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Abstract: For T2 mapping, the underlying mono-exponential signal decay is traditionally quantified
by non-linear Least-Squares Estimation (LSE) curve fitting, which is prone to outliers and computa-
tionally expensive. This study aimed to validate a fully connected neural network (NN) to estimate
T2 relaxation times and to assess its performance versus LSE fitting methods. To this end, the NN
was trained and tested in silico on a synthetic dataset of 75 million signal decays. Its quantification
error was comparatively evaluated against three LSE methods, i.e., traditional methods without any
modification, with an offset, and one with noise correction. Following in-situ acquisition of T2 maps
in seven human cadaveric knee joint specimens at high and low signal-to-noise ratios, the NN and
LSE methods were used to estimate the T2 relaxation times of the manually segmented patellofemoral
cartilage. In-silico modeling at low signal-to-noise ratio indicated significantly lower quantification
error for the NN (by medians of 6–33%) than for the LSE methods (p < 0.001). These results were
confirmed by the in-situ measurements (medians of 10–35%). T2 quantification by the NN took only
4 s, which was faster than the LSE methods (28–43 s). In conclusion, NNs provide fast, accurate, and
robust quantification of T2 relaxation times.

Keywords: neural network; quantitative MRI; T2 relaxometry; mono-exponential least-squares fitting;
patellofemoral cartilage; osteoarthritis

1. Introduction

Cartilage degeneration is the hallmark change of osteoarthritis, which is a widespread
degenerative disorder that affects the entire joint with enormous individual and socio-
economic disease burden [1]. MRI offers unparalleled soft-tissue contrast and spatial
resolution, while being non-invasive and lacking ionizing radiation. Therefore, MRI is
the clinical reference standard for suspected joint and/or cartilage pathologies [2]. Yet,
early—and potentially reversible—degeneration is often missed, which may explain the
variable sensitivities of 45–74% for clinical-standard morphologic MRI techniques in the
detection of cartilage lesions [3,4]. Considering this limitation in reliably confirming (or
ruling out) early cartilage degeneration, quantitative MRI techniques such as T2 mapping
have been evaluated in a range of scientific and clinical contexts [5–7]. T2 mapping tech-
niques are robust, validated, and associated with biologically meaningful tissue properties,
even though changes in T2 are not related to a single tissue property but rather reflective of
changes of the collagen content, collagen network organization and integrity, and water
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content [8]. Recent longitudinal data confirmed the prognostic value of T2 maps as an
imaging biomarker of cartilage because elevated T2 relaxation times have been shown to
indicate future development of morphologic cartilage lesions and osteoarthritis [9].

Traditionally, T2 maps are generated by determining the voxel-wise signal decay based
on a series of spin-echo images acquired at different echo times. For each voxel, the T2
relaxation time is then calculated by fitting a mono-exponential decay equation to the
measured signal intensities, which is commonly performed by Least-Squares Estimation
(LSE) [10–12]. Different MRI sequences are available for T2 quantification. A multi-echo
spin-echo (MESE) sequence, for example, albeit being prone to different confounding
factors such as stimulated echoes, the slice profile, or deviating refocusing angles [13–15],
is, overall, faster than acquiring a series of single spin-echo images and present on most
clinical scanners. However, high-speed or high-resolution images that are acquired for
clinical purposes are generally contaminated with noise, which decreases the signal-to-
noise ratios (SNRs) substantially [16]. Fitting the mono-exponential decay equation to
these low-SNR images may skew the resultant T2 relaxation times [17] and lead to their
overestimation by up to 500% [12]. Therefore, accuracy of LSE fitting can be substantially
impaired in low-SNR images. Furthermore, LSE fitting methods are slow, computationally
expensive [11], and prone to outliers, which reduces their robustness [18,19].

In the past, several methods were proposed to minimize the associated estimation
errors for T2 fitting. Koff et al. compared linear, weighted, and non-linear fitting algorithms
and found significant differences of up to 4.5 ms in the retropatellar cartilage of 10 healthy
participants, thereby highlighting the fact that T2 relaxation times are substantially affected
by the underlying method of fitting [20]. As the mean difference in T2 relaxation times be-
tween normal and abnormal cartilage and, thus, between healthy individuals and patients
with (mild) osteoarthritis may be as low as 1.9 ms [21], the diagnostic distinction of health
and disease may be even more challenging during clinical image post-processing and
decision-making if the method of T2 map reconstruction is prone to noise or otherwise not
well standardized. Consequently, the small differences in T2 values between healthy and
mildly diseased cartilage may lead to failed diagnostic distinctions due to the estimation
gap between the fitting techniques.

With the advent of ever-increasing computational power, artificial neural networks
(NNs) are increasingly applied in the context of medical image acquisition and post-
processing [22]. NNs have been used for robust parameter fitting, and their validity has
been demonstrated in the presence of low SNRs and outliers [18,23]. In the context of
T2 mapping, NNs have been used for generating T2 maps from under-sampled k-space
data [24,25], and for multi-exponential fitting of T2 relaxation times in the brain [11,26].
However, to the best of our knowledge, no study has evaluated the application of NNs for
mono-exponential fitting of T2 relaxation times of articular cartilage using clinical frame-
work conditions in terms of the respective imaging sequence, knee coil, and 3.0 T scanner
with a clear focus to streamline and standardize post-hoc reconstructions of T2 maps.

Thus, our objective was to systematically evaluate a NN against traditional LSE
fitting methods in estimating T2 relaxation times both in silico and in situ and to evaluate
speed, accuracy, and robustness of each method. We hypothesized that the NN trained
on synthetic data is more robust and accurate in mono-exponential T2 relaxometry than
traditional LSE fitting methods, while being significantly faster and, thus, more suitable for
clinical workflows.

2. Materials and Methods
2.1. Study Design

This study was conducted in two successive phases, i.e., an in silico phase and an
in situ phase. First, a synthetic MRI dataset consisting of systematically varied signal
intensities was generated, similar to the studies in [16,27,28], and a NN was trained on
this synthetic dataset to predict T2 relaxation times, which were then compared against
alternative LSE fitting methods. Second, seven human cadaver knee joints underwent
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T2 fitting with two distinctly different MESE sequences (Table 1). The first sequence was
designed to provide high-SNR measurements that were used for reference estimations of
T2 relaxation times. The second sequence was designed to provide corresponding low-SNR
measurements for the subsequent evaluation of different fitting methods. The trained NN’s
performance in predicting T2 relaxation times was again compared against the alternative
LSE fitting methods.

Local Institutional Review Board approval (Ethical Committee, RWTH Aachen Uni-
versity, EK 180/16) and written informed consent by the body donors were available at
study initiation. The study was performed in accordance with the relevant local guidelines
and regulations.

2.2. In Silico Study Phase—Synthetic MRI Data

In mono-exponential T2 mapping, the magnitude of the noise-free signal intensity
(S) at a given echo time (TE) is defined by |S| = S0 exp

(
− TE

T2

)
, where S0 is the apparent

proton density and T2 the voxel’s sought relaxation time. Noise is introduced by a variety
of effects, mainly thermal fluctuations and electronic interference as well as dielectric and
inductive losses in the patient [29]. Consequently, the signal intensity S is assumed to be
distorted by complex white Gaussian noise ε = εreal + i · εimag [30]. The real and imaginary
parts of the noise follow a normal distribution with zero mean and standard deviation σ.
The noisy signal intensity (Snoisy) is the complex addition of the noise-free signal intensity
and the complex Gaussian noise as Snoisy = S + ε. In silico, the complex phase of the
noise-free signal S was set to zero as it does not affect the magnitude of the simulated signal
intensity |S|. Therefore, the magnitude of the noisy signal intensity was calculated as

|Snoisy| =
√
(Sreal + εreal)

2 + εimag
2 and will then follow the Rician distribution [30]. Note

that the Rician distribution can be approximated by a Gaussian distribution for SNRs ≥ 3,
thus justifying the widely used approach for applying LSE fitting directly to the signal
magnitude data. Signal strength was obtained directly by sampling (mono-exponential)
noise-free induction decays rather than a more complex Bloch simulation because the
former describes the prevailing dependencies in the absence of electronic noise but without
considering confounding effects such as pulse errors or diffusion, etc. [27].

We systematically varied and sampled parameter distributions for (S0, T2, TE, σ)
to generate a synthetic dataset with 67 million training samples, 8 million validation
samples, and 0.5 million test samples on which the fitting procedures described below were
evaluated. In this context, a sample was defined as a series of 5 ≤ n ≤ 15 noisy signal
intensities

∣∣Snoisy
∣∣ as a function of TE (TEn = TEstart + n TEstep), S0, T2, and σ. The first

echo time TEstart was sampled between 5 ms and 15 ms and the step size TEstep between
2 ms and 15 ms. The three parameters (TEstart, n, TEstep) were sampled from uniform
distributions because no configuration was supposed to be more likely than another. In
patient scans, the apparent proton density (S0) depends on many factors, including the type
and configuration of the scanner, sequences, and coils used for imaging [31]. Furthermore,
the apparent proton density can be scaled arbitrarily, so that previous studies defined
S0 either as an arbitrary but fixed value or as a variable originating from a continuous
(e.g., normal) distribution for the subsequent generation of synthetic datasets [12,32–34].
In reflection of these earlier studies, we defined a probability density function so that
S0 values between 0 and 500 were equally likely and S0 values greater than 500 became
exponentially less likely, i.e., probability P(0 ≤ S0 ≤ 500) ≈ 50%, P(0 ≤ S0 ≤ 1700) ≈ 95%,
and P(0 ≤ S0 ≤ 2500) ≈ 99%. S0 was not fixed to prevent the neural network from learning
or assuming a specific value for S0. For the T2 relaxation times, we assumed a log-normal
distribution that is often applied to quantitative measures of living tissues [35]. Additional
framework parameters were defined as follows: (i) lower threshold = 5 ms; (ii) statistical
mode = 50 ms; and (iii) no fixed upper threshold but probability P(T2 < 210 ms) ≈ 95% and
P(T2 < 500 ms) ≈ 99.8%. Visualizations of the underlying distributions of the T2 relaxation
times and the S0 values are given in Appendix A Figure A1. Finally, to simulate different
noise levels during training of the NN, it would have principally been possible (i) to vary
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the SNR and compute the standard deviation σ as σ = S0/SNR [26,36] or (ii) to vary σ
directly. In this study, we opted for direct variation of σ to avoid arithmetically ill-defined
constellations such as S0 = 0 or SNR = 0. In contrast to an earlier comparable study [37],
we systematically varied the standard deviation σ between 0 and 300 (instead of 0 and 30),
thereby accounting for the roughly 10-fold higher maximum S0 in our study.

2.3. In Situ Study Phase—MRI Measurements

Seven fresh-frozen human cadaver knee joints (five male and two female; mean age
81 ± 10; six left and one right) were left to thaw at room temperature for 24 h to be scanned
on a 3.0 T clinical MRI scanner (Achieva, Philips, Best, The Netherlands) using an 8-channel
knee coil (Sense Knee Coil 3.0T, Philips).

In this exploratory study, sample size was estimated based on the test of independence
for the Mood’s median test. To this end, effect size was defined as Cohen’s w and estimated
as 1.1. Using a statistical power of 0.8 and an alpha error of 0.05, we calculated the minimum
sample size as seven.

Two different MESE T2 mapping sequences were acquired based on the sequence
parameters detailed in Table 1. The sequences differed in their sensitivity encoding (SENSE)
acceleration factor and their number of signal averages, which resulted in different SNRs.
While the “high-SNR” T2 mapping sequence provided the signal-optimized and noise-
reduced ground truth at a scan time of 26 min for one slice, the “low-SNR” T2 mapping
sequence resulted in a drastically shortened scan time of 2 min for one slice at the expense of
substantially increased noise. Following the acquisition of scout views, the single axial im-
age to be acquired for each specimen was oriented parallel to the femorotibial joint line and
through the center of the patella. Using the moderately T2-weighted morphologic image
of TE = 30 ms, the outlines of the patellofemoral cartilage tissue, i.e., the retropatellar and
trochlear cartilage, and of the entire knee joint’s peripheral circumference were manually
delineated by GMF (medical imaging scientist with one year of experience in musculoskele-
tal imaging) using ITK-SNAP software [38]. SN and DT (both clinical radiologists with
nine years of experience in musculoskeletal imaging) validated the segmentations.

Table 1. MRI acquisition parameters for the “low-SNR” and “high-SNR” multi-echo spin-echo
sequences. Please note that although 10 echo times were initially sampled, only the first 7 echoes
were used for the T2 fitting because of insufficient SNRs in the last echoes. The choice of echo times
was guided by the Osteoarthritis Initiative study [39]. Abbreviations: MESE = Multi-echo spin-echo,
SENSE = Sensitivity Encoding.

“Low-SNR” Sequence “High-SNR” Sequence

Sequence Type 2D MESE
Orientation Axial

Repetition Time [ms] 500
Echo Times [ms] {10 + n · 10| n = 0, 1, ..6}

Field of View [mm] 140 × 140
Acquisition Matrix 512 × 512

Reconstruction Matrix 512 × 512
Scan percentage [%] 100

Flip angle [◦] 90
Number of Signal Averages

[n] 1 4

SENSE Factor 3 1
Slices [n] 1

Slice Thickness [mm] 2
Duration [min:s] 2:15 26:34

In a voxel-wise manner, noise was estimated using variance-stabilizing transforma-
tion [40,41] and subsequent homomorphic Gaussian filtering [42]. This method estimates
non-stationary noise (as in SENSE imaging) and does not require any additional informa-
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tion on coil sensitivity or background regions, which often hinders reliable estimation of
noise [31,43]. Effective SNR values (as determined with the variance-stabilizing approach
to estimate non-stationary Rician noise and averaged over all joints) were 8 ± 5 (“low-SNR”
sequence) and 15 ± 9 (“high-SNR” sequence) at TE = 10 ms, and 5 ± 4 (low-SNR) and
10 ± 6 (high SNR) at TE = 70 ms. It should be noted that noise (and SNR in particular) after
SENSE reconstruction is not stationary and summarizing it as a single value may not reflect
the distribution and magnitude of noise.

2.4. Fitting Methods

Our NN was set up as a fully connected, six-layer-deep, 512-channel-wide network
with Leaky Rectified Linear Unit activation functions after each layer. Only the output layer
had a Rectified Linear Unit activation function since negative T2 values were not considered
plausible. In total, the network comprised about 1 million trainable parameters. The signal
intensities and echo times served as input. The input nodes were padded with−1 whenever
less than 15 signal intensities or echo times were available as input. The batch size was set
to 1024 samples and the Adam optimizer [44] with a learning rate of 10−3 was used. The
SmoothL1 (Huber) distance between the reference and predicted parameters (S0, T2) served
as loss function. Of note, the term “reference parameters” implies “true parameters” in the
in silico setting, since the training of the NN was performed with synthetic data, where
the true values of S0 and T2 are known a priori. This function is a combination of L1 and
L2 loss and prevents exploding gradients [45]. Input samples with S0 = 0 were excluded.
The NN was trained for 30 epochs, which took 36 h, and the model with the lowest loss on
the validation dataset was selected for further evaluation. Python (v3.7, Python Software
Foundation, Wilmington, DE, USA) and the associated libraries PyTorch and SciPy were
used to implement the NN. All evaluations were performed on a dedicated graphical
processing unit (Nvidia RTX 3090, 24 GB, 36TFLOPS) with a central processing unit (AMD
Ryzen 9 3950X, 16 Cores, 3.5 GHz). The source code is made publicly available under
https://github.com/mueller-franzes/Paper_T2Fitting (accessed on 19 January 2022).

For reference purposes, the following alternative LSE fitting methods were
also implemented:

(1) Traditional LSE without any modification (LSE);
(2) Offset LSE (OLSE);
(3) Noise-Corrected LSE (NCLSE).

For the traditional LSE, OLSE, and NCLSE method, data were fitted in a voxel-wise
manner to the theoretical signal intensity (S) by using the “curve_fit” function (SciPy).
Initial values for the parameters were S0 = 250, T2 = 50 ms, and c = 0. The range (lower
bound, upper bound) for S0 and T2 were 0, 2500 and 5 ms, 500 ms, respectively. As an
optimization method, we used the Trust-Region-Reflective (SciPy ‘trf’ option) algorithm
as it can solve the constrained optimization. If the least-squares minimization failed, the
lower bounds were used as default.

Noise is particularly challenging for T2 quantification by traditional LSE methods as it
prevents the signal from decaying to zero and causes T2 overestimation [46]. For OLSE, an
additional offset parameter “c” was added to the exponential T2 decay to counteract the
effects of noise [32,47]: S∗ = S0 exp

(
− TE

T2

)
+ c.

For NCLSE, the curve was fitted to a noise-corrected exponential decay function:

S∗∗ =
√

0.5πσ2 exp(−α)[(1 + 2α)I0(α) + 2α I1(α)], where α =
(

S(TE,T2)
2σ

)2
and In is the

nth modified Bessel function [12]. However, this method requires precise knowledge of
noise (σ) in each sample. While in silico, when σ was known for each sample, we used
voxel-wise variance-stabilizing transformation and subsequent homomorphic Gaussian
filtering to estimate σ in the in situ knee joint measurements.

https://github.com/mueller-franzes/Paper_T2Fitting
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2.5. Computation Time

Computation times (as surrogates of computational efficiency) were determined for
each fitting method, axial slice, and individual joint. Measurements were repeated 100 times
and subsequently averaged. The segmentation outlines of the knee joint specimens en-
compassed about 130,000 voxels per knee that underwent voxel-wise quantification of T2
relaxation times based on seven TEs. The fitting methods were executed on a per-voxel
basis using the central processing unit as specified above. Of note, graphical processing
unit acceleration during application of the pre-trained NN was disabled.

2.6. Statistical Analysis

Statistical analyses were performed in Python and the associated library SciPy. Using
the “low-SNR” data, T2 relaxation times were estimated for every voxel by applying
the different fitting methods. For each method, deviations in T2 relaxation times were
referenced to the standard LSE fitting method of the “high-SNR” data and subsequently
compared between the methods. The reference standard (ground truth) was provided by
the traditional LSE fitting method of the corresponding “high-SNR” images, and the voxel-
wise comparisons were concatenated across all knee joint specimens. For T2 relaxometry,

voxel-wise, relative quantification error (RQE =
T2pred−T2re f

T2re f
· 100) was calculated and

visualized as box plots. For RQEs, the interquartile ranges (IQRs) were determined as a
metric of variability in T2 quantification. Positive median RQEs indicate overestimation of
the reference T2 relaxation times, while negative median RQEs indicate underestimation.

Additionally, absolute-valued relative quantification errors (ARQE =
|T2pred−T2re f |

T2re f
· 100)

were calculated to prevent cancelation of positive and negative relative errors. Based on the
test for normality by D’Agostino and Person, we had to reject the hypothesis of normally
distributed ARQES and RQEs. Hence, median (instead of mean) ARQEs were computed to
minimize the influence of outliers. Median ARQEs were interpreted as a metric of accuracy
in T2 quantification. Mood’s median test was performed to compare the median ARQEs
of the different fitting methods. This test was chosen because more powerful tests such
as the Mann–Whitney U-test may fail when comparing medians instead of means [48].
Mean computation times were compared between the NN and the LSE methods using the
one-sided Wilcoxon signed-rank test. To prevent alpha-error inflation and, thus, inflation
of the false positive rate, the significance threshold was lowered to α = 0.05/3 = 0.0166 [49]
because post-hoc comparisons were performed only between the NN and the three fitting
methods, i.e., NN vs LSE, NN vs. OLSE, and NN vs. NCLSE.

3. Results
3.1. In Silico Fitting Results

In silico modeling indicated that RQEs decreased as a function of increasing SNR,
irrespective of the fitting method (Figure 1). Especially in low-SNR environments (i.e.,
SNR ≤ 10), LSE overestimated the T2 relaxation times as indicated by positive median
RQEs (e.g., median RQE = 31% at SNR = 5). The opposite was true for OLSE, which
underestimated the T2 relaxation times as indicated by negative median RQEs (e.g., median
RQE = −33% for SNR = 5). In contrast, the median RQEs of NCLSE and NN were centered
around 0% for all SNRs, indicating bias-free estimations. In high-SNR environments, i.e.,
SNRs ≥ 30, the median RQEs of all fitting methods were between 0% and 1%, except for
OLSE (median REQ = −8%).
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Figure 1. Relative quantification errors (RQEs) in the quantification of T2 relaxation times [%] as a
function of the fitting method, i.e., the traditional Least-Squares Estimation (LSE) without any further
modification, Offset LSE (OLSE), Noise-Corrected LSE (NCLSE), and the neural network (NN), and
as a function of the signal-to-noise ratio (SNR). In silico modeling was done on a synthetic dataset
consisting of 67 million training samples. Boxes represent the interquartile ranges (IQRs, defined
as the difference between 25th and 75th percentiles) and horizontal lines represent the medians.
Whiskers indicate the most extreme data points that are within the range of 1.5 × IQR from the edge
of the box.

These findings were confirmed by the ARQE values (Table 2). While all fitting methods
were characterized by large ARQEs at low SNR, ARQEs gradually decreased with increas-
ing SNR. The NN was characterized by the lowest ARQE, indicating highest accuracy, for
all sampled SNRs ≤ 20. Especially at low SNRs, i.e., SNR ≤ 10, the NN demonstrated
significantly lower median ARQEs compared to the LSE, OLSE, and NCLSE methods
(Mood’s Test, p < 0.001). With higher SNRs (≥20), the median ARQEs for LSE, NCLSE, and
NN were largely similar, with ranges of 8–9% (SNR = 20) and 5–6% (SNR = 30), respectively.
Only the ARQEs for OLSE were twice as high.

Table 2. Median absolute-valued relative quantification errors (ARQE) in the quantification of
T2 relaxation times [%] as a function of fitting method and SNR. Data are given as medians
[2.5th percentile, 97.5th percentile]. Please refer to Figure 1 for an explanation of the abbreviations.

SNR = 5 SNR = 10 SNR = 20 SNR = 30

LSE 43 [2, 650] 19 [1, 199] 9 [0, 63] 6 [0, 39]
OLSE 61 [3, 439] 33 [1, 115] 17 [1, 94] 11 [0, 90]

NCLSE 34 [2, 509] 17 [1, 175] 8 [0, 61] 5 [0, 39]
NN 28 [1, 160] 16 [1, 83] 8 [0, 47] 6 [0, 34]

3.2. In Situ Fitting Results

In situ fitting results of the entire knee joint and the patellofemoral cartilage were
largely in line with the in silico fitting results outlined above. Again, the worst performance
(in terms of RQE) was noted for the OLSE, which underestimated the T2 relaxation times
by −33% (entire knee joint) and −31% (patellofemoral cartilage), respectively (Figure 2).
The LSE method overestimated the T2 relaxation times by +2% and +19%, respectively.
The NN and the NCLSE provided the best estimates of the T2 relaxation times (in terms of
lowest RQEs) in both regions. While medians were similar, the NN provided less variable
estimates, as indicated by lower IQRs.
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Figure 2. Relative T2 quantification errors (RQEs) [%] as a function of fitting method in the entire
joint (a) and the patellofemoral cartilage (b) across all seven knee joint specimens in the “low-SNR”
data, computed with respect to the reference T2 relaxation times. The reference T2 relaxation times
were estimated using the LSE fitting method and the corresponding “high-SNR” image. For an
explanation of the boxes, lines, and whiskers please refer to Figure 1.

Correspondingly, median ARQEs and associated IQRs were smallest for the NN in the
entire joint and the patellofemoral cartilage (Table 3). These differences were significant
when comparing the NN to the LSE (Mood’s Test, p < 0.001), OLSE (p < 0.001), and
NCLSE (p < 0.001).

Table 3. Median absolute-valued relative quantification errors in the quantification of T2 relaxation
times [%] as a function of fitting method. Data are given as medians [2.5th percentile, 97.5th percentile].
Please refer to Figure 1 for an explanation of the abbreviations.

Entire Joint Patellofemoral Cartilage

LSE 19 [1, 500] 33 [1, 651]
OLSE 47 [2, 236] 58 [2, 398]

NCLSE 20 [1, 381] 35 [1, 513]
NN 16 [1, 79] 23 [1, 120]

Qualitative evaluation revealed that in cartilage, the characteristic T2 stratification
as a function of cartilage depth was visible in all high-SNR T2 maps, regardless of the
underlying fitting procedure, even though OLSE-fitted T2 maps tended to display larger
variability in pixel distribution and intensity (Figure 3). In contrast, low-SNR T2 maps
displayed substantial blurring, which rendered depth-wise intra-tissue stratification and
areas of focal degeneration barely discernible. For the patellofemoral cartilage, closest
correspondence with the reference high-SNR T2 maps (which were fit with the traditional
LSE method) was found for the NCLSE and the NN. These results were confirmed in other
knee joints as well (Appendix A Figure A2).
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Figure 3. Representative T2 maps as a function of signal-to-noise ratio (SNR) and underlying fitting
method. Visualization of the axial plane acquired at high SNR (first row) and at low SNR (second
row) of the entire joint that was cropped and zoomed to the patellofemoral compartment (third
and fourth rows for high- and low-SNR images) in this representative knee joint. The first column
shows the T2-weighted morphologic images (TE = 30 ms). The second to fifth columns visualize the
T2 maps following fitting based on the Least-Squares Estimation (LSE, second column), Offset LSE
(OLSE, third column), Noise-Corrected LSE (NCLSE, fourth column), and the Neural Network (NN,
fifth column). T2 relaxation times [ms] are color-coded as indicated by the scale bars on the right
(range: 0–110 ms).

3.3. Computation Time

Mean computation times of the fitting methods were significantly different (Table 4).
It took the NN 4 s to compute the single axial T2 map, which was significantly faster than
the 28–43 s of the LSE methods (Wilcoxon test, p < 0.001). On average, the NN was 600%,
975%, and 900% faster than the LSE, OLSE, and NCLSE, respectively.

Table 4. Mean computation times [s] to compute a single T2 map of the entire joint. Standard
deviation was below 1 s for all fitting methods (calculated over 100 repetitions of the fitting process).
Abbreviations are defined in Table 1.

LSE OLSE NCLSE NN

Computation Time [s] 28 43 40 4
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4. Discussion

The most important finding of this study is that an NN can estimate T2 relaxation
times significantly more accurately and quickly in low SNR environments than traditional
LSE methods. Most importantly, the NN derives its estimates of T2 relaxation times from a
standard MESE T2 mapping sequence and does not necessitate the acquisition of dedicated
MR sequences or other modifications to the imaging protocol. This confirms our hypothesis,
that a NN is more robust and accurate in mono-exponential T2 relaxometry than traditional
LSE fitting methods while being significantly faster and, thus, more suitable for clinical
workflows. Consequently, NN-based approaches may become a valid tool to improve
image post-processing routines in quantitative cartilage imaging and beyond. For this
purpose, the NN and the LSE methods were analyzed in silico (i.e., on a synthetic dataset)
and in situ (i.e., in human knee joint specimens).

It is well known that the traditional LSE method is prone to outliers and its fit quality
is substantially impaired in low SNRs [18,19], which was confirmed in our study. For all
simulated SNRs, the traditional LSE method performed worse (up to 15% higher ARQEs)
than the NN. The results also show that the traditional LSE method overestimates T2
relaxation times by up to 31%, while the NN provides the least biased in silico estimates.
In our simulations, this behavior was particularly evident for comparatively low SNRs,
i.e., SNRs ≤ 10. As Rician noise will cause bias once the actual signal has decayed, this
observation aligns well with other studies [32,46].

Adding an offset as a third parameter to the mono-exponential decay (which we
defined as the “OLSE method”) was intended to prevent this overestimation. However,
our in silico and in situ results showed that the OLSE method was characterized by
underestimation of the reference T2 relaxation times. Overall, the T2 quantification error
was higher compared with the traditional LSE method in this study. Even though the
finding of increased T2 quantification errors is in line with earlier studies [33], other studies
found the opposite [32]. A possible explanation for these contradictory results is that the
additional offset parameter as provided by the OLSE method becomes particularly useful
when T2 relaxation times are small compared with the covered range of echo times and
when noise levels are high, but may cause underestimation when T2 relaxation times are
long (12, 39). Thus, the benefit of introducing an additional offset during fitting depends
on the exact framework conditions. These observations are in line with an earlier study by
Raya et al. [12], who noted that the additional offset parameter improved the quantification
accuracy in healthy cartilage in voxels with short T2 relaxation times, but led to severe
underestimations in voxels with long T2 relaxation times. These aspects are noteworthy
given the fact that the OLSE method is widely used [17,33].

Another modification of the traditional LSE method, i.e., the introduction of additional
noise correction to the exponential decay function (which we defined as the “NCLSE
method”), resulted in improved accuracy and lower variability, both in silico and in
situ, which is in line with earlier studies [12,27,50]. It should be underlined that the
noise level needs to be provided for the NCLSE method, which was realized using the
variance-stabilizing approach to estimate non-stationary Rician noise as published by
Pieciak et al. [41]. This method has some major advantages over alternative SNR estimation
methods (such as providing local SNR estimates and stable results over a wide range of
SNR values while not requiring coil sensitivity maps or knowledge on the reconstruction
algorithm). Nevertheless, an additional noise estimation that may add uncertainty when
performed in situ [51] and increases computation time is not necessary for the NN, which
is advantageous.

In situ, the NN’s median ARQE was significantly lower than the ARQEs of the LSE,
OLSE, and NCLSE methods. The higher accuracy and lower variability afforded by the
NN was particularly evident in low SNRs, which indicates its diagnostic potential, as
clinical MRI studies are usually characterized by suboptimal SNRs secondary to trade-offs
between imaging speed and image quality. In situ, the traditional LSE performed better
than the OLSE but worse than the NCLSE. Overall, these findings were consistent with
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the in silico results outlined above. We would like to emphasize that our measured in
situ data did not cover all possible combinations of T2 relaxation times, TEs, and SNRs.
Furthermore, the in situ results confirmed that the LSE and OLSE method tended to
over- and underestimate the actual T2 relaxation times at low SNR, respectively, while
the NCLSE and NN provided more robust and less biased estimates in comparison to the
reference T2 relaxation times obtained at high SNR with the traditional LSE method. In
addition to accuracy, variability, and robustness, the trained NN was also characterized by
significantly lower post-processing time demand as it was 600% faster than the fastest LSE
method. Of course, computation times depend on numerous framework conditions such
as hardware components and the implementation of the algorithms. Regardless of these
considerations, once the NN is trained, execution does not require any time-consuming,
incremental optimization.

The T2 maps of the high-SNR sequences demonstrated the typical stratification of the
T2 relaxation times that ranged between 20 ms and 60 ms with lower values towards the
cartilage-bone interface and higher values towards the cartilage-fluid interface, regardless
of the underlying fitting procedure. However, substantially higher T2 relaxation times
were observed at the superficial cartilage layer. These are most likely due to structural
disintegration and degeneration or partial volume effects. In lack of histologic (or other)
references, the exact correlate of the extended T2 value ranges remains unclear. However,
because the same segmentation outline was used for all fitting techniques, inter-method
comparisons are still permissible and valid.

Beyond T2 mapping, NNs may be used to predict virtually any signal decay in the
post-processing of MRI signals and could be applied to T1ρ, T2*, glycosaminoglycan
chemical exchange saturation transfer imaging, and sodium imaging in the context of
cartilage imaging [52–54]. In light of the research community’s increasing collaborative
efforts to identify imaging biomarkers for cartilage degeneration, such as the Osteoarthritis
Initiative [39], the Multicenter Osteoarthritis Study [55], and others, the need for more
reliable and efficient post-processing to decrease inter-individual and inter-site variability
becomes ever more urgent [56]. Our findings suggest that pre-trained NNs may be inter-
esting tools for improved standardization of image post-processing once they have been
refined for large-scale clinical trials.

Our study has several major limitations. First, the evaluation was carried out on
cadaver knee joint specimens only. We intentionally performed the measurements in situ
(and not in vivo) to securely eliminate any (phase-encoded) motion artifacts during the
lengthy high-SNR measurements. Future studies need to confirm the principal in vivo
applicability of our method, where arterial pulsations or physical movement certainly
increase the number of outliers and affect the fitting accuracy and variability.

Second, our evaluation was limited to seven knee joint specimens, which may have
satisfied statistical considerations on minimum sample sizes but provided only limited in
situ data. Our synthetic dataset was designed to incorporate different choices of echo times,
yet was evaluated on one specific T2 mapping sequence and one MRI scanner only. Further
evaluation is needed to see whether these methods can be applied across the large variety of
available MRI sequences, scanners, and coils. On top of that, future work should evaluate
the precision of the different algorithms to prove if the NN provides superior performance
over the LSE methods [57]. This includes, but is not limited to, testing repeatability.

Third, the comparative evaluation of quantification errors in situ required referencing
the high-SNR measurement (which was fitted using the traditional LSE method) as the
ground truth. It should be noted that this reference may be prone to residual noise, which
may affect the estimated T2 relaxation times used for reference purposes. While the exact
amount of over- or underestimation in T2 quantification, thus, remains unclear, the in situ
results corroborate the in silico findings, as detailed above. It is worth mentioning that
both synthetic data and phantom knees can enable comparison to known, ground truth
values [57]. Admittedly, experiments using a standardized quantitative knee phantom
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would have been desirable for further validation but were not performed in this study
because a suitable knee phantom was not available.

Fourth, the MESE sequences are insufficient for assessing the short and very short T2
components present adjacent to the calcified cartilage and subchondral lamella. Ultrashort
echo-time sequences are diagnostically beneficial for the assessment of very short T2
relaxation times [58], yet their comprehensive assessment is beyond the scope of this study.
Once ultrashort echo-time sequences are used in the future, the NN ought to be re-trained
in silico with a focus on T2 relaxation times ≤ 10 ms. Furthermore, MESE sequences are
susceptible to confounding influences such as simulated echoes, the slice profile or flip
angles deviating from the refocusing pulse [13–15]. Nevertheless, MESE sequences are
traditionally combined with standard LSE fitting approaches and provided on most clinical
scanners, and, hence, relevant for clinical practice and research [39,59].

Fifth, the NN was not compared to alternative deep learning-based methods for
T2 quantification, e.g., [24–26,60]. Instead of aligning T2 maps with deep learning to provide
tools for cartilage segmentation or data augmentation for subsequent T2 quantification, our
neural network was pre-trained on synthetic datasets and is, thus, more independent of any
particular image acquisition and post-processing technique. Consequently, its performance
was evaluated against the traditional LSE method (and its refinements) as the current
standard approach in a proof-of-concept study. Comprehensive comparison with other
deep learning-based methods remains to be addressed in future studies. Even though,
principally, the NN’s excellent fitting performance has validated the synthetic dataset
used for its training in silico, more advanced signal simulation methods, such as Bloch
simulations, that consider the effects of diffusion or pulse errors, could further improve its
performance. In our study, a fully connected NN was used to fit the T2 relaxation times
in a voxel-wise manner. It is possible that a convolutional NN may perform even better
when set up to provide T2 estimates in a patch-based manner. Neighboring pixels contain
valuable information on signal and noise that could be used for more accurate estimates in
future studies. Training, however, would require extended amounts of synthetic data for
realistic spatial noise distributions and similar T2 relaxation times.

5. Conclusions

We have trained a neural network to provide fast, accurate, and robust quantification
of T2 relaxation times, in particular in low SNR environments.
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method. Visualization of the axial plane acquired at high SNR (first row) and at low SNR (second
row) of the entire joint that was cropped and zoomed to the patellofemoral compartment (third
and fourth rows for high- and low-SNR images) in this representative knee joint. The first column
shows the T2-weighted morphologic images (TE = 30 ms). The second to fifth columns visualize the
T2 maps following fitting based on the Least-Squares Estimation (LSE, second column), Offset LSE
(OLSE, third column), Noise-Corrected LSE (NCLSE, fourth column), and the Neural Network (NN,
fifth column). T2 relaxation times [ms] are color-coded as indicated by the scale bars on the right
(range: 0–110 ms).
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