Skip to main content
. 2022 Feb 25;24(3):335. doi: 10.3390/e24030335
Algorithm 1: Bayesian Hyperparameter Optimization
Input:
  Initial observation set Dn={xn,yn}
  Bounds for the search space χ
Output: {xn,yn}n=1t
forn=1,2,, t do
  Fit the current data sample Dn to get the GPR model G(w)n
  Solve the extreme points of the objective function loss(w):wn+1=argminwWloss(w,G(w)n)
  Obtain new samples wn+1,losswn+1
  Update data sample Dn+1=Dnwn+1,losswn+1.
  Update data self-screening layer parameters
end for