Skip to main content
. 2022 Mar 18;12(3):741. doi: 10.3390/diagnostics12030741

Table 8.

We compare our proposed COVID-SRWCNN model with state-of-the-art COVID-19 image-based diagnosis models.

Literature Architecture Performance (%)
Wang et al. [56] 2D CNN 82.9 (ACC)
Shi et al. [44] Random forest-based CNN 87.9 (ACC)
83.3 (SEN)
90.7 (SPE)
Chen et al. [38] 2D Unet ++ 95.2 (ACC)
100.0 (SEN)
93.6 (SPE)
Li et al. [42] 2D ResNet 50 90.0 (SEN)
96.0 (SPE)
Song et al. [49] 2D ResNet 50    86.0 (ACC)
Jin et al. [45] 2D Unet++ and 2D CNN 97.4 (SEN)
92.2 (SPE)
Xu  et al. [47] 2D CNN    86.7 (ACC)
Jin  et al. [46] 2D CNN 94.1 (SEN)
95.5 (SPE)
Wang et al. [48] 3D ResNet and attention 93.3 (ACC)
87.6 (SEN)
95.5 (SPE)
Zhang et al. [37] 2D Unet and 2D CNN 90.7 (SEN)
90.7 (SPE)
COVID-SRWCNN Super-Resolution CNN and Wavelet 99.79 (ACC)
99.78 (SEN)
99.86 (SPE)
98.96 (AUC)
98.98 (PRE)