNL)

216 (109
GBM, 58
PCNSL,
49 MET)

60 (28
GBM, 22

CNSL,
10 MET)

no multi-
center DL CNN Pathology

Perfusion
(Temporal
Patterns of

Time-Signal
Intensity

Curves from
DSC)

CNN (DSC,
FLAIR,

T1CE)—internally
validated
AUC: 0.95

Sensitivity: 0.9
Specificity: 0.857

Shrot et al.,
2019 [15] 141 41 38 1.079 no yes

GBM vs.
MET vs.
PCNSL

vs. MEN

12
(PCSNL),

50
(Menin-
gioma)

LOOCV no single-
center ML

Decision
tree

(SVM)
Pathology

Morphology,
Diffusion,
Perfusion

Binary
hierarchical tree

with SVM
classifier (T1, T1c,
T2, FLAIR, DTI,

DSC)
Sensitivity: 0.974
Specificity: 0.969
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Table 1. Cont.
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Yamashita
et al., 2008

[16]
126 95 19 5.000 multiple no

Glioma
vs. MET

vs.
PCNSL

12
(PCSNL) LOOCV no not

specified ML
3-

layered
NNW

Pathology

Clinical,
Qualita-

tive/Semantic
imaging
features

ANN
AUC: 0.946

board-certified
radiologists

without ANN:
Accuracy: 87.9%

AUC: 0.923
Sensitivity: 0.808
Specificity: 0.903
board-certified

radiologists with
ANN:

Accuracy: 91.5%
AUC: 0.946

Sensitivity: 0.868
Specificity: 0.931

Blanchet
et al., 2011

[17]
33 18 15 1.200 solitaty yes GBM vs.

MET LOOCV no single-
center ML

k-means
cluster-

ing
Pathology Shape

k-means
clustering (T1, T2)
Accuracy: 93.9%

Tsolaki et al.,
2013 [18] 49 35 14 2.500 solitary yes GBM vs.

MET 10-fold CV no single-
center ML

SVM,
Naive
Bayes,
KNN

Pathology Spectroscopy

SVM (MRS: NAA;
rCBV)—

peritumoral
Accuracy: 98%
Sensitivity: 0.98
Specificity: 0.99

SVM (MRS:
NAA/Cr; rCBV)—

intratumoral
Accuracy: 95%
Sensitivity: 0.94
Specificity: 0.95

Yang et al.,
2014 [19] 48 30 18 1.667 solitary yes GBM vs.

MET LOOCV no single-
center ML

QDA,
NB,

SVM,
KNN,
NNW
(MLP

architec-
ture)

Pathology Shape,
Diffusion

Neural Network
(DTI)

Accuracy: 97.92%
AUC: 0.975

Sensitivity: 100%
Specificity: 96.55%
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Tateishi et al.,
2020 [20] 127 73 53 1.377

multiple,
largest

se-
lected

for
classi-
fica-
tion

yes GBM vs.
MET 5-fold CV no single-

center ML SVM

Pathology,
clinical
history
of path-
proven
primary
cancer

Texture
SVM (T1CE, T2,

ADC)
AUC: 0.92

Abidin et al.,
2019 [21] 52 35 17 2.059 solitary yes GBM vs.

MET stratified 10-fold CV no single-
center ML AdaBoost Pathology

First-order
statistics,
Texture,

Higher-order-
features:

Topology
(Minkowski
functionals),

Wavelet-
transformed,
Local Binary

Patterns
(LBP)

AdaBoost (Local
Binary Pattern,

T1CE)
AUC: 0.846

Bae et al.,
2020 [22] 248 159 89 1.787 solitary yes GBM vs.

MET
166 (109
GBM, 57

MET)

82 (50
GBM, 32

MET)
yes single-

center
ML and

DL

DNN,
Ad-

aBoost,
(L-SVM,

LDA)

Pathology

DL extracted
(DL)

Shape,
First-order
statistics,
Texture

(traditional
ML)

Deep Neural
Network

(T1CE)—internal
AUC: 0.986

Deep Neural
Network

(T1CE)—external
AUC: 0.956

Accuracy: 89%
Sensitivity: 0.906

pecificity: 0.88
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Artzi et al.,
2019 [23] 439 212 227 0.934 solitary yes

GBM vs.
MET vs.

MET-
subtypes

5-fold CV no single-
center ML

SVM,
KNN,

decision
trees, en-
semble
classi-
fiers

Pathology

Clinical
features,
Qualita-

tive/semantic
imaging
features,

Morphology,
First-order
statistics,
Texture,

Higher-order
features:
Wavelet
features,
Bagof-

features

SVM (T1CE)
Accuracy: 89%

AUC: 0.96
Sensitivity: 0.86
Specificity: 0.85

Yang et al.,
2016 [24] 48 30 18 1.667 solitary yes GBM vs.

MET LOOCV no single-
center ML SVM Pathology Shape

SVM (DTI, Cluster
1 & 4)

Accuracy: 95.83%
AUC: 0.983

Sensitivity: 0.9444
Specificity: 0.9667

Dong et al.,
2020 [25] 120 60 60 1.000 solitary n/a Glioma

vs. MET
84 (42

GBM, 42
MET)

36 (18
GBM, 18

MET)
no single-

center ML
NNW,

DT, NB,
KNN,
SVM

Radiological

Shape,
First-order
statistics,
Texture

Naive Bayes (T1,
T1CE, T2)

Accuracy: 60%
Sensitivity: 0.45
Specificity: 0.75

Combined(LOG)
[Decision Tree,

SVM, NNW, kNN,
NB]

Accuracy: 64%
Sensitivity: 0.5
Specificity: 0.73

Agreement of all 5
classifier:

Accuracy: 94%
Sensitivity: 1

Specificity: 0.89
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Meier et al.,
2020 [26] 109 25 84 0.298

231
lesions
in 109

pa-
tients

yes GBM vs.
MET stratified 3-fold CV no single-

center ML SVM Pathology
Qualitative/

Semantic imaging
features

SVM (Qualitative
image features)
F1-Score: 0.865

Georgiadis
et al., 2008

[27]
67 21 19 1.105 no no

Glioma
vs. MET
vs. MEN

27
(Menin-
gioma)

external
cross-validation (ECV)

with 3-fold split
no single-

center ML

PNN,
LSFT-
PNN,
SVM-
RBF,

ANN,
Cubic
LSFT-
PNN,

Quardratic
LSFT-
PNN

Radiological Texture

ANN (T1)—Primary
tumors vs. Secondary

tumors (MET +
Meningioma)

Accuracy: 100%

Tsolaki et al.,
2015 [28] 126 80 22 3.636 solitary no

Glioma
vs. MET
vs. MEN

24
(Menin-
gioma)

10-fold cross
validation no single-

center ML

SVM,
Naïve
Bayes,
k-NN,
LDA

Pathology
Spectroscopy,

Diffusion,
Perfusion

SVM
(DWI/DTI/PWI/short

TE)—peritumoral
Accuracy: 98%

SVM
(DWI/DTI/PWI/short

TE)—intratumoral
Accuracy: 96%

Zacharaki
et al., 2009

[27]
98 74 24 3.083 no no

Glioma
vs. MET
vs. MEN

4
(Menin-
gioma)

LOOCV no single-
center ML

SVM,
k-NN,
LDA

Pathology Shape, First-order
statistics, Texture

SVM (FLAIR, T2, T1ce,
rCBV, T1)

Accuracy: 84.7%
AUC: 0.882

Sensitivity: 0.882
Specificity: 0.865
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Zacharaki
et al., 2011

[29]
97 73 23 3.174 no no

Glioma
vs. MET
vs. MEN

LOOCV no single-
center ML

VFI,
KNN,
Naive
Bayes

Pathology
Clinical,
Shape,

First-order

kNN with
wrapper evaluator
Accuracy: 96.91%

Svolos et al.,
2013 [30] 115 73 18 4.056 solitary no

Glioma
vs. MET
vs. MEN

24
(atypical
Menin-
gioma)

10-fold cross
validation no single-

center ML SVM Pathology Diffusion,
Perfusion

SVM (HGG Grade
4 vs. MET) (ADC,

FA, rCBV)—
peritumoral

Accuracy: 96%
Sensitivity: 0.98
Specificity: 0.94

Sachdeva
et al., 2016

[31]
428 177 66 2.682 no no

Glioma
vs. MET
vs. MEN
vs. MED

97
(Menin-
gioma),

88
(Medul-
loblas-
toma)

40%
training,

10%
testing,

50% vali-
dation

40%
training,

10%
testing,

50% vali-
dation

40%
training,

10%
testing,

50% vali-
dation

no

public
dataset

(PGIMER
and SPL
datasets)

ML
GA, GA-

SVM,
GA-

ANN
Radiological

First-order
statistics,
Texture

GA-ANN—no
binary

classification
Accuracy: 94%

(imputed)

Payabvash
et al., 2020

[32]
248 99 65 1.523 no no

Glioma
vs. MET
vs. MED

vs.
Heman-
gioblas-
toma vs.
Ependy-
moma

Hemangio-
blastoma
(n = 44),
Ependy-
moma (n

= 27),
Medul-
loblas-

toma (n
= 26).

10-fold cross
validaiton no single

center ML
NB, RF,

NN,
SVM

Pathology

Clinical
(Age),

Qualita-
tive/Semantic

imaging
features,

Diffusion

Random
Forest—MET vs.

All primary
tumors

Accuracy: 83%
AUC: 0.82

Sensitivity: 55.6
Specificity: 92.6

PPV: 73.9

Qin et al.,
2019 [33] 42 24 18 1.333 solitary yes GBM vs.

MET 5-fold cross validation no single
center ML

Decision
trees,
LDA,

LogReg,
linear
SVM,
KNN

Pathology
First-order,

Second-order
(Energy)

kNN
Accuracy: 92.9%
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Chen et al.,
2019 [34] 134 n/a n/a no yes GBM vs.

MET 80% 20% no single
center ML

LDA,
SVM, RF,

KNN,
Gaussian

NB

Pathology Texture

LogReg +
Distance

correlation
Accuracy: 79%

AUC: 0.8
Sensitivity: 0.8
Specificity: 0.71

Ortiz-Ramón
et al., 2020

[35]
100 50 50 1.000 no yes GBM vs.

MET
nested

cross-validation no single
center ML

random
forest
(RF),

support
vector

machine
(SVM)
with
linear
kernel,

k-nearest
neigh-
bors

(KNN),
naïve
Bayes

(NB) and
multi-
layer

percep-
tron

(MLP)

Radiological Texture

MLP
Accuracy: 81%

AUC: 0.91
Sensitivity: 0.91
Specificity: 0.8
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Shin et al.,
2021 [36] 741 482 259 1.861 solitary yes GBM vs.

MET 450 48 100 143 multi-
center DL CNN

(2D) Pathology DL extracted

CNN (2D; T1CE,
T2)—internal

Accuracy: 89%
AUC: 0.889

Sensitivity: 0.939
Precision: 0.852
CNN—external
Accuracy: 85.9%

AUC: 0.835
Sensitivity: 0.889
Precision: 0.907

Priya et al.,
2021 [37] 120 60 60 1.000 no yes GBM vs.

MET
nested

cross-validation no single
center ML

Linear
(LASSO,
Elastic

Net) and
logistic
regres-
sion,

NNW,
SVM-

MLP, RF,
Ad-

aBoost

Clinico-
Radiological

Shape,
First-order
statistics,
Texture

LASSO (T1, T1CE,
T2, FLAIR, ADC)
Accuracy: 89.2%

AUC: 0.953
Sensitivity: 0.887
Specificity: 0.897

de Causans
et al., 2021

[38]
180 92 88 1.045

multiple,
largest

se-
lected

for
classi-
fica-
tion

yes GBM vs.
MET

143 (71
GBM, 72

BM)

nested
cross-

validation
(10

repeated
5-fold
CV)

37 (21,
16) no multi-

center ML

LogReg
(Yeo-

Johnson
scaling

features)

Pathology

Shape,
First-order
statistics,
Texture

LogReg (T1CE)
Accuracy: 80%
Sensitivity: 0.75
Specificity: 0.86



Cancers 2022, 14, 1369 13 of 26

Table 1. Cont.

Pa
pe

r

To
ta

lP
at

ie
nt

N
um

be
r

N
um

be
r

of
G

li
om

a
Pa

ti
en

ts

N
um

be
r

of
B

M
Pa

ti
en

ts

R
at

io
of

G
li

om
a/

m
et

Pa
ti

en
ts

So
li

ta
ry

B
M

O
nl

y

G
B

M
O

nl
y

Tu
m

or
Ty

pe
s

St
ud

ie
d

N
um

be
r

of
A

dd
it

io
na

lT
um

or
s

N
um

be
r

of
Pa

ti
en

ts
(T

ra
in

in
g)

N
um

be
r

of
Pa

ti
en

ts
(V

al
id

at
io

n)

Te
st

in
g

Ex
te

rn
al

V
al

id
at

io
n

So
ur

ce
of

D
at

a

M
L

M
et

ho
d

A
lg

or
it

hm
s

U
se

d
fo

r
C

la
ss

ifi
ca

ti
on

G
ol

d
St

an
da

rd
fo

r
A

cc
ur

ac
y

Ex
tr

ac
te

d
Fe

at
ur

e
Ty

pe
s

B
es

tP
er

fo
rm

in
g

C
la

ss
ifi

er

Liu et al.,
2021 [39] 268 140 128 1.094 solitary yes GBM vs.

MET
208 (110
GBM, 98

BM)

10-fold
cross val-
idation

60 (30,
30) no single

center ML

RF, DT,
LogReg,

Ad-
aBoost,

Gaussian
process-

ing,
SVM

Pathology

Shape,
First-order
statistics,
Texture,

Higher-order:
Wavelet-

transformed,
Laplace of
Gaussian

Random Forest
(Boruta selection)

(T1CE)
Accuracy: 85%

AUC: 0.97
Sensitivity: 0.84
Specificity: 0.93

Samani et al.,
2021 [40] 136 86 50 1.720

no, 3
pa-

tients
with
multi-
focal

metas-
tasis

yes GBM vs.
MET

108 (66
GBM, 40

BM)

5-fold
cross val-
idation

30 (20,
10) no single

center DL 2D CNN Pathology Diffusion

CNN (2D, DTI,
FW-VP

map)—patch wise
Accuracy: 85%

AUC: 0.9
Sensitivity: 0.87
Specificity: 0.81
CNN—majority

vote, subject-wise:
Accuracy: 93%
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2.3. Assessment of Quality of Reporting

The present systematic review also includes a thorough assessment of reporting quality.
We conducted a TRIPOD [41] adherence evaluation for model development studies, a report-
ing guideline with 22 main items and 65 adherence elements in total. The TRIPOD scores were
evaluated by two reviewers and, in case of disagreement, consensus by discussion was made.
For calculation of TRIPOD adherence scores, we followed the appraisal guidelines [42]. Aver-
age TRIPOD adherence score and average degree of item satisfaction, indicated as adherence
index (ADI) ranging from 0 to 1, were determined using Microsoft Excel.

2.4. Statistical Analysis

Reporting quality was compared in study cohorts published before and during/after
2019. The difference in median TRIPOD adherence score was examined for statistical sig-
nificance using the Mann-Whitney U test in MedCalc version 20.019 (MedCalc Software bv,
Ostend, Belgium; https://www.medcalc.org (accessed on 1 March 2022); 2021). Differences
in mean AUC between study subsets were tested for statistical significance via Student’s
t-test using GraphPad Prism version 8.3.4. All eligible studies that reported AUC (area
under the ROC curve) and standard error of mean (SEM) or 95% confidence intervals (CI),
were subjected to a meta-analysis using MedCalc. In one study, SEM was imputed from
reported standard deviation (SD) of the mean and sample size. These metrics were sub-
jected to a random effects model. Results of this quantitative analysis were then illustrated
in a forest plot [43]. Heterogeneity within the analyzed studies was then examined via the
Higgins I2-test [44].

3. Results
3.1. Study Selection

This systematic review identified 29 eligible studies as part of the literature on ML
models for differentiation of gliomas from brain metastases (Figure 1). The studies were
published between 2008 and 2021. Yamashita et al. [16] presented a predictive model that
used a threshold for differentiation of glioma from brain metastasis. This threshold was
determined by shape evaluation performed by an unsupervised ML algorithm and was
therefore included in this systematic review.

3.2. Study Characteristics
3.2.1. Datasets

The investigated articles predominantly made use of local single-center hospital
datasets (n = 25). Three studies were conducted on hospital data from multiple datasets. In
one study, the source of data was not specified and is unclear [16] (Figure 2).

3.2.2. Dataset Composition

The total numbers of subjects described by the studies were overall small, averaging at
154.10 ± 147.25 (mean ± SD) patients. Deep learning (DL) studies used larger datasets, av-
eraging at 350.25 ± 99.00 (mean ± SD). Datasets were found to exhibit a glioma-to-BM ratio
of 1.80 (±1.10):1 (Figure 3). While every study presented a ML model for differentiation
between gliomas and brain metastasis, classification tasks and inclusion criteria for subjects
varied. Ten studies included further tumor entities, such as atypical meningioma [30] or
primary CNS lymphoma [13] as prediction classes. While 15 studies specified inclusion
of patients with only solitary brain metastasis, this was not explicitly mentioned in nine
studies. Five studies explicitly stated the inclusion of BM patients with multiple lesions.
Twenty studies reported the exclusive investigation of GBM. The rest of the studies (n = 9)
also included lower-grade and/or atypical glioma patients. Tsolaki et al. [28] performed
intra-class subgroup analyses and compared classification accuracy for differentiation of
brain metastases against different glioma grades. Artzi et al. [23] and Meier et al. [26]
differentiated between multiple types of brain metastases for further subtype analyses of
brain tumor etiology.

https://www.medcalc.org
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Figure 2. Source of datasets. The chart displays the distribution of types of datasets, from which MRI
scans were derived, among the different studies. Note how the majority (89%) of studies trained and
validated on single-center data.

Figure 3. Class distribution of gliomas and brain metastases (left) and total number of patient studies
(right) in each study. The panel on the left-hand side shows the ratio of glioma and brain metastasis
patients among the different datasets. The dotted line indicates equal class distribution, i.e. class
balance. The right-hand panel indicates the total number of patients across all studies. Note that
most studies were trained and validated on datasets with less than 200 patients.

3.2.3. Imaging Modalities and Features

Different MR sequences were used for tumor measurements and subsequent feature
extraction. In 25 out of 29 studies, contrast-enhanced T1 (T1CE) sequences were utilized
within the workflow described in the study for delineation of the region of interest (ROI),
which is the standard-of-care sequence in brain metastases. Only two studies [19,24] did
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not derive their ROIs from conventional MR imaging, but via segmentation on diffusion
tensor imaging. Imaging features from conventional MRI were employed for classification
in 23 studies. Ten studies included diffusion-weighted imaging, and six studies included
perfusion-weighted imaging, five of which specified the use of dynamic susceptibility
contrast (DSC) imaging, whereas the remaining one provided no further information. Four
studies included MR spectroscopy. Multiple studies showed that classification results
upon investigation of the peritumoral area (outside of the contrast-enhancing border on
T1CE) were superior to those yielded from the intratumoral portion [18,28,30]. Similarly,
Samani et al. [40] showed high classification results from exploiting the DTI-derived free
water volume fraction from the peritumoral microenvironment. These findings suggest a
reflection of the disparate tumor biology and mode of growth, which is of an infiltrative
nature in glioma and of an expansile nature in brain metastases.

The imaging features used for classification of gliomas from brain metastases were
heterogeneous and included clinical, qualitative, and semantic imaging features, as well
as shape features and radiomics features of first, second and higher orders (Figure S3).
Second-order, i.e. textural quantitative imaging features, were found to be employed most
frequently (n = 12).

3.2.4. Algorithms

We aimed to identify the most common ML algorithms in the investigated body of
literature. Most studies (n = 19) evaluated multiple classifiers in their study. Support vector
machines (SVM) (n = 21) and k-nearest neighbors algorithms (kNN) (n = 10) were the most
frequently investigated classifiers. Deep learning (DL) techniques, such as deep neural
networks (DNN), or convolutional neural networks (CNN), were leveraged less (n = 4),
but were increasingly represented in more recent publications between 2020 and 2021.
The 29 best performing classifiers drawn from each study showed a variety of different
algorithms. Among those, SVM (support vector machine) and its variations were again
represented the most (n = 9). Lesser used traditional ML algorithms were used in the rest
of the studies and were grouped into non-DL neural networks (n = 4), logistic regression
(n = 3), tree-based ensemble classifiers (n = 2), namely Random Forest and AdaBoost, k-
nearest neighbors (n = 2), and others (n = 2). DL-based algorithms, namely CNN (n = 3) and
a DNN (n = 1), were the best reported classifiers in four studies. Algorithm representation
among all reported classifiers versus representation among the best performing classifiers
is visualized in Figure S4a.

3.2.5. Model Validation

Internal validation measures were reported in every study. Cross-validation, particu-
larly leave-one-out cross validation (LOOCV) (n = 9), was performed in 21 studies. Two
studies [31,36] presented a three-way split of their dataset into training, validation, and
testing set. External validation sets stem from a geographically distinct location and should
ensure that the model generalizes well onto data from foreign populations. This was only
conducted in two studies [22,36].

3.2.6. Classification Performance

Classification accuracy (n = 19) was the most reported model evaluation metric. One
study [26] exclusively provided a F1-Score, the harmonic mean of precision and recall, of
0.865 without class balancing and 0.326 with class balancing, respectively. We aggregated
the internally validated performance metrics from all studies that provided dichotomized
models for classification between glioma and brain metastases (n = 26). Two studies provided
evaluation metrics for differentiation of brain metastasis from the four individual glioma
grades separately. For our data aggregation, we opted to only include the herein reported
differentiation between “Grade 4 glioma and brain metastasis”, which more precisely reflects
the clinical diagnostic dilemma in differentiating high grade gliomas from solitary brain
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metastases. Note that the following syntheses do not meet the criteria of a meta-analysis as
most studies failed to provide estimates of level of certainty, such as SEM or CI.

The pooled average of all studies reporting accuracy (n = 19) was 0.881 ± 0.085 (mean
± SD). The average AUC, reported in 17 studies, was found to be 0.916 ± 0.052, while average
sensitivity (n = 16) and specificity (n = 15) were 0.868 ± 0.123 and 0.843 ± 0.235, respectively
(Figure 4). A subgroup analysis of AUC (mean ± SD) of classifiers modeled on conventional
MRI only (0.907 ± 0.061) vs. advanced MRI (0.930 ± 0.053) did not reach statistical significance
(p = 0.437) and is represented in Figure S5. Among the 26 best performing classifiers, SVM
reached the highest mean (± SD) AUC of 0.936 (±0.045). Mean AUC from the best classifiers
grouped by different algorithm types (SVM, DL algorithms, neural networks, tree-based
algorithms, and logistic regression) did not vary significantly at an alpha level of 0.05 and
are displayed in Figure S4b. Note that these numbers do not represent the results from a
meta-analysis, as variance estimates were scarcely reported, and, thus, should be appraised
critically. Caution against inference to real-world data is strongly advised.

Figure 4. Most frequently reported performance metrics for the best performing classifier from each
study included in this data aggregation (n = 26). The lines indicate the mean of the different metrics
and reached an overall high level. Note that not all the above-mentioned evaluation metrics were
indicated for every classifier and are displayed in different amounts in this plot.

Ensemble learning approaches were described in three studies. Dong et al. [25]
presented an ensemble learning approach, where different traditional ML algorithms
were combined for execution of a classification task. The ensemble classifier yielded a
classification accuracy of 0.64, tying with the single best performing individual algorithm,
a Naïve Bayes classifier, indicating that ensembling was unsuccessful. The same study
also proposed an agreement pattern model, a voting ensemble, where only cases with
unanimous class labels across all five different classifiers were analysed. This approach
achieved a classification accuracy beyond 90%, significantly outperforming the other
approaches—however, it was not stated in how many cases total agreement could be
achieved. This approach likely favours easy to differentiate cases, thus bearing limited
applicability in clinical practice, particularly for more ambiguous studies. Samani et al. [40]
presented a similar voting ensemble method. The 2D CNN algorithm performed 16
× 16 voxel patch-wise classifications after training on about 6000 peritumoral patches
from 113 training subjects. Training and cross-validation were also conducted patch-wise.
Prediction of tumor type at patient level was performed in a holdout test set via majority
voting of the individual subordinate patches per patient. While classification accuracy
in patch-wise cross validation was 0.85, patient-wise classification after majority voting
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reached an accuracy of 0.93 in a holdout test set. Shin et al. [36], reporting on a 2D CNN,
proceeded similarly, providing cross-validated predictions for 6617 axial sectional images,
and concluding patient-wise predictions by majority voting. This validated model achieved
an AUC of 0.889 on an internal holdout test set and 0.835 on an external validation set.
Splitting imaging data from a subject into further divisions for model training, can serve as
means of data augmentation to combat overfitting, a common phenomenon when DL is
applied to small datasets.

Two studies reported externally validated classification results. Shin et al. [36] reported
a convolutional neural network trained on T1CE- and T2-weighted masks with an AUC
of 0.835 (95% CI 0.755–0.915). Bae et al. [22] reported a deep neural network trained on
radiomics features retrieved from T1CE and peritumoral T2-weighted masks with an AUC
of 0.956 (95% CI 0.918–0.990).

3.3. Meta-Analysis

Five studies were found to be eligible for a quantitative meta-analysis of effect esti-
mates. The purpose of this analysis was to obtain robust assembled results on the perfor-
mance of these ML classifiers. Three studies that reported internally validated AUC values,
and two studies reporting externally validated AUC values were analyzed separately in a
random effects model. In the internally validated models, an overall AUC of 0.913 (95%
CI 0.902–0.925) was attained. Higgins I2-test yielded a heterogeneity of 0.00%, however
statistical significance (p = 0.597) was not given. The meta-analysis from two externally
validated models reached an overall AUC of 0.907 (95% CI 0.826–0.988). Heterogeneity,
again measured by Higgins I2, was at a level of 86.32% at a significance level of p < 0.01.
This indicates a high level of heterogeneity in the meta-analysis of externally validated
classifiers. Forest plots of the meta-analyses are provided in the Supplementary Materials
(Figure S2).

3.4. Quality of Reporting

Adherence to 29 TRIPOD items was assessed for each study in agreement of two
reviewers. These included all TRIPOD items applicable to model development studies
according to the official TRIPOD review guidelines, except for item 11 (risk groups), which
was not applicable to any included study. Median TRIPOD adherence score was found to
be 0.48, reflecting that 14 out of 29 TRIPOD items were fulfilled. TRIPOD adherence scores
ranged from 0.17 (5/29) to 0.79 (23/29). The studies published in or after 2019 achieved
higher TRIPOD scores on average (p = 0.017), with a median of 0.55 (95% CI: 0.49–0.61). On
the other hand, the studies published before 2019 had a median TRIPOD score of 0.45 (95%
CI: 0.40–0.49).

Across studies, average satisfaction per item was measured by what we labeled as
adherence index (ADI), with values ranging from zero to one. Highest item satisfaction
was detected for Background and Objectives (ADI of 96.1 and 100%, respectively), Study
design (93.1%), Model development—Participants and outcomes (82.7%), and Limitations
and Implications (both 86.2%). Lowest ADI, indicating low adherence to TRIPOD, were
seen in the reporting of Title and Abstract (6.9 and 0%, respectively), Predictors—Blind
assessment (3.4%), Participant characteristics (0%), and Full model specification and Model
performance (both 10.3%) (Figure 5).

Outside of the framework of TRIPOD, we investigated the reporting on data availabil-
ity. While six studies [14,32,34,37,38,40] explicitly mentioned data availability upon request,
among all twenty-nine examined studies, only Liu et al. [39] provided the algorithm code
and radiomics data on an open-source platform.
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Figure 5. Bar graph of TRIPOD adherence index, a measure for degree of satisfaction for each
TRIPOD item applicable in model development studies. Item 11 (Risk groups) was applicable
in none of the studies at hand. Item 21 (Supplementary information) is not shown, as it is not
included in overall scoring according to official guidelines. Item labels are as follows: 1—Title,
2—Abstract, 3a—Background, 3b—Objectives, 4a—Source of data (Study design), 4b—Source of data
(Study dates), 5a—Participants (Study setting), 5b—Eligibility criteria, 5c—Participants (Treatments
received), 6a—Outcome (Definition), 6b—Outcome (Blind assessment, 7a—Predictors (Definition),
7b—Predictors (Blind assessment), 8—Sample size, 9—Missing data, 10a—Statistical analysis (Pre-
dictors), 10b—Statistical analysis (Model development), 10d—Statistical analysis (Model evalua-
tion), 13a—Flow of participants, 13b—Participant characteristics, 14a—Number of participants and
outcomes, 14b—Model development (Predictor and outcome association), 15a—Full model speci-
fication, 15b—Model explanation, 16—Model performance, 18—Limitations, 19b—Interpretations,
20—Implications, 22—Funding. Note that items 15a (Full model specification) and 16 (Model perfor-
mance) are among the TRIPOD items with lowest adherence in the surveyed studies despite having a
paramount role for model reproducibility and successful translation to the clinic.

4. Discussion

Previous reports and systematic reviews have corroborated the potential benefit of
machine learning for various applications in neuro-oncology, for instance, in prediction
of tumor grade, molecular status, or differentiation of glioma from primary central ner-
vous system lymphomas. Predictive ML models for the differentiation of gliomas from
brain metastases have the potential to accurately and non-invasively provide preoperative
diagnosis and, thus, to influence the strategy for individualized treatment. However, to
our knowledge, no study has systematically reviewed the use of machine learning for this
differential classification task yet.

Our systematic review was performed under PRISMA guidelines after a thorough
search of four databases at three timepoints between September 2020 and September
2021, which resulted in the evaluation of 12,470 abstracts. We extracted information from
29 studies that reported the development of predictive ML models for the differentiation of
glioma from brain metastasis.

Our study showed that most articles investigated SVM as classification algorithms
and that SVM performed consistently well. As a traditional ML approach, it is a common
algorithm in predictive modeling in neuroradiology, due to its simplicity and flexibility [45].
DL algorithms, such as CNN, were described in fewer publications that were more recent.
These studies exhibited higher average sample sizes and reported external validation in
two out of four instances. Bae et al. presented a deep neural network that outperformed
classical ML algorithms, such as AdaBoost or SVM, with an externally validated AUC of
0.956. This aligns with previous studies, which have reported superior results from DL-
based algorithms when compared to classical ML techniques for related classification or
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segmentation tasks [46,47]. DL is widely believed to be one of the major recent advances in
the field of machine learning, largely thanks to the increasing availability of big data and
growing computational capacities. DL algorithms have been leveraged for different tasks in
neuro-oncology, such as acquisition, segmentation, and classification [48]. When compared
to classical ML algorithms, which require extraction of handcrafted features, deep neural
networks bear the ability to automatically extract relevant features for classification, a process
referred to as representation learning [49]. While some studies suggest that DL can outperform
classical ML techniques even in small datasets of 50 subjects [50], generally larger datasets
are needed to account for the high number of weights within the complex architecture of
deep neural networks [51]. As DL algorithms are prone to overfitting in small datasets, which
is often the case for medical imaging datasets, validation in external datasets is even more
important to preclude over-sensitization to institutional biases. If data is scarce, measures, such
as transfer learning [52] or data augmentation should be explored to increase model robustness.
Despite promising classification results in our reviewed DL studies, thus, caution is advised, as
large, annotated, and high-quality datasets are necessary to prevent overfitting [53]. Ensemble
learning methods were trialed in three studies [25,36,40]. Ensemble learning is based on the
idea of combining multiple algorithms that were each either trained on different datasets (data
diversity) or trained on the same data with differences in algorithm architecture (structural
diversity), to generate a model that outperforms the individual classifiers [54]. The final
outcome can be obtained either by mathematical fusion of the classifiers or by summing
the individually predicted class labels via ensemble voting. This approach can be used to
overcome typical challenges in ML, such as overfitting, and to mitigate phenomena, such as
class imbalance or the “curse of dimensionality” [55]. Furthermore, we found that the average
AUC from the best performing classifiers trained on conventional MRI sequences alone and
those integrating information from advanced MRI did not differ significantly. However,
we remark that the displayed outcome measures stemmed from internal validation, and
hence do not allow inference and generalization to the whole population. In curated datasets,
performance metrics are inherently dependent on different factors, such as number of training
subjects or data quality that were reported heterogeneously across the displayed studies.
This analysis could be repeated once there are enough studies that address this and perform
external validation.

Different feature types were used for the classification between gliomas and brain metas-
tases. Three studies compared classification performance using intra- versus peritumoral
features and found that the latter achieved higher discrimination performance. This is in line
with previously published findings: relative cerebral blood volume (rCBV) measurement has
been shown to be a strong discriminator for glioma versus brain metastasis in the peritumoral
edema [56,57]. Lu et al. [58] also showed the predictive utility of mean diffusivity from DTI in
the peritumoral compartment for distinction between glioma and brain metastasis. Future
research should further validate these results in machine learning studies.

Our findings show that there are several limitations that reduce overall model repro-
ducibility, hence posing a barrier for clinical implementation. Most studies relied on single-
center datasets, and validation on external imaging datasets was only performed in two
studies. This is common in the ML literature on brain tumors because the generation of
comprehensive annotated imaging datasets and data sharing are major limitations in the
field [59]. Additionally, sample sizes were found to be consistently low at 152.3 ± 144.9. One
of the problems of using small datasets is overfitting, where the model captures noise and
inherent structures within the training data, which has important ramifications for model gen-
eralizability on heterogeneous and unseen data and can overestimate the accuracy measures
of algorithms [60]. While there is no consensus on what sample size is too low for application
of ML [61], several approaches to determine the minimally required sample size have been
proposed [62]. Moreover, several collaborative initiatives, for instance the COINSTAC [63]
platform or federated learning (FL) [64], have been developed with the aim of combatting
the paucity of large and annotated datasets. FL is an emerging collaborative approach that
encompasses multiple centers that train a machine learning model on their institutional private
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data, and subsequently integrates all model updates into a consensus model. Thereby, FL
has been shown to perform comparably to conventional open interinstitutional data sharing
models, while bypassing data privacy and confidentiality issues [65].

Another limitation of these studies is the deployment of imbalanced datasets. Classifi-
cation accuracy was the most frequently provided performance metric in our systematic
review. Four studies exclusively provided accuracy as the evaluation metric for their
model [28,29,33,66]. However, classification accuracy fails to reliably estimate discrimina-
tory power in the presence of class imbalance, as the impact of a class on model prediction
depends on its representation within the data used in the training process [67]. A bias
towards the majority class is introduced, as there are fewer cases in the minority class to
contribute to overall classification accuracy. Thus, specific characteristics of the minority
class are likely to be misidentified as noise and ignored during modeling [68]. Class imbal-
ance can and should be mitigated using various approaches, such as data augmentation,
resampling, or employment of penalized models.

All studies used internal validation techniques to evaluate model robustness. Cross-
validation techniques, that were most frequently devised for internal validation, iteratively
partition the dataset into training and validation sets and are particularly useful when
data is scarce, by enabling the exploitation of the entire dataset for modeling. Holdout
validation, dividing the samples into designated train and test sets, can, if not stratified,
introduce bias when observations are unevenly distributed among training and testing
sets, and should typically be reserved for larger datasets. Two studies [31,38] presented
a three-way split of their dataset into training, validation, and testing sets. In this setting,
the validation set takes on the task of hyperparameter tuning and is typically necessary
in complex models with many hyperparameters. Nested cross-validation, described by
three studies [35,37,38], addresses the same question of mathematical optimization of the
model. To warrant that the models generalize well on unseen data, the choice of internal
validation measures should be adapted to the underlying data and individual model and
must be reported accordingly.

Several studies included MR scans from brain metastasis patients with multiple foci or
failed to explicitly report on the inclusion of solitary BM patients. Recognizing this question
is vital when aiming to provide tools for reliable discrimination of brain metastases from
GBM, as clinically relevant diagnostic challenges occur in the differentiation of solitary
metastases from higher-grade gliomas.

In this systematic review, we provided pooled summary results for the best performing
classifiers from each study. Due to a broad heterogeneity among the studies and failure
to report necessary effect estimates (AUC) and their variances, not all of them could be
subjected to a quantitative meta-analysis. Only small subsets of three and two studies,
respectively, were eligible for the conduct thereof. Consistency of effects across the studies
is a prerequisite for generalizability in meta-analyses [44]. Further subsampling, as advised
for exploration of the cause and type of heterogeneity in our meta-analyses, could not be
performed due to the limited number of studies included in the analysis. Overall, our
meta-analyses indicate a tendency of the classification performance of eligible studies,
all published between 2019 and 2021. However, the limited number of eligible studies
indicates the prematurity of this analysis and the need for further validation of these
findings. Once the literature fulfils the necessary requirements for the conduct of a more
comprehensive meta-analysis, future research could potentially include subgroup analyses,
such as comparison of prediction models exploiting information from the intratumoral vs.
the peritumoral region, to provide more robust evidence on the effect estimates.

To assess the quality of reporting, we performed a systematic analysis according to the
TRIPOD statement. Overall, quality of reporting in the studies was poor. An overall median
TRIPOD score of 0.48 (range: 0.17–0.79) signifies that, on average, more than half of the
critical information for study development was not reported. Strikingly, our findings are to a
large extent in keeping with a recently published systematic review investigating TRIPOD
adherence in clinical prediction models in oncology using ML [69]: Dhiman et al. also found
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low adherence for Title, Abstract. and Predictor blinding; reporting on Background/Objectives
and overall interpretation of study results was similarly high in our study cohort; major
differences could be seen in the reporting of missing data, where our reviewed articles
showed significantly lower adherence; however, given that Dhiman et al. investigated clinical
prediction models, it is likely that their results do not translate immediately to ML models
based on imaging. This persistent concern of insufficient reporting in the literature necessitates
initiatives for data sharing and improvement of transparency.

Based on the deficiencies in current reporting that we identified in our study, we
formulated the following recommendations. We propose that authors clearly specify the
proportion of solitary brain metastases versus multiple brain metastases in their datasets.
The differentiation of solitary brain metastasis from high grade gliomas represents a clini-
cally relevant problem that can be assisted by ML algorithms. On the contrary, differen-
tiation of multiple metastases and solitary metastases from gliomas can have important
implications for algorithms that screen studies from normal to abnormal. We advise the
use of multi-center hospital datasets for algorithm training and validation. For reporting
of model performance, we suggest including multiple performance metrics and statistical
testing. Validation of studies in clinically applicable, representative, and independent
datasets is crucial for the accurate estimation of generalizability. We understand that such
databases may not be readily available; therefore, clear indication of the methods used for
validation is critical for future research. Based on our TRIPOD adherence assessment, we
recommend providing more descriptive titles that describe the model tested, improving
the discussion of results and methods within the abstract, and including balanced datasets
with equal representation of tumor types for initial model development. When algorithms
are developed for specifically imbalanced dataset applications, then the clear description
of the different entities within the dataset is important. We advise authors to sufficiently
characterize the predictors used for modeling and to explicitly mention the absence and
presence of missing data, respectively. Backed by recent reviews and editorials, we stipulate
that strict adherence to standardized reporting guidelines leads to more transparency and
can ultimately facilitate model translation and to clinical practice [10,11].

There are several limitations to our study. It is possible that we did not identify
every relevant article in the field. To address this limitation, we used four bibliographical
databases, as recommended by the Cochrane Handbook for the conduct of systematic
reviews. The search was conducted by two institutional librarians and was repeated two
times, most recently in September 2021. Another potential limitation is the exclusion of
“abstracts only” studies from our systematic review. We acknowledge that this decision,
aimed to warrant the inclusion of peer-reviewed results only, could come at the expense of
missing pertinent or even contesting evidence to our findings. We prioritized the highest
quality of studies over preliminary reports published at scientific meetings. Furthermore,
we emphasize that TRIPOD is a quality assessment tool that is tailored for regression-
based multivariate prediction models [42], instead of ML techniques that can pursue a
different approach for classification. While TRIPOD still provides a rigorous evaluation of
ML methods similar to checklists with a focus on AI, such as CLAIM [70], the language
in TRIPOD is focused on multivariate regression models. Hence, we acknowledge that
translation of TRIPOD to ML studies can be effortful and imprecise. We endorse the
development of the TRIPOD–AI extension for explicit use in ML studies, which is currently
under development [71].

5. Conclusions

We show that the literature demonstrates early evidence for the efficacy of ML algo-
rithms for glioma versus BM classification and paves the way for clinical implementation
of potential algorithms. Significant limitations include small datasets, imbalanced repre-
sentation of pathologies, and lack of external validation of algorithms. This necessitates
initiatives for data or algorithm sharing and development of representative multi-center
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datasets that allow individualization of algorithms to patient populations and imaging
protocols from different institutions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14061369/s1, Figure S1: Search strategy used on biblio-
graphic databases; Figure S2: Meta-analysis results from random effect models displayed as forest
plots; Figure S3: Types of imaging features across all studies; Figure S4: (a) Number of times that
algorithm types were reported in a study vs. algorithm representation among the best classifiers
extracted from each study; (b) AUC of the best reported classifiers grouped by type of algorithm
leveraged for classification; Figure S5: AUC of the best reported classifiers grouped by type of
imaging modality leveraged for classification.
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