Skip to main content
. 2022 Mar 11;11(6):810. doi: 10.3390/foods11060810

Table 4.

Coefficient estimates and diagnostics from hierarchical binary logistic regression explaining consumers’ revisit intentions (study 1; n = 1053).

Model 1: Consumer Profiling Variables Model 2: Consumer Profiling and Attitudes
Variable B S.E. Wald p Exp(B) B S.E. Wald p Exp(B)
Socio-demographic
Age −0.001 0.005 0.039 0.843 0.999 0.009 0.005 3.099 0.078 1.009
Gender (1 = male) 0.488 0.142 11.910 0.001 1.630 0.204 0.154 1.760 0.185 1.226
Education (1 = higher) −0.141 0.151 0.872 0.350 0.868 −0.159 0.163 0.958 0.328 0.853
Past behaviour
Visit frequency 0.335 0.049 47.305 <0.001 1.398 0.300 0.050 36.555 <0.001 1.349
Attitudes
F1(1) Hygiene −0.479 0.138 12.043 0.001 0.620
F2(1) Avoidance −0.449 0.121 13.727 <0.001 0.638
F3(1) Organisation −0.505 0.122 17.197 <0.001 0.604
Constant −0.256 0.276 0.862 0.353 0.774 4.849 0.578 70.427 <0.001 127.613
Model
Likelihood ratio 101.971 <0.001 244.007 <0.001
Nagelkerke R2 0.125 0.279

Note: Predictive accuracy of 63.6% (Model 1) and 69.3% (Model 2) compared to 59.8% in the ‘null’ model; dependent variable (revisit intention) is a dummy variable: postpone visit (0), retake visit (1); bold indicates significant coefficients (p < 0.05); FX(Y) with X = number of factor, Y = number of study.