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Abstract: Purpose:The purpose of this study was to discriminate between benign and malignant
breast lesions through several classifiers using, as predictors, radiomic metrics extracted from CEM
and DCE-MRI images. In order to optimize the analysis, balancing and feature selection procedures
were performed. Methods: Fifty-four patients with 79 histo-pathologically proven breast lesions
(48 malignant lesions and 31 benign lesions) underwent both CEM and DCE-MRI. The lesions were
retrospectively analyzed with radiomic and artificial intelligence approaches. Forty-eight textural
metrics were extracted, and univariate and multivariate analyses were performed: non-parametric
statistical test, receiver operating characteristic (ROC) and machine learning classifiers. Results:
Considering the single metrics extracted from CEM, the best predictors were KURTOSIS (area under
ROC curve (AUC) = 0.71) and SKEWNESS (AUC = 0.71) calculated on late MLO view. Considering
the features calculated from DCE-MRI, the best predictors were RANGE (AUC = 0.72), ENERGY
(AUC = 0.72), ENTROPY (AUC = 0.70) and GLN (gray-level nonuniformity) of the gray-level run-
length matrix (AUC = 0.72). Considering the analysis with classifiers and an unbalanced dataset, no
significant results were obtained. After the balancing and feature selection procedures, higher values
of accuracy, specificity and AUC were reached. The best performance was obtained considering
18 robust features among all metrics derived from CEM and DCE-MRI, using a linear discriminant
analysis (accuracy of 0.84 and AUC = 0.88). Conclusions: Classifiers, adjusted with adaptive synthetic
sampling and feature selection, allowed for increased diagnostic performance of CEM and DCE-MRI
in the differentiation between benign and malignant lesions.

Keywords: contrast-enhanced mammography; magnetic resonance imaging; image enhancement;
contrast media; radiomics; artificial intelligence
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1. Introduction

In the screening, detection and follow-up of breast cancer, the mammography (MX)
was considered the first imaging examination [1,2]. In particular, thanks to the technological
improvements achieved by combining digital mammography with techniques that allow
low and high energy images to be obtained, and with the administration of iodate contrast
agent, it is possible to acquire images that emphasize the vascularity linked to malignant
lesions by the contrast agent enhancement. This imaging technique is recognized as
contrast-enhanced mammography and exploits the same physiological mechanisms as
dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).

DCE-MRI is an important complementary diagnostic imaging technique that was
validated in the screening of high-risk women and dense breasts and in the monitoring of
oncological therapies, thanks to its capability of combining morphological and functional
information [2,3].

Previous studies have evaluated the sensitivity of CEM compared to conventional
digital MX, ultrasound (US) and MRI [4–8]. CEM sensitivity has been reported in the
range of 90–100% [5–7], which is significantly higher than the sensitivity of MX or US
alone [4–7]. Moreover, CEM allows for the identification of additional occult cancers via
mammography to more accurately assess the disease extent, and to guide surgical and
treatment planning [8–12].

Radiomics and artificial intelligence approaches have been extensively applied to pro-
cess both CEM and DCE-MRI in order to increase diagnostic performance in the detection
of malignant breast lesions [13,14]. By means of the radiomics approach, it is possible to
obtain, from medical images, a large amount of quantitative data that, combined with
pattern recognition procedures, allow for the resolution of many clinical issues with high
accuracy. Examples of features used in the oncology field are tumor size and shape, as well
as intensity, statistical and textural metrics [15–42].

In this study, we designed several classifiers with the aim of discriminating between
benign and malignant breast lesions using, as predictors, radiomic metrics extracted from
CEM and DCE-MRI images. In order to optimize the analysis, balancing and feature
selection procedures were performed.

2. Methods
2.1. Patient Selection

Patients were enrolled in this study, which was approved by the local ethical committee
of National Cancer Institute of Naples Pascale Foundation. Fifty-four patients (mean age
54.3, range 31–78 years) with 79 histo-pathologically proven breast lesions (48 malignant
lesions and 31 benign lesions) (Table 1) underwent both CEM and DCE-MRI. The lesions
were retrospectively analyzed with radiomic and artificial intelligence approaches. Breast
lesions were categorized based on the American Joint Committee on Cancer staging.

Table 1. Number and corresponding percentage of the total benign or malignant breast lesions.

Benign (31 Lesions) Number Percentage Value (%)

Fibrosis 6 19.35
Ductal hyperplasia 8 25.81

Fibroadenoma 9 29.03
Dysplasia 4 12.90
Adenosis 4 12.90

Malignant (48 Lesions) Number Percentage Value (%)

Infiltrating lobular carcinoma 7 14.58
Infiltrating ductal carcinoma 30 62.50

Ductal carcinoma in situ 9 18.75
Tubular Carcinoma 2 4.17
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All women gave their written informed consent according to local ethical committee
regulations.

Inclusion criteria: patient with known, histologically proven breast lesions who under-
went both dual-energy CEM in craniocaudal (CC) and mediolateral oblique (MLO) views
and DCE-MRI.

Exclusion criteria were previously reported in [43,44].

2.2. Imaging Protocol

CEM was acquired with the dual-energy mammography system (Hologic’s Selenia®

Dimensions® Unit, Bedford, MA, USA) as reported in our previous studies [43]. Two
minutes after the administration of 1.5 mL/kg body weight of iodinated contrast medium
(Visipaque 320; GE Healthcare, Inc., Princeton, NJ, USA) at a rate of 2–3 mL/s, each
woman was placed in a CC view. Four and eight minutes after administration of the
contrast agent, each breast was compressed in the MLO view: early MLO and late MLO
views, respectively.

DCE-MRI was acquired with a 1.5T MR scanner (Magnetom Symphony; Siemens
Medical System, Erlangen, Germany) equipped with a dedicated breast coil with 16 chan-
nels. Scan settings are reported in our previous study [44]: one series before and nine
series after the automatic intravenous injection of 0.1 mmol/kg body weight of a positive
paramagnetic contrast material (Gd-DOTA; Dotarem, Guerbet, Roissy CdG CEDEX, France)
were acquired.

2.3. Image Processing

Regions of interest were manually segmented, slice by slice, by two expert radiologists,
with 25 and 20 years of experience in breast imaging, respectively.

Breast lesions were segmented on dual-energy subtracted images, where contrast
uptake was emphasized, both in CC and in MLO, and on the third T1-weighted subtracted
series where contrast uptake was emphasized.

Radiomics features were extracted using the Texture Toolbox of MATLAB®, realized
by Vallières et al. [45], which includes 48 parameters calculated according to the Image
Biomarker Standardization Initiative [46], as previously described in [43,44]. The textural
features include both first-order and second-order features; an extra detailed description of
each feature has been provided in Appendix A.

2.4. Statistical Analysis

The statistical analysis was performed with RStudio software [47].
To assess variability among radiomic feature values, the intra-class correlation co-

efficient (ICC) was calculated. A non-parametric Wilcoxon–Mann–Whitney test and re-
ceiver operating characteristic (ROC) analysis were performed and the Youden index was
calculated to obtain the optimal cut off value for each feature; then, in order to assess
analysis results, the area under the ROC curve (AUC), sensitivity (SENS), specificity (SPEC),
positive predictive value (PPV), negative predictive value (NPV) and accuracy (ACC)
were computed.

Linear classifier (linear discriminant analysis—LDA), decision tree (TREE), k-nearest
neighbors (KNN), artificial neural network (NNET) and support vector machine (SVM)
using all extracted metrics of textural parameters were used [14]. Configuration settings
for each classifier are provided in our previous study [41,43]. The 10-fold cross validation
(10-fold CV) and the leave-one-out cross validation (LOOCV) approaches and median
values of AUC, accuracy, sensitivity, specificity, PPV and NPV were obtained.

Feature selection with the least absolute shrinkage and selection operator (LASSO)
method [48] was performed considering both the λ value with the minimum mean squared
error (minMSE) and the largest λ value within one standard error of it (1SE) [49].
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In addition, the self-adaptive synthetic over-sampling (SASYNO) approach and the
adaptive synthetic sampling (ADASYN) approach, to help balance the classes (malignant
and benign), were used [50–55].

The best model was chosen considering the highest area under the ROC curve and
highest accuracy.

A p-value < 0.05 was considered as significant.

3. Results

The time interval between CEM and DCE-MRI was 2.5 days as a median value (range
1–16 days).

Table 2 reports the diagnostic performance of significant textural parameters for DCE-
MRI and for dual-energy CEM in all views (i.e., CC, early and late MLO view), expressed
in terms of AUC and p-value. The best result, considering the single feature in a univariate
approach, was reached by the energy, range and GLN_GLRLM extracted on DCE-MRI
volume with an AUC of 0.72.

Table 2. Accuracy of significant textural parameters for DCE-MRI and for dual-energy CEM CC,
early and late MLO view.

Mammography Projection Textural Parameters AUC Values p-Value

CC-view

IQR 0.67 0.01

Variance 0.68 0.01

Correlation 0.69 0.000

MLO view
Kurtosis 0.71 0.000

Skewness 0.71 0.000

Magnetic Resonance Images

Textural Parameters AUC Values p-Value

Range 0.72 0.001

Energy 0.72 0.001

Entropy 0.70 0.003

GLN_GLRLM 0.72 0.001

GLN_GLSZM 0.70 0.002

Figure 1 shows ROC curve trends of significant textural features: variance, correlation
and IQR for mammography CC projection, kurtosis and skewness for mammography
early-MLO projection and range, energy, entropy, GLN_GLRLM and GLN_GLSZM for
DCE-MRI images.

Figure 2 shows the boxplots related to the above-mentioned parameters, to separate
benign from malignant lesions.

Table 3 reports the performance achieved by the best classifiers designed to discrimi-
nate between benign and malignant lesions using CEM and DCE-MRI images.

The best performance, considering the CC view (ACC = 0.71; SENS = 0.71; SPEC = 0.71;
PPV = 0.71; NPV = 0.71; AUC = 0.77), was reached with an SVM trained with 10-fold CV
and balanced data (with SASYNO function) and a subset of four features (by LASSO
and λminMSE). The subset of four robust textural features includes IQR, VARIANCE,
CORRELATION and RLV.
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Table 3. Performance of the best classifiers designed to discriminate between benign and malignant
lesions.

Classifier Cross-Validation ACC SENS SPEC PPV NPV AUC

CEM–CC view

Performance of classifiers trained with balanced data (with ADASYN function) and a subset of 34 textural features
(AUC ≥ 0.60).

TREE 10-fold CV 0.74 0.74 0.78 0.76 0.74 0.73

Performance of classifiers trained with balanced data (with SASYNO function) and a subset of 4 robust textural
features (by LASSO and λminMSE).

LDA
10-fold CV 0.71 0.71 0.71 0.71 0.71 0.76

LOOCV 0.71 0.71 0.71 0.71 0.71 0.75

SVM 10-fold CV 0.71 0.71 0.71 0.71 0.71 0.77

Performance of classifiers trained with balanced data (with SASYNO function) and a subset of 3 robust textural
features (by LASSO and λ1SE).

LDA
10-fold CV 0.71 0.71 0.71 0.71 0.71 0.76

LOOCV 0.71 0.71 0.71 0.71 0.71 0.75

NNET
10-fold CV 0.70 0.71 0.69 0.69 0.70 0.74

LOOCV 0.70 0.73 0.67 0.69 0.71 0.74

SVM
10-fold CV 0.71 0.71 0.71 0.71 0.71 0.75

LOOCV 0.72 0.73 0.71 0.71 0.72 0.76

CEM–early MLO view

Performance of classifiers trained with balanced data (with ADASYN function) and all 48 textural features

LDA
10-fold CV 0.76 0.65 0.87 0.82 0.74 0.73

LOOCV 0.75 0.60 0.87 0.81 0.72 0.71

Performance of classifiers trained with balanced data (with ADASYN function) and a subset of 7 robust textural
features (by LASSO and λminMSE).

LDA
10-fold CV 0.66 0.54 0.75 0.65 0.65 0.72

LOOCV 0.66 0.56 0.75 0.66 0.66 0.7

Performance of classifiers trained with balanced data (with ADASYN function) and a subset of 14 robust textural
features (by LASSO and λ1SE).

LDA
10-fold CV 0.62 0.52 0.69 0.60 0.62 0.71

LOOCV 0.66 0.56 0.75 0.66 0.66 0.7

CEM–late MLO view

Performance of classifiers trained with balanced data (with ADASYN function) and all 48 textural features

LDA
10-fold CV 0.78 0.71 0.84 0.79 0.77 0.78

LOOCV 0.78 0.69 0.86 0.80 0.76 0.77
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Table 3. Cont.

Classifier Cross-Validation ACC SENS SPEC PPV NPV AUC

CEM–late MLO view

Performance of classifiers trained with balanced data (with ADASYN function) and a subset of 17 robust textural
features (by LASSO and λminMSE).

LDA
10-fold CV 0.75 0.71 0.77 0.72 0.75 0.8

LOOCV 0.73 0.71 0.75 0.71 0.75 0.8

NNET
10-fold CV 0.72 0.65 0.77 0.70 0.72 0.78

LOOCV 0.72 0.69 0.75 0.70 0.74 0.72

Performance of classifiers trained with balanced data (with ADASYN function) and a subset of 14 robust textural
features (by LASSO and λ1SE).

LDA
10-fold CV 0.71 0.69 0.71 0.67 0.73 0.78

LOOCV 0.70 0.69 0.71 0.67 0.73 0.78

NNET
10-fold CV 0.71 0.67 0.75 0.70 0.72 0.74

LOOCV 0.74 0.69 0.79 0.73 0.75 0.74

CEM–CC + early MLO + late view

Performance of classifiers trained with balanced data (with ADASYN function) and a subset of 15 robust textural
features (by LASSO and λminMSE).

LDA
10-fold CV 0.75 0.69 0.81 0.77 0.75 0.82

LOOCV 0.76 0.71 0.81 0.77 0.76 0.81

NNET
10-fold CV 0.77 0.75 0.80 0.77 0.78 0.79

LOOCV 0.79 0.75 0.81 0.78 0.79 0.81

SVM
10-fold CV 0.72 0.73 0.70 0.69 0.75 0.79

LOOCV 0.76 0.73 0.80 0.76 0.77 0.81

Performance of classifiers trained with balanced data (with ADASYN function) and a subset of 8 robust textural
features (by LASSO and λ1SE).

NNET 10-fold CV 0.72 0.73 0.72 0.70 0.75 0.78

DCE-MRI

Performance of classifiers trained with balanced data (with ADASYN function) and all 48 textural features

LDA
10-fold CV 0.73 0.69 0.77 0.73 0.73 0.71

LOOCV 0.70 0.65 0.75 0.70 0.70 0.7

Performance of classifiers trained with balanced data (with SASYNO function) and a subset of 15 robust textural
features (by LASSO and λminMSE).

SVM
10-fold CV 0.74 0.73 0.75 0.74 0.73 0.72

LOOCV 0.70 0.69 0.71 0.70 0.69 0.71

The best performance, considering the early-MLO view (ACC = 0.76; SENS = 0.65;
SPEC = 0.87; PPV = 0.82; NPV = 0.74; AUC = 0.73), was reached with an LDA trained
with 10-fold CV and trained with balanced data (with ADASYN function) and all
48 textural features.

The best performance, considering the late-MLO view (ACC = 0.75; SENS = 0.71;
SPEC = 0.77; PPV = 0.72; NPV = 0.75; AUC = 0.80), was reached with an LDA trained with
10-fold CV and balanced data (with ADASYN function) and a subset of 17 features (by
LASSO). The subset of 17 robust textural features includes MEAN, MODE, MAD, RANGE,
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VARIANCE, CONTRAST, CORRELATION, SRLGE, LRLGE, RLV, SZE, SZLGE, SZHGE,
GLV_GLSZM, BUSYNESS, COMPLEXITY and STRENGTH.

The best performance, considering all three mammographic projections (ACC = 0.79;
SENS = 0.75; SPEC = 0.81; PPV = 0.78; NPV = 0.79; AUC = 0.81), was reached with an
NNET trained with LOOCV and balanced data (with ADASYN function) and a subset of
15 features (by LASSO). The subset of 15 robust textural features includes IQR, VARIANCE,
CORRELATION, LRHGE, GLV_GLRLM and SZLGE among textural features extracted
from CC view; MODE, CONTRAST and GLV_GLRLM among textural features extracted
from early-MLO view; MODE, STD, RANGE, IQR, CORRELATIOND and COMPLEXITY
among textural features extracted from late-MLO view.

With regard to DCE-MRI images, the best performance (ACC = 0.74; SENS = 0.73;
SPEC = 0.75; PPV = 0.74; NPV = 0.73; AUC = 0.72) was reached with an SVM trained
with 10-fold CV and balanced data (with SASYNO function) and a subset of 15 features
(by LASSO and λminMSE). The subset of 15 robust textural features includes MODE,
MEDIAN, STD, MAD, ENTROPY, SUM AVERAGE, SRE, GLN_GLRLM, SRHGE, LZE,
ZSN, ZP, LZHGE, GLV_GLSZM and ZSV.

Table 4 reports the performance achieved by the best classifiers to discriminate benign
from malignant lesions when features extracted from CEM and DCE-MRI were combined.
The best results overall (ACC = 0.84; SENS = 0.73; SPEC = 0.92; PPV = 0.90; NPV = 0.79;
AUC = 0.88) were obtained considering a subset of 18 textural features extracted from
all three mammographic views (CC, early MLO and late MLO) and DCE-MRI with an
LDA trained with 10-fold CV and with balanced data (with ADASYN function). The
subset of 18 robust textural features (by LASSO and λminMSE) includes IQR, VARIANCE,
CORRELATION, LRHGE, GLV_GLRLM and RLV among textural features extracted from
CC mammographic view; MODE and CONTRAST among textural features extracted
from early-MLO mammographic view; STD, RANGE, CORRELATION and COMPLEXITY
among textural features extracted from late-MLO mammographic view; RANGE, KUR-
TOSIS, AUTOCORRELATION, LRHGE, LZE and GLV_GLSZM among textural features
extracted from DCE-MRI images.

Table 4. Performance achieved by the best classifiers to discriminate between benign and malignant
lesions for combined CEM and DCE-MRI.

Classifier Cross-Validation ACC SENS SPEC PPV NPV AUC

Performance for classifiers trained with balanced data (with ADASYN function) and a subset of 18 robust textural
features (by LASSO and λminMSE).

LDA
10-fold CV 0.84 0.73 0.92 0.90 0.79 0.88

LOOCV 0.80 0.71 0.88 0.85 0.77 0.87

SVM
10-fold CV 0.84 0.81 0.87 0.85 0.83 0.86

LOOCV 0.83 0.79 0.87 0.84 0.82 0.86

Performance for classifiers trained with balanced data (with SASYNO function) and a subset of 3 robust textural
features (by LASSO and λminMSE).

LDA
10-fold CV 0.79 0.79 0.79 0.79 0.79 0.88

LOOCV 0.79 0.79 0.79 0.79 0.79 0.89

SVM
10-fold CV 0.80 0.79 0.79 0.79 0.79 0.86

LOOCV 0.79 0.77 0.81 0.80 0.78 0.87

Figure 3 shows the ROC curves of the best classifier obtained combining features from
CEM and DCE-MRI.
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Figure 3. LDA classifier ROC curve trained with 18 robust radiomic features from CEM and DCE-MRI.

4. Discussion

Using texture features from dual-energy CEM and DCE-MRI, considered both indi-
vidually and in combination, we aimed to evaluate radiomic analysis in discriminating
between malignant and benign breast lesions.

In recent years, many studies have addressed the problem of breast lesion classifica-
tion by using several feature categories such as textural and morphological features, in
combination with different machine learning approaches, based on CEM and on DCE-MRI
images analysis considered separately [30–41,56–60].

Marino et al. [61] investigated the potential of radiomic analysis of both CEM and
DCE-MRI of the breast for the non-invasive assessment of tumor invasiveness, hormone
receptor status and tumor grade in patients with primary breast cancer. This retrospective
study included 48 female patients with 49 biopsy-proven breast cancers who underwent
pretreatment breast CEM and MRI. Radiomic analysis was performed by using MaZda
software. Radiomic parameters were correlated with tumor histology (invasive vs. non-
invasive), hormonal status (HR+ vs. HR−) and grading (low grade G1 + G2 vs. high grade
G3). CEM radiomics analysis yielded classification accuracies of up to 92% for invasive
vs. non-invasive breast cancers, 95.6% for HR+ vs. HR− breast cancers and 77.8% for
G1 + G2 vs. G3 invasive cancers. MRI radiomics analysis yielded classification accuracies
of up to 90% for invasive vs. non-invasive breast cancers, 82.6% for HR+ vs. HR− breast
cancers and 77.8% for G1 + G2 vs. G3 cancers. Their study, however, did not reported the
combination of radiomic features extracted from CEM and DCE-MRI.

Jiang et al. [62] noninvasively evaluated the use of intratumoral and peritumoral
regions from full-field digital mammography (DM), digital breast tomosynthesis (DBT) and
dynamic contrast-enhanced and diffusion-weighted (DW) magnetic resonance imaging
images separately and combined to predict the Ki-67 level based on radiomics. Their results
demonstrated that the combined intra- and peritumoral radiomic signatures improved
the AUC compared with the intra- or peritumoral radiomic signature in each modality.
The nomogram incorporating the multi-model radiomics signature, age and lymph node
metastasis status achieved the best prediction performance in the training (AUC = 0.922)
and validation (AUC = 0.866) cohorts.
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Zhao et al. [63] constructed radiomic models from DCE-MRI and mammography for
the values in the diagnosis of breast cancer, reporting an accuracy of the individual model
of 83.2% for DCE-MRI, 75.7% for mammography lesion, 64.4% for mammography margin
and 77.2% for lesion + margin. When all features were combined, the accuracy increased
to 89.6%.

Niu et al. [64] evaluated digital mammography, DBT, DCE- and DW-MRI, individually
and combined, for the values in the diagnosis of breast cancer. They reported that the
radiomic signature derived from DBT plus DM generated a lower AUC and sensitivity, but
a higher specificity compared with that from DCE plus DWI. The nomogram integrating
the combined radiomic signature, age and menstruation status achieved the best diagnostic
performance in the training (AUC = 0.975) and validation (AUC = 0.983) cohorts.

Our results demonstrated that, considering the single metrics extracted from CEM,
the best predictors were KURTOSIS (area under ROC curve (AUC) = 0.71) and SKEWNESS
(AUC = 0.71) calculated on late MLO view. Considering the features calculated from DCE-
MRI, the best predictors were RANGE (AUC = 0.72), ENERGY (AUC = 0.72), ENTROPY
(AUC = 0.70) and GLN (Gray-Level Nonuniformity) of the gray-level run-length matrix
(AUC = 0.72).

Considering the analysis with classifiers and the unbalanced dataset, no significant
results were obtained. After the balancing and feature selection procedures, higher values
of accuracy, specificity and AUC were reached. The best performance was obtained
considering 18 robust features among all metrics derived from CEM and DCE-MRI, using a
linear discriminant analysis (accuracy of 0.84 and AUC = 0.88).

This study had some limitations. The small cohort of studied patients represents
a preliminary result to validate increasing the cohort of patients. Manual segmentation
was time-consuming and could be operator-dependent and lose reproducibility; how-
ever, an automatic segmentation considering possible multicentric lesions or background
parenchymal enhancement could be difficult to perform. In this study, the histological
differences of tumors were not considered. This could improve the performance in the
classification problem and allow for the classification of breast lesions according to grading
and histotype.

Both DCE-MRI and CEM provide functional information on neoplastic neo-angiogenesis.
CEM is an attractive alternative when MRI is not available, contraindicated or poorly tol-
erated. However, at our institution, a study protocol to compare DCE-MRI and CEM
in staging and follow-up in breast cancer is still ongoing. Therefore, a future endpoint
could be to design separate classifiers for CEM and DCE-MRI images and then merge the
results in specific clinical settings, such as during patient follow-up in cases of suspicious
local recurrence.

5. Conclusions

In conclusion, classifiers adjusted with adaptive synthetic sampling and feature selec-
tion allowed for increased diagnostic performance of CEM and DCE-MRI in the differentia-
tion between benign and malignant lesions.
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Appendix A. Definition of Textural Features

Appendix A.1. First-Order Gray-Level Statistics

First-order gray-level statistics describe the distribution of gray values within the
volume. Let X denote the 3-D image matrix with N voxels, P the first order histogram, P(i)
the fraction of voxels with intensity level i and Nl the number of discrete intensity levels.

• Mean, the mean gray level of X.

mean =
1
N

N

∑
i=1

X(i)

• Mode, the most frequent element(s) of array X.

• Median, the sample median of X or the 50th percentile of X.

• Standard deviation (STD)

STD =

(
1

N − 1

N

∑
i=1

(
X(i)− X

)2
)1/2

• Mean Absolute Deviation (MAD), the mean of the absolute deviation of all voxel
intensities around the mean intensity value.

MAD =
1
N

N

∑
i=1
|X(i)− X|

• Range, the range of intensity values of X.

range = max(X)−min(X)

where max(X) is the maximum intensity value of X and min(X) is the minimum
intensity value of X.

• Interquartile range (IQR), the interquartile range is defined as the 75th minus the 25th
percentile of X.

• Kurtosis:

kurtosis =
1
N ∑N

i=1
(
X(i)− X

)4(√
1
N ∑N

i=1
(
X(i)− X

)2
)2

where X is the mean of X.

• Variance, Variance is the square of the standard deviation:

variance =
1

N − 1

N

∑
i=1

(
X(i)− X

)2

where X is the mean of X.

https://zenodo.org/record/6344730#.YixvazXSK3A
https://zenodo.org/record/6344730#.YixvazXSK3A
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• Skewness:

skewness =
1
N ∑N

i=1
(
X(i)− X

)3(√
1
N ∑N

i=1
(
X(i)− X

)2
)3

where X is the mean of X.

Appendix A.2. Gray Level Co-Occurrence Matrix (GLCM)

A normalized GLCM is defined as P(i, j; δ, α), a metric with size Ng × Ng describing
the second-order joint probability function of an image, where the (i, j)th element represents
the number of times the combination of intensity levels i and j occur in two pixels in the
image, that are separated by a distance of δ pixels in direction α and Ng is the maximum
discrete intensity level in the image. Let:

- P(i, j) be the normalized (i.e., ∑ P(i, j) = 1) co-occurrence matrix, generalized for any
δ and α,

- px(i) = ∑
Ng
j=1 P(i, j),

- py(j) = ∑
Ng
i=1 P(i, j),

- µx be the mean of px, where µx = ∑
Ng
i=1 ∑

Ng
j=1 iP(i, j),

- µy be the mean of py, where µy = ∑
Ng
i=1 ∑

Ng
j=1 jP(i, j),

- σx be the standard deviation of px, where σx = ∑
Ng
i=1 ∑

Ng
j=1 P(i, j)(i− µx)

2,

- σy be the standard deviation of py, where σy = ∑
Ng
i=1 ∑

Ng
j=1 P(i, j)

(
j− µy

)2.

• Energy

energy =
Ng

∑
i=1

Ng

∑
j=1

[P(i, j)]2

• Contrast

contrast =
Ng

∑
i=1

Ng

∑
j=1
|i− j|2P(i, j)

• Entropy

entropy = −
Ng

∑
i=1

Ng

∑
j=1

P(i, j)log2[P(i, j)]

• Homogeneity

homogeneity =
Ng

∑
i=1

Ng

∑
j=1

P(i, j)
1 + |i− j|

• Correlation

correlation =
∑

Ng
i=1 ∑

Ng
j=1 ijP(i, j)− µxµy

σxσy

• Sum Average

sum average =
1

Ng × Ng

Ng

∑
i=1

Ng

∑
j=1

[iP(i, j) + jP(i, j)]

• Dissimilarity

dissimilarity =
Ng

∑
i=1

Ng

∑
j=1
|i− j|P(i, j)
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• Autocorrelation

autocorrelation =
Ng

∑
i=1

Ng

∑
j=1

ijP(i, j)

Appendix A.3. Gray Level Run-Length Matrix (GLRLM)

Run-length metrics quantify gray level runs in an image. A gray level run is defined
as the length in number of pixels, of consecutive pixels that have the same gray level value.
In a gray level run length matrix p(i, j|θ), the (i, j)th element describes the number of times
j a gray level i appears consecutively in the direction specified by θ. Let:

- p(i, j) be the (i, j)th entry in the given run-length matrix p, generalized for any direc-
tion θ,

- Ng be the number of discrete intensity values in the image,
- Nr be the maximum run length,

- Ns be the total numbers of runs, where Ns =
Ng

∑
i=1

Nr
∑

j=1
p(i, j),

- pr be the sum distribution of the number of runs with run length j, where

pr(j) = ∑
Ng
i=1 p(i, j),

- pg be the sum distribution of the number of runs with run length i, where
pg(i) = ∑Nr

j=1 p(i, j),

- Np be the number of voxels in the image, where Np = ∑Nr
j=1 jpr,

- µr be the mean run length, where µr = ∑
Ng
i=1 ∑Nr

j=1 jpn(i, j),

- µg be the mean gray level, where µg = ∑
Ng
i=1 ∑Nr

j=1 ipn(i, j).

• Short-Run Emphasis (SRE)

SRE =
Nr

∑
j=1

pr

j2

• Long-Run Emphasis (LRE)

LRE =
Nr

∑
j=1

j2 pr

• Gray Level Nonuniformity (GLN)

GLN =
Ng

∑
i=1

pg
2

• Run-Length Nonuniformity (RLN)

RLN =
Nr

∑
j=1

pr
2

• Run Percentage (RP)

RP =
Ns

Np

• Low Gray Level Run Emphasis (LGRE)

LGRE =
Ng

∑
i=1

pg

i2
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• High Gray Level Run Emphasis (HGRE)

HGRE =
Ng

∑
i=1

i2 pg

• Short-Run Low Gray Level Emphasis (SRLGE)

SRLGE =
Ng

∑
i=1

Nr

∑
j=1

p(i, j)
i2 j2

• Short-Run High Gray Level Emphasis (SRHGE)

SRHGE =
Ng

∑
i=1

Nr

∑
j=1

p(i, j)i2

j2

• Long-Run Low Gray Level Emphasis (LRLGE)

LRLGE =
Ng

∑
i=1

Nr

∑
j=1

p(i, j)j2

i2

• Long-Run High Gray Level Emphasis (LRHGE)

LRHGE =
Ng

∑
i=1

Nr

∑
j=1

p(i, j)i2 j2

• Gray Level Variance (GLV)

GLV =
1

Ng × Nr

Ng

∑
i=1

Nr

∑
j=1

(
ip(i, j)− µg

)2

• Run-Length Variance (RLV)

RLV =
1

Ng × Nr

Ng

∑
i=1

Nr

∑
j=1

(jp(i, j)− µr)
2

Appendix A.4. Gray Level Size Zone Matrix (GLSZM)

A gray level size-zone matrix describes the amount of homogeneous connected areas
within the volume, of a certain size and intensity. The (i, j) entry of the GLSZM p(i, j) is
the number of connected areas of gray level (i.e., intensity value) i and size j. GLSZM
features therefore describe homogeneous areas within the tumor volume, describing tumor
heterogeneity at a regional scale [5]. Let:

- p(i, j) be the (i, j)th entry in the given GLSZM p,
- Ng be the number of discrete intensity values in the image,
- Nz be the size of the largest, homogeneous region in the volume of interest,

- Ns be the total number of homogeneous regions (zones), where Ns = ∑
Ng
i=1 ∑Nz

j=1 p(i, j),

- pz be the sum distribution of the number of zones with size j, where pz(j) = ∑
Ng
i=1 p(i, j),

- pg be the sum distribution of the number of zones with gray level i, where
pg(i) = ∑Nz

j=1 p(i, j),

- Np be the number of voxels in the image, where Np = ∑Nz
j=1 jpr,
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- µr be the mean zone size, where µr = ∑
Ng
i=1 ∑Nz

j=1 jp(i, j|θ),

- µg be the mean gray level, where µg = ∑
Ng
i=1 ∑Nz

j=1 ip(i, j|θ).

• Small Zone Emphasis (SZE)

SZE =
Nz

∑
j=1

pz

j2

• Large Zone Emphasis (LZE)

LZE =
Nz

∑
j=1

j2 pz

• Gray Level Nonuniformity (GLN)

GLN =
Ng

∑
i=1

pg
2

• Zone Size Nonuniformity (ZSN)

ZSN =
Ng

∑
i=1

pz
2

• Zone Percentage (ZP)

ZP =
Ns

Np

• Low Gray Level Zone Emphasis (LGZE)

LGZE =
Ng

∑
i=1

pg

i2

• High Gray Level Zone Emphasis (HGZE)

HGZE =
Ng

∑
i=1

i2 pg

• Small Zone Low Gray Level Emphasis (SZLGE)

SZLGE =
Ng

∑
i=1

Nz

∑
j=1

p(i, j)
i2 j2

• Small Zone High Gray Level Emphasis (SZHGE)

SZHGE =
Ng

∑
i=1

Nz

∑
j=1

p(i, j)i2

j2

• Large Zone Low Gray Level Emphasis (LZLGE)

LZLGE =
Ng

∑
i=1

Nz

∑
j=1

p(i, j)j2

i2
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• Large Zone High Gray Level Emphasis (LZHGE)

LZHGE =
Ng

∑
i=1

Nz

∑
j=1

p(i, j)j2i2

• Gray Level Variance (GLV)

GLV =
1

Ng × Nz

Ng

∑
i=1

Nz

∑
j=1

(
ip(i, j)− µg

)2

• Zone Size Variance (ZSV)

ZSV =
1

Ng × Nz

Ng

∑
i=1

Nz

∑
j=1

(jp(i, j)− µz)
2

Appendix A.5. Neighborhood Gray Tone Difference Matrix (NGTDM)

The ith entry of the NGTDM s(i|d) is the sum of gray level differences of voxels with
intensity i and the average intensity Ai of their neighboring voxels within a distance d. Let:

- ni be the number of voxels with gray level i,
- N = ∑ ni be the total number of voxels,

- s(i) =
{

∑ni
|i− Ai| f or ni > 0

0 otherwise
be generalized for any distance d,

- Ng be the maximum discrete intensity level in the image,
- p(i) = ni

N be the probability of gray level i,
- Np be the total number of gray levels present in the image.

• Coarseness:

coarseness =

[
ε +

Ng

∑
n=1

p(i)s(i)

]−1

where ε is a small number to prevent coarseness from becoming infinite.

• Contrast

contrast =

(
1

Np
(
1− Np

) Ng

∑
i=1

Ng

∑
j=1

p(i)p(j)(i− j)2

)(
1
N

Ng

∑
i=1

s(i)

)

• Busyness

busyness =
∑

Ng
i=1 p(i)s(i)

∑
Ng
i=1 ∑

Ng
j=1 |ip(i)− jp(j)|

, p(i) 6= 0, p(j) 6= 0

• Complexity

complexity =
Ng

∑
i=1

Ng

∑
j=1
|i− j| p(i)s(i) + p(j)s(j)

N(p(i) + p(j))
, p(i) 6= 0, p(j) 6= 0

• Strength

strength =
∑

Ng
i=1 ∑

Ng
j=1[p(i) + p(j)](i− j)2

ε + ∑
Ng
n=1 s(i)

, p(i) 6= 0, p(j) 6= 0
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where ε is a small number to prevent strength from becoming infinite.
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