Skip to main content
. 2022 Mar 7;29(3):1773–1795. doi: 10.3390/curroncol29030146

Table 2.

Summary of AI models for CRC diagnosis and staging session. (CNN, convolutional neural network; AUC, area under the curve; SVM, support vector machine; PNN, probabilistic neural network; NL, normal mucosa; AD, adenoma; ADC, adenocarcinoma; WSI, whole slide images; RNN, recurrent neural network; TCGA, The Cancer Genome Atlas; ResNet, residual network architecture; HP, hyperplastic polyp; VGG, visual geometry group; RF, random forest; PET-CT, positron emission tomography or computed tomography; LR, logistic regression; NN, neural network; XGBoost, extreme gradient boosting; CT, computed tomography; MRI, magnetic resonance imaging; Faster R-CNN, faster region-based CNN; CAD, computer aided diagnosis).

Topic Task Dataset Model Performance Year Ref.
Pathological
diagnosis
Tumor mutational burden-high prediction 278 HE slides CNN AUC: 0.934 2021 [41]
Low/high-grade classification Immunohistochemically stained biopsy of 67 patients hDL-system (VGG16, SVM) hDL-system accuracy: 99.1%; sML-system accuracy: 92.5% 2021 [42]
NL/AD/ADC classification 4036 WSI CNN, RNN AUC: 0.96 for ADC; 0.99 for AD 2020 [43]
Tumor immune microenvironment analysis 404 CRC and 20 adjacent non-tumorous tissues CIBERSORT C-index: stage I-II 0.69; stage III-IV 0.71; AUC: 0.67 2019 [44]
NL/Tumor classification 94 WSI, 370 TCGA-KR, 378 TCGA-DX ResNet18 AUC > 0.99 2019 [45]
NL/HP/AD/ADC
classification
393 WSI (12,565 patches) CNN Accuracy: 80% 2019 [46]
NL/Tumor classification 57 WSI
(10,280 patches)
VGG Accuracy: 93.5%,
Sensitivity: 95.1%
2018 [47]
NL/AD/ADC classification 27 WSI
(13,500 patches)
VGG16 Accuracy: 96%, Specificity: 92.8% 2018 [48]
NL/AD/ADC classification 30 multispectral image patches CNN Accuracy: 99.2% 2017 [49]
Cancer subtypes classification 717 patches AlexNet Accuracy: 97.5% 2017 [50]
Polyp subtypes classification 2074 patches 936 WSI ResNet Accuracy: 93.0% 2017 [51]
Radiological
diagnosis
Metastatic CRC prediction MRI from 55 stage VI patients with known hepatic metastasis RF AUC: 0.94 (Add imaging-based heterogeneity features) 2021 [52]
Metastatic lymph node prediction PET-CT scan images from 199 CRC patients LR, SVM, RF, NN, and XGBoost AUC of LR: 0.866; AUC of XGBoost: 0.903 2021 [53]
Colorectal liver metastasis prediction 103 metastasis samples and 80 non-cancer tissues Probe electrospray ionization-mass spectrometry, and LR Accuracy: 99.5%,
AUC: 0.9999
2021 [54]
Colorectal liver metastasis prediction CT scan images from 91 patients Bayesian-optimized RF with wrapper feature selection AUC of radiomics features model: 86%;
AUC of clinical features model: 71%;
AUC of combination: 86%
2021 [55]
KRAS mutations detection CT scan images from 47 patients Haralick texture analysis, SVM, LightGBM, NN, and RF Accuracy: 83%, kappa: 64.7% 2020 [56]
Classification of T2 and T3 290 MRI images from 133 patients CNN Accuracy: 0.94 2019 [57]
Metastatic lymph node prediction MRI images from 414 patients Faster R-CNN r-radiologist-Faster R-CNN 0.912 2019 [58]
Polyp detection 825 CT scan images CNN Accuracy: 0.87,
Sensitivity: 0.8877, Specificity: 0.8735
2017 [59]
Polyp detection 154 CT scan images CNN Accuracy: 0.971 2017 [60]
Polyp classification 1035 endomicroscopy images Mathworks “NAVICAD” system Accuracy: 84.5% 2016 [61]
Polyp detection and classification 148 CT scan images Haralick texture analysis, SVM ROC: 0.85 2014 [62]
CAD system for polyp detection 24 T1 stage patients’ CT scan images Coloncad API 4.0, Medicsight plc True positives rate >96.1% 2008 [63]