Table 2.
Model | Accuracy | Sensitivity | Specificity | PPV | NPV | AUC | F1 (avg) | κ value |
---|---|---|---|---|---|---|---|---|
VGG19 | 0.842 | 0.835 | 0.850 | 0.860 | 0.823 | 0.900 | 0.842 | 0.684 |
VGG19 (TTA) | 0.851 | 0.845 | 0.858 | 0.868 | 0.833 | 0.918 | 0.851 | 0.702 |
ResNet18 | 0.850 | 0.846 | 0.856 | 0.867 | 0.833 | 0.917 | 0.850 | 0.700 |
ResNet18 (TTA) | 0.865 | 0.867 | 0.862 | 0.875 | 0.854 | 0.928 | 0.864 | 0.729 |
ResNet50 | 0.860 | 0.855 | 0.865 | 0.875 | 0.843 | 0.922 | 0.859 | 0.719 |
ResNet50 (TTA) | 0.870 | 0.867 | 0.874 | 0.884 | 0.856 | 0.931 | 0.870 | 0.740 |
ResNet152 | 0.864 | 0.859 | 0.868 | 0.879 | 0.848 | 0.926 | 0.863 | 0.727 |
ResNet152 (TTA) | 0.874 | 0.871 | 0.878 | 0.888 | 0.859 | 0.932 | 0.874 | 0.748 |
DenseNet169 | 0.860 | 0.856 | 0.865 | 0.875 | 0.844 | 0.923 | 0.860 | 0.720 |
DenseNet169 (TTA) | 0.871 | 0.863 | 0.879 | 0.888 | 0.852 | 0.931 | 0.870 | 0.741 |
DenseNet264 | 0.866 | 0.860 | 0.874 | 0.883 | 0.849 | 0.930 | 0.866 | 0.732 |
DenseNet264 (TTA) | 0.876 | 0.867 | 0.886 | 0.894 | 0.857 | 0.932 | 0.876 | 0.752 |
EfficientNet-b0 | 0.864 | 0.874 | 0.853 | 0.868 | 0.859 | 0.924 | 0.864 | 0.727 |
EfficientNet-b0 (TTA) | 0.874 | 0.879 | 0.869 | 0.882 | 0.867 | 0.933 | 0.874 | 0.748 |
EfficientNet-b4 | 0.870 | 0.879 | 0.860 | 0.875 | 0.865 | 0.930 | 0.870 | 0.739 |
EfficientNet-b4 (TTA) | 0.878 | 0.882 | 0.874 | 0.886 | 0.870 | 0.935 | 0.878 | 0.756 |
EfficientNet-b7 | 0.874 | 0.880 | 0.868 | 0.881 | 0.867 | 0.933 | 0.874 | 0.748 |
EfficientNet-b7 (TTA) | 0.881 | 0.885 | 0.877 | 0.889 | 0.873 | 0.937 | 0.881 | 0.762 |
Ensemble model | 0.889 | 0.887 | 0.892 | 0.901 | 0.877 | 0.938 | 0.889 | 0.778 |
Ensemble (TTA) model | 0.892 | 0.890 | 0.895 | 0.904 | 0.880 | 0.940 | 0.892 | 0.784 |
Abbreviations: DenseNet, Dense Nework; EfficientNet, Efficient Network; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve; κ value, the Fleiss’s κ value; ResNet, Residual Network; TTA, test time augmentation; VGG, Visual Geometry Group Network.