Skip to main content
. 2022 Mar 16;24(3):414. doi: 10.3390/e24030414

Table 13.

The VGGish-based architecture.

Layer Arguments Number of Parameters
Convolution2D Filters = 64, kernel size = (3, 3), strides = (1, 1),
input shape (128, 170, 1)
640
MaxPooling2D Pool size = (2, 2), strides = (2, 2)
Convolution2D Filters = 128, kernel size = (3, 3), strides = (1, 1) 73,856
MaxPooling2D Pool size = (2, 2), strides = (2, 2)
Convolution2D Filters = 256, kernel size = (3, 3), strides = (1, 1) 295,168
Convolution2D Filters = 256, kernel size = (3, 3), strides = (1, 1) 590,080
MaxPooling2D Pool size = (2, 2), strides = (2, 2)
Convolution2D Filters = 512, kernel size = (3, 3), strides = (1, 1) 1,180,160
Convolution2D Filters = 512, kernel size = (3, 3), strides = (1, 1) 2,359,808
MaxPooling2D Pool size = (2, 2), strides = (2, 2)
Flatten
Dense_1 Nodes = 4096 184,553,472
Dense_2 Nodes = 4096 16,781,312
Dense_3 Nodes = 23 94,231
Total number of parameters 205,928,727