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Abstract: Background: We investigated whether opportunistic screening for osteoporosis can be
done from computed tomography (CT) scans of the wrist/forearm using machine learning. Methods:
A retrospective study of 196 patients aged 50 years or greater who underwent CT scans of the
wrist/forearm and dual-energy X-ray absorptiometry (DEXA) scans within 12 months of each other
was performed. Volumetric segmentation of the forearm, carpal, and metacarpal bones was performed
to obtain the mean CT attenuation of each bone. The correlations of the CT attenuations of each of
the wrist/forearm bones and their correlations to the DEXA measurements were calculated. The
study was divided into training/validation (n = 96) and test (n = 100) datasets. The performance of
multivariable support vector machines (SVMs) was evaluated in the test dataset and compared to
the CT attenuation of the distal third of the radial shaft (radius 33%). Results: There were positive
correlations between each of the CT attenuations of the wrist/forearm bones, and with DEXA
measurements. A threshold hamate CT attenuation of 170.2 Hounsfield units had a sensitivity of
69.2% and a specificity of 77.1% for identifying patients with osteoporosis. The radial-basis-function
(RBF) kernel SVM (AUC = 0.818) was the best for predicting osteoporosis with a higher AUC than
other models and better than the radius 33% (AUC = 0.576) (p = 0.020). Conclusions: Opportunistic
screening for osteoporosis could be performed using CT scans of the wrist/forearm. Multivariable
machine learning techniques, such as SVM with RBF kernels, that use data from multiple bones were
more accurate than using the CT attenuation of a single bone.

Keywords: computed tomography; CT attenuation; metacarpal; radius; ulna; scaphoid; lunate;
triquetrum; pisiform; trapezium; trapezoid; capitate; hamate; DEXA; bone mineral density

1. Introduction

Bone mineral density (BMD) decreases with age, with the decrease being more evident
and rapid in post-menopausal females [1–3]. Decreased BMD increases the risk of frailty
fractures including fractures of the spine, forearm, and hips [4–8]. Fractures of the hips are
associated with increased 1-year mortality following the fracture of approximately 15–36%,
therefore identifying risk factors for frailty fractures and hip fractures is of increased clin-
ical importance [9,10]. Dual-energy X-ray absorptiometry (DEXA) is the gold standard
screening test for the evaluation of BMD [11]. DEXA evaluates BMD in the L1–L4 lumbar
spine, total hip, and femoral neck and compares these values to those of normal young
adults (20–29 years of age) from the National Health and Nutrition Examination Survey
(NHANES) III cohort to create BMD T-scores [12,13]. The World Health Organization
(WHO) and the International Society for Clinical Densitometry (ISCD) have guidelines for
the classification of patients aged 50 years or greater with low BMD as osteoporotic or os-
teopenic based on DEXA BMD T-scores. Patients aged 50 years or greater with lowest BMD
T-scores ≥ −1 have normal BMD, patients aged 50 years or greater with −2.5 ≤ lowest

Diagnostics 2022, 12, 691. https://doi.org/10.3390/diagnostics12030691 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics12030691
https://doi.org/10.3390/diagnostics12030691
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-6476-0397
https://doi.org/10.3390/diagnostics12030691
https://www.mdpi.com/journal/diagnostics
http://www.mdpi.com/2075-4418/12/3/691?type=check_update&version=2


Diagnostics 2022, 12, 691 2 of 17

BMD T-scores < −1 have osteopenia, and patients aged 50 years or greater with lowest
BMD T-scores ≤ −2.5 have osteoporosis [14]. The University of Sheffield Fracture Risk
Assessment Tool (FRAX) utilizes patient age, sex, femoral neck BMD, and other variables
to predict the risk of future femoral fracture [15]. Trabecular bone scores (TBS) are based
on textural analysis of bone microarchitecture, and TBS in conjunction with BMD scores
were shown to improve the overall predictive properties of DEXA measurements for future
fractures [16,17].

Opportunistic screening for osteoporosis was performed using data from computed
tomography (CT) scans of the chest/thorax [18], abdomen and pelvis [19,20], and cardiac
CT [21]. A strong correlation was noted between the CT attenuation of trabecular bone
in the thoracolumbar spine and BMD measurements [18–21]. Because forearm frailty
fractures are associated with low BMD, we hypothesized that the CT attenuation of the
wrist and forearm bones would correlate with BMD measurements. A recent study showed
that the cortical thickness of the second metacarpal is also correlated with DEXA BMD
measurements [22]. Therefore, we hypothesized that the CT attenuation in the metacarpals
may also be correlated with BMD DEXA measurements. We hypothesized that routinely
obtained CT scans of the wrist/forearm bones in patients aged 50 years or greater could be
used to provide insight into whether a patient has osteoporosis or osteopenia and whether
the patient needs to be subsequently screened using DEXA.

The aims of this study were (1) to evaluate the correlations between the CT attenuation
of the wrist/forearm bones (distal third of the radius; ultradistal radius (radius UD) (distal
radial metaphysis and epiphysis), distal third of the radius shaft (radius 33%), distal third
of the ulna, ultradistal ulna (ulna UD) (distal ulnar metaphysis and diaphysis), distal third
of the ulnar shaft (ulna 33%), scaphoid, lunate, triquetrum, pisiform, trapezium, trape-
zoid, capitate, hamate, and proximal thirds of the first through fifth metacarpals) in men
and women; (2) to evaluate the correlations between CT attenuation of the wrist/forearm
bones and L1–L4 BMD, L1–L4 BMD T-score, L1–L4 TBS, total hip BMD, total hip BMD
T-score, femoral neck BMD, and femoral neck BMD T-score; (3) to evaluate the predictive
performance of each wrist/forearm bone regarding predicting (i) osteoporosis, (ii) osteope-
nia/osteoporosis, (iii) femoral neck BMD ≤ −2.5, and (iv) femoral neck BMD < −1; and (4)
to use machine learning to identify the best combination of clinical/demographic variables
and the CT attenuation of wrist/forearm bones to predict (i) osteoporosis, (ii) osteope-
nia/osteoporosis, (iii) femoral neck BMD ≤ −2.5, and (iv) femoral neck BMD < −1.

2. Materials and Methods

The study was compliant with the Health Insurance Portability and Accountability
Act of 1996 (HIPAA), and the study protocol was reviewed and approved by the local
Institutional Review Board (IRB) at a tertiary care academic medical center. The need for
signed informed consent from each patient was waived by the IRB. The work described
was carried out in accordance with The Code of Ethics of the World Medical Association
(Declaration of Helsinki) for experiments involving humans.

2.1. CT Scanner Protocol and CT Attenuation Measurements

CT scans were performed on Siemens Somatom Definition Edge and Siemens Flash
(Siemens Healthineers, Erlangen, Germany) scanners. CT scans were performed without
intravenous contrast at 120 kVp, 200–250 mA, field of view (FOV) 118–120 mm, tilt of 0◦ in
the axial plane at 0.4–0.5 mm, and reconstructed in the coronal and sagittal planes at 1 mm.

2.2. DEXA Scanners

DEXA scans were performed using General Electric (GE) (Waukesha, WI, USA) Luna
iDXA Scanners.

The study cohort comprised patients aged 50 years or older, who were evaluated
and/or treated between 1 January 2015 and 30 September 2021. Patients were included if
they had CT scans of an upper extremity, including the wrist and forearm, and DEXA scans
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(of the lumbar spine and hips) within 12 months of each other. Patients were excluded if
they had prior surgery of the wrist/forearm, hips, or spine with implantation of hardware
that would affect CT attenuation measurements.

2.3. Segmentations

The trabecular component of each bone was carefully, manually segmented using
3D-Slicer [23]. Care was taken to avoid bone lesions (hemangiomas and bone islands), os-
teophytes, and the bony cortex. No specific attenuation threshold was used to segment the
trabecular bone. The subcortical regions were segmented manually and then automatically
interpolated between CT slices. The entire volume of each bone was segmented, and the
mean CT attenuation of each bone was recorded (Figure 1).
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Figure 1. Semi-automated volumetric segmentation mask of the bones of the wrist and forearm.
Coronal mask of the wrist/forearm demonstrating segmentation of the distal radius, ulna, carpal
bones, and bases of the metacarpals.

We calculated the CT attenuation of the distal third of the radius, radius UD, radius
33%, the distal third of the ulna, ulna UD, ulna 33%, scaphoid, lunate, triquetrum, pisiform,
trapezium, trapezoid, capitate, hamate, and proximal thirds of the first through fifth
metacarpals. Segmentations were performed by a trained research assistant (3 weeks of
training doing all 3D Slicer tutorials; 4 months of experience with 3D Slicer doing similar
projects before doing the current project) and were reviewed by a fellowship-trained
musculoskeletal radiologist with 10 years of experience.

2.4. Statistical Analysis

A sample size of 100 patients was determined to have 80% power with a type I error
rate of 5% to detect a difference between two receiver operator characteristic (ROC) curves
if the first ROC curve has an area under the receiver operator characteristic curve (AUC) of
0.80 and the second ROC curve has an AUC of 0.60, and there are 74% controls and 26%
cases. Therefore, the cohort was randomly divided into two datasets—a training/validation
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dataset (96 (49%) patients) and a testing dataset (100 (51%) patients) for multivariable
machine learning.

Summary statistics for all clinical and demographic variables were first calculated. T-
tests with unequal variances and Fisher’s exact tests were used to compare quantitative and
qualitative variables, respectively, between the training/validation and testing datasets.

Pearson’s correlations were used to examine the correlations between the CT attenua-
tion of the wrist/forearm bones and to evaluate the correlations between CT attenuation
of the wrist/forearm bones (distal third of the radius and ulna, proximal third of the first
through fifth metacarpals, scaphoid, lunate, triquetrum, pisiform, trapezium, trapezoid,
capitate, and hamate) stratified by gender in the entire dataset. Hierarchical cluster analysis
was used to cluster the correlations between the CT attenuations of the wrist/forearm bones.

Pearson’s correlation coefficients were also used to evaluate the correlations be-
tween the CT attenuations of each of the wrist/forearm bones and DEXA measurements
(L1–L4 BMD, L1–L4 BMD T-score, L1–L4 TBS, total hip BMD, total hip BMD T-score,
femoral neck BMD, and femoral neck BMD T-score) in the entire dataset.

ROC curves were used to identify the optimal CT attenuation threshold for each bone
to evaluate the predictive performance of each bone regarding predicting osteoporosis
and osteopenia/osteoporosis in the training/validation dataset. We then evaluated these
optimized thresholds in the test dataset.

Since we evaluated the predictive properties of several different bones in the wrist/
forearm to predict osteoporosis and osteopenia/osteoporosis, we used several machine
learning methods to select the best combination of bones and clinical factors (age, gender,
height, weight, BMI) that could be used to categorize a patient as (i) osteoporotic, (ii) os-
teopenic/osteoporotic using the WHO guidelines, (iii) femoral neck BMD T-score ≤ −2.5,
and (iv) femoral neck BMD T-score < −1. We evaluated the femoral neck BMD T-scores
because these scores are thought to be less affected by degenerative changes in the lumbar
spine and hip.

A support vector machine (SVM) is a supervised learning model that is often used for
pattern recognition, classification, and regression analysis [24]. C-classification with three
different kernels (linear, radial basis function (RBF), and sigmoid) [24] tuned with 10-fold
cross-validation was utilized.

Linear kernel, K(x, y) = x.y (1)

Radial basis function, K(x, y) = e(||x−y||2)/2σ2
(2)

Sigmoid kernel, K(x, y) = tan h(υ(x.y) + c) (3)

The tuning for each SVM was performed over epsilon ranges from 0 to 1 with 0.1 in-
crements, with cost values ranging from 1 to 6 with increments of 1 using 10-fold cross-
validation.

A random forest classifier is an ensemble learning method for classification based on
constructing a multitude of decision trees during training [25]. The random forest model
was fit and tuned with the number of variables tried at each step starting at 6, a step factor
of 1.5, and 10,000 trees used during the tuning step.

Each of the four machine learning models (linear kernel SVM, RBF kernel SVM, sig-
moid kernel SVM, random forest classifier) were used to each categorize patients as (i) os-
teoporotic using WHO guidelines, (ii) osteopenic/osteoporotic using WHO guidelines, (iii)
femoral neck BMD T-score ≤ −2.5, and (iv) femoral neck BMD T-score < −1. The optimal
models tuned in the training/validation dataset were retained for each analysis. We used
these models to predict (i) osteoporotic using WHO guidelines, (ii) osteopenic/osteoporotic
using WHO guidelines, (iii) femoral neck BMD T-score ≤ −2.5, and (iv) femoral neck BMD
T-score < −1.

All test statistics were two-sided and p-values < 0.05 were considered statistically
significant. We compared the ROC curves using DeLong’s test [26] and compared the
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machine learning models to the CT attenuation of the radius 33% since this region is
used to determine osteoporosis and osteopenia on DEXA studies of the forearm/wrist.
Statistics were performed using the pROC, e1071, and RandomForest packages in Rv4.1.2
statistical software.

3. Results

The entire dataset comprised 196 individuals with a median age of 65.0 years (range
50.0–88.0 years), 173 (88.3%) were females, 54 (27.6%) were osteoporotic, 116 (59.2%) were
osteopenic, and the other 26 (13.3%) were normal. There were no statistically significant
differences between the variables in the training/validation dataset and the test dataset
(Table 1).

Table 1. Comparison between training/validation and test datasets.

Variable All
(N = 196)

Training/
Validation

Dataset (N = 96)

Test Dataset
(N = 100)

p-
Value

Age 64.9 (8.7) 64.5 (8.8) 65.2 (8.7) 0.593

Race/ethnicity

0.248

American Indian/Alaskan native 1 (0.5%) 1 (1.0%) 0 (0.0%)
Asian 2 (1.0%) 0 (0.0%) 2 (2.0%)

Black/African-American 1 (0.5%) 0 (0.0%) 1 (1.0%)
Hispanic 2 (1.0%) 0 (0.0%) 2 (2.0%)

Other 1 (0.5%) 0 (0.0%) 1 (1.0%)
White 189 (96.4%) 95 (99.0%) 94 (94.0%)

Gender, male 23 (11.7%) 12 (12.5%) 11 (11.0%) 0.826

Height (m) 1.65 (0.08) 1.65 (0.08) 1.64 (0.08) 0.47

Weight (kg) 76.2 (19.2) 76.5 (19.1) 75.8 (19.4) 0.8

BMI (kg/m2) 27.9 (6.4) 27.9 (6.4) 27.9 (6.4) 0.991

Diagnosis

1
Osteoporosis 54 (27.6%) 26 (27.1%) 28 (28.0%)
Osteopenia 116 (59.2%) 57 (59.4%) 59 (59.0%)

Normal 26 (13.3%) 13 (13.5%) 13 (13.0%)
BMI—body mass index; osteoporosis—minimum BMD T-score ≤ −2.5; osteopenia—−2.5 < minimum BMD
T-score < −1; normal—minimum BMD T-score ≥ −1; ***—p-value < 1 × 10−3; **—1 × 10−3 < p-value < 1 × 10−2;
*—1 × 10−2 < p-value < 5 × 10−2.

Figure 2 compares the mean CT attenuation of each bone between diagnoses (osteo-
porosis, osteopenia, and normal).

There were positive correlations between the CT attenuation of the wrist/forearm
bones. In women, the strongest CT attenuation correlations were between the CT attenua-
tions of the ulna and ulna UD (r = 0.74, p < 0.001), ulna and ulna 33% (r = 0.83, p < 0.001),
radius and radius UD (r = 0.74, p < 0.001), capitate and trapezoid (r = 0.74, p < 0.001),
hamate and capitate (r = 0.81, p < 0.001), and the hamate and trapezoid (r = 0.81, p < 0.001).
In men, the strongest CT attenuation correlations were between the CT attenuations of
radius and the radius UD (r = 0.82, p < 0.001), radius and radius 33% (r = 0.79, p < 0.001),
ulna and ulna UD (r = 0.84, p < 0.001), ulna and ulna 33% (r = 0.84, p < 0.001), scaphoid and
lunate (r = 0.84, p < 0.001), triquetrum (r = 0.81, p < 0.001), pisiform (r = 0.85, p < 0.001),
capitate (r = 0.80, p < 0.001), lunate and pisiform (r = 0.81, p < 0.001), lunate and trapezium
(r = 0.80, p < 0.001), and trapezium and capitate (r = 0.80, p < 0.001) (Table 2).
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Table 2. Correlations between the CT attenuations at different bony sites in males and females.

Males Top
Diagonal Radius Radius

UD
Radius

33% Ulna Ulna
UD

Ulna
33% Scaphoid Lunate Triquetrum Pisiform Trapezium Trapezoid Capitate Hamate 1 MC 2 MC 3 MC 4 MC 5 MC

Females
bottom

diagonal

Radius - 0.82 *** 0.79 *** 0.55 ** 0.46 * 0.32 0.37 0.36 0.31 0.34 0.40 0.56 ** 0.50 * 0.30 0.46 * 0.12 0.08 −0.19 0.05

Radius UD 0.74 *** - 0.45 * 0.51 * 0.55 ** 0.22 0.54 ** 0.52 * 0.56 ** 0.47 * 0.57 ** 0.61 ** 0.59 ** 0.39 0.64
** 0.24 0.27 0.03 0.12

Radius 33% 0.73 *** 0.40 *** - 0.57 ** 0.35 0.56 ** 0.25 0.18 0.04 0.27 0.24 0.41 0.31 0.21 0.30 0.00 −0.09 −0.03 0.04

Ulna 0.61 *** 0.39 *** 0.64 *** - 0.84 *** 0.84 *** 0.62 ** 0.57 ** 0.37 0.65 *** 0.62 ** 0.62 ** 0.65 *** 0.49 * 0.43 * 0.32 0.09 0.27 0.10

Ulna UD 0.46 *** 0.43 *** 0.35 *** 0.74 *** - 0.62 ** 0.64 ** 0.70 *** 0.46 * 0.62 ** 0.67 *** 0.68 *** 0.67 *** 0.39 0.57
** 0.32 0.24 0.30 0.24

Ulna 33% 0.46 *** 0.24 ** 0.69 *** 0.83 *** 0.52 *** - 0.54 ** 0.43 * 0.22 0.59 ** 0.50 * 0.36 0.41 0.42 * 0.35 0.33 0.06 0.49 * 0.23

Scaphoid 0.38 *** 0.28 *** 0.25 *** 0.42 *** 0.45 *** 0.30 *** - 0.84 *** 0.81 *** 0.85 *** 0.78 *** 0.71 *** 0.80 *** 0.66 *** 0.46 * 0.55 ** 0.45 * 0.32 0.27

Lunate 0.27 *** 0.15 * 0.23 ** 0.42 *** 0.42 *** 0.30 *** 0.60 *** - 0.76 *** 0.81 *** 0.80 *** 0.75 *** 0.78 *** 0.58 ** 0.59
** 0.55 ** 0.50 * 0.33 0.42 *

Triquetrum 0.37 *** 0.33 *** 0.22 ** 0.41 *** 0.51 *** 0.26 *** 0.66 *** 0.64 *** - 0.69 *** 0.71 *** 0.59 ** 0.77 *** 0.61 ** 0.50 * 0.59 ** 0.55 ** 0.29 0.45 *

Pisiform 0.28 *** 0.25 *** 0.20 *** 0.37 *** 0.46 *** 0.34 *** 0.59 *** 0.55 *** 0.59 *** - 0.74 *** 0.72 *** 0.69 *** 0.56 ** 0.54
** 0.51 * 0.31 0.37 0.33

Trapezium 0.31 *** 0.23** 0.19* 0.38 *** 0.41 *** 0.31 *** 0.66 *** 0.57 *** 0.61 *** 0.51 *** - 0.74 *** 0.80 *** 0.53 * 0.71
*** 0.59 ** 0.68

*** 0.51 * 0.41

Trapezoid 0.40 *** 0.29 *** 0.26 *** 0.40 *** 0.38 *** 0.24 ** 0.66 *** 0.57 *** 0.58 *** 0.56 *** 0.59 *** - 0.74 *** 0.38 0.53
** 0.50 * 0.39 0.14 0.19

Capitate 0.39 *** 0.31 *** 0.24 ** 0.45 *** 0.47 *** 0.33 *** 0.71 *** 0.72 *** 0.73 *** 0.62 *** 0.66 *** 0.74 *** - 0.62 ** 0.55
** 0.41 0.45 * 0.16 0.32

Hamate 0.38 *** 0.34 *** 0.25 *** 0.46 *** 0.50 *** 0.31 *** 0.66 *** 0.65 *** 0.69 *** 0.62 *** 0.62 *** 0.69 *** 0.81 *** - 0.28 0.29 0.29 0.18 0.17

1 MC 0.41 *** 0.39 *** 0.27 *** 0.39 *** 0.38 *** 0.31 *** 0.44 *** 0.24 ** 0.34 *** 0.38 *** 0.48 *** 0.35 *** 0.35 *** 0.38 *** - 0.46 * 0.52 * 0.51 * 0.64 **

2 MC 0.32 *** 0.27 *** 0.25 *** 0.37 *** 0.29 *** 0.33 *** 0.35 *** 0.22 ** 0.22 ** 0.34 *** 0.31 *** 0.42 *** 0.37 *** 0.37 *** 0.48
*** - 0.72

***
0.63
** 0.68 ***

3 MC 0.23 *** 0.20 ** 0.26 *** 0.22 ** 0.18 * 0.23 ** 0.24 ** 0.06 0.13 0.24 *** 0.15 * 0.28 *** 0.20 ** 0.26 *** 0.36
***

0.63
*** - 0.60

** 0.68 ***

4 MC 0.27 *** 0.32 *** 0.23 ** 0.19 * 0.22 ** 0.19* 0.30 *** 0.15 0.24** 0.21** 0.19* 0.25 *** 0.24** 0.34 *** 0.45
***

0.55
***

0.68
*** - 0.65 ***

5 MC 0.34 *** 0.31 *** 0.30 *** 0.28 *** 0.28 *** 0.26 *** 0.24 ** 0.14 0.22 ** 0.27 *** 0.14 0.20 ** 0.20 ** 0.26 *** 0.37
***

0.49
***

0.54
***

0.70
*** -

Radius—distal third of the radius; radius UD—ultradistal radius (radius epiphysis/metaphysis); radius 33%—distal third of the radial shaft; ulna—distal third of the ulna; ulna
UD—distal ulna (ulnar epiphysis/metaphysis); ulna 33%—distal third of the ulnar shaft; 1 MC—proximal third of the first metacarpal; 2 MC—proximal third of the second metacarpal;
3 MC—proximal third of the third metacarpal; 4 MC—proximal third of the fourth metacarpal; 5 MC—proximal third of the fifth metacarpal; ***—p-value < 1 × 10−3; **—1 × 10−3 <
p-value < 1 × 10−2; *—1 × 10−2 < p-value < 5 × 10−2.
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Figure 3 shows that the radial and ulnar measurements clustered together and were
highly correlated, whereas the metacarpal measurements clustered together and were
highly correlated. Similarly, the carpal measurements clustered together and were highly
correlated.
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Figure 3. Hierarchical cluster analysis of the correlations between the CT attenuation of each bone
of the wrist and forearm. Radius—distal third of the radius; radius UD—ultradistal radius (radius
epiphysis and metaphysis); radius 33%—distal third of the radial shaft; ulna—distal third of the ulna;
ulna UD—distal ulna (ulnar epiphysis and metaphysis); ulna 33%—distal third of the ulnar shaft; 1st
metacarpal—proximal third of the first metacarpal; 2nd metacarpal—proximal third of the second
metacarpal; 3rd metacarpal—proximal third of the third metacarpal; 4th metacarpal—proximal third
of the fourth metacarpal; 5th metacarpal—proximal third of the fifth metacarpal.

Similarly, we noted strong positive correlations between the CT attenuation of the
wrist/forearm bones and DEXA measurements. The strongest correlations between CT
attenuations and DEXA L1–L4 BMD T-scores were with the CT attenuation of the first
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metacarpal (r = 0.26, p < 0.001), trapezium (r = 0.26, p < 0.001), and scaphoid (r = 0.32,
p < 0.001) (Table 3).

Table 3. Correlations between the CT attenuation at different bony sites and DEXA measurements.

All L1–L4 BMD L1–L4 BMD
T-Score

L1–L4 TBS
(N = 133)

Femoral
Neck BMD

Femoral
Neck BMD

T-Score

Total Hip
BMD

Total Hip
BMD

T-Score

Radius 0.04 0.03 0.12 0.26 *** 0.24 *** 0.29 *** 0.26 ***

Radius UD 0.00 −0.02 0.08 0.23 *** 0.17 * 0.18 * 0.14 *

Radius 33% 0.11 0.13 0.11 0.23 ** 0.25 *** 0.31 *** 0.29 ***

Ulna 0.23 ** 0.24 *** 0.18 * 0.40 *** 0.40 *** 0.43 *** 0.38 ***

Ulna UD 0.27 *** 0.17* 0.22* 0.40 *** 0.39 *** 0.42 *** 0.38 ***

Ulna 33% 0.24 *** 0.24 *** 0.19 * 0.34 *** 0.37 *** 0.37 *** 0.35 ***

Scaphoid 0.26 *** 0.32 *** 0.24 ** 0.39 *** 0.47 *** 0.48 *** 0.48 ***

Lunate 0.22 ** 0.23 ** 0.23 ** 0.36 *** 0.40 *** 0.40 *** 0.38 ***

Triquetrum 0.14 * 0.17 * 0.18 * 0.33 *** 0.38 *** 0.40 *** 0.39 ***

Pisiform 0.18 * 0.25 *** 0.17 * 0.40 *** 0.44 *** 0.47 *** 0.43 ***

Trapezium 0.28 *** 0.26 *** 0.23 ** 0.32 *** 0.38 *** 0.40 *** 0.37 ***

Trapezoid 0.15 * 0.18 * 0.15 0.35 *** 0.40 *** 0.38 *** 0.34 ***

Capitate 0.19 ** 0.24 *** 0.21 * 0.39 *** 0.46 *** 0.43 *** 0.42 ***

Hamate 0.21 ** 0.22 ** 0.14 0.30 *** 0.35 *** 0.35 *** 0.34 ***

1 MC 0.24 *** 0.26 *** 0.17 0.36 *** 0.38 *** 0.43 *** 0.40 ***

2 MC 0.24 *** 0.19 ** 0.23 ** 0.23 ** 0.31 *** 0.37 *** 0.34 ***

3 MC 0.18 * 0.04 0.21 * 0.15 * 0.17 * 0.21 ** 0.19 **

4 MC 0.22 ** 0.10 0.15 0.17 * 0.23 ** 0.27 *** 0.27 ***

5 MC 0.27 *** 0.16 * 0.16 0.29 *** 0.32 *** 0.38 *** 0.37 ***

Radius—distal third of the radius; radius UD—ultradistal radius (radius epiphysis/metaphysis); radius 33%—
distal third of the radial shaft; ulna—distal third of the ulna; ulna UD—distal ulna (ulnar epiphysis/metaphysis);
ulna 33%—distal third of the ulnar shaft; 1 MC—proximal third of the first metacarpal; 2 MC—proximal third
of the second metacarpal; 3 MC—proximal third of the third metacarpal; 4 MC—proximal third of the fourth
metacarpal; 5 MC—proximal third of the fifth metacarpal; ***—p-value < 1 × 10−3; **—1 × 10−3 < p-value < 1 ×
10−2; *—1 × 10−2 < p-value < 5 × 10−2.

The strongest correlations between the femoral neck BMD T-scores and the CT atten-
uations of the wrist/forearm bones were with the CT attenuations of the ulna (r = 0.40,
p < 0.001), scaphoid (r = 0.47, p < 0.001), lunate (r = 0.40, p < 0.001), pisiform (r = 0.44, p <
0.001), trapezoid (r = 0.40, p < 0.001), and capitate (r = 46, p < 0.001). We also found that
the strongest correlations between the total hip BMD T-score and CT attenuation of the
wrist/forearm bones were with the CT attenuation of the scaphoid (r = 0.48, p < 0.001),
pisiform (r = 0.43, p < 0.001), and first metacarpal (r = 0.40, p < 0.001). The strongest corre-
lations with the L1–L4 BMD TBS were with the CT attenuation of the scaphoid (r = 0.24,
p < 0.001), lunate (r = 0.23, p < 0.001), trapezium (r = 0.23, p < 0.001), and first metacarpal (r
= 0.23, p < 0.001).

The optimal CT attenuation thresholds for each bone and the predictive performance of
these optimal thresholds regarding predicting (i) osteoporosis, (ii) osteopenia/osteoporosis,
(iii) femoral neck BMD T-score ≤ −2.5, and (iv) and femoral neck BMD T-score <−1 are
shown in Table 4.
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Table 4. Performance of the CT attenuation of each bone and multivariable machine learning models
to predict osteoporosis and osteopenia/osteoporosis.

Test Dataset

Osteoporosis

Training/
Validation
Dataset CT
Attenuation
Threshold

AUC Sensitivity Specificity AUC Accuracy
Positive

Predictive
Value (PPV)

Negative
Predictive

Value (NPV)

Radius 90.179 0.708 0.500 0.639 0.569 0.600 0.350 0.767

Radius UD 154.998 0.725 0.607 0.625 0.616 0.620 0.386 0.804

Radius 33% −13.717 0.705 0.500 0.653 0.576 0.610 0.359 0.770

Ulna 67.121 0.719 0.750 0.667 0.708 0.690 0.467 0.873

Ulna UD 98.446 0.732 0.500 0.806 0.653 0.720 0.500 0.806

Ulna 33% 3.872 0.669 0.750 0.611 0.681 0.650 0.429 0.863

Scaphoid 247.592 0.763 0.571 0.583 0.577 0.580 0.348 0.778

Lunate 248.387 0.762 0.00 1.00 0.365 0.720 - 0.720

Triquetrum 207.882 0.730 0.00 1.00 0.390 0.720 - 0.720

Pisiform 162.298 0.753 0.714 0.653 0.684 0.670 0.444 0.855

Trapezium 141.824 0.734 0.00 1.00 0.383 0.720 - 0.720

Trapezoid 231.070 0.699 0.500 0.722 0.611 0.660 0.412 0.788

Capitate 248.039 0.763 0.536 0.736 0.636 0.680 0.441 0.803

Hamate 170.166 0.769 0.00 1.00 0.393 0.720 - 0.720

1 MC −7.772 0.752 0.500 0.778 0.639 0.700 0.467 0.800

2 MC 16.023 0.686 0.00 1.00 0.415 0.720 - 0.720

3 MC 61.555 0.565 0.00 1.00 0.466 0.720 - 0.720

4 MC 50.837 0.600 0.00 1.00 0.415 0.720 - 0.720

5 MC −34.860 0.566 0.00 1.00 0.408 0.720 - 0.720

Linear kernel SVM 0.894 0.883 0.435 0.680 0.780 0.840 0.526

Radial basis function
kernel SVM 0.987 0.584 0.957 0.818 0.670 0.978 0.407

Sigmoid kernel SVM 0.627 0.844 0.739 0.818 0.820 0.915 0.586

Random Forest
classifier 0.502 0.987 0.087 0.537 0.780 0.784 0.667

Osteopenia/
Osteoporosis

Training/
Validation
Dataset CT
Attenuation
Threshold

AUC Sensitivity Specificity AUC Accuracy
Positive

Predictive
Value (PPV)

Negative
Predictive

Value (NPV)

Radius 149.199 0.635 0.262 0.778 0.520 0.329 0.889 0.135

Radius UD 160.496 0.528 0.00 1.00 0.472 0.129 - 0.129

Radius 33% 10.942 0.716 0.459 0.667 0.563 0.486 0.903 0.154

Ulna 117.259 0.736 0.00 1.00 0.432 0.129 - 0.129

Ulna UD 162.088 0.643 0.705 0.556 0.630 0.686 0.915 0.217

Ulna 33% 73.365 0.708 0.00 1.00 0.454 0.129 - 0.129

Scaphoid 250.749 0.773 0.525 0.778 0.651 0.557 0.941 0.194

Lunate 258.091 0.768 0.00 1.00 0.433 0.129 - 0.129

Triquetrum 213.998 0.610 0.00 1.00 0.392 0.129 - 0.129

Pisiform 220.041 0.754 0.00 1.00 0.423 0.129 - 0.129

Trapezium 183.738 0.717 0.00 1.00 0.310 0.129 - 0.129

Trapezoid 269.594 0.726 0.656 0.778 0.717 0.671 0.952 0.250

Capitate 294.058 0.755 0.623 0.889 0.756 0.657 0.974 0.258

Hamate 171.503 0.673 0.00 1.00 0.423 0.129 - 0.129

1 MC 27.779 0.823 0.00 1.00 0.445 0.129 - 0.129

2 MC 30.584 0.752 0.721 0.889 0.805 0.743 0.978 0.320

3 MC 31.197 0.529 0.00 1.00 0.409 0.129 - 0.129
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Table 4. Cont.

Test Dataset

Osteopenia/
Osteoporosis

Training/
Validation
Dataset CT
Attenuation
Threshold

AUC Sensitivity Specificity AUC Accuracy
Positive

Predictive
Value (PPV)

Negative
Predictive

Value (NPV)

4 MC 55.376 0.579 0.770 0.556 0.663 0.743 0.922 0.263

5 MC 52.112 0.615 0.00 1.00 0.407 0.390 - 0.390

Linear kernel SVM 0.856 0.443 0.889 0.674 0.620 0.871 0.507

Radial basis function
kernel SVM 0.969 0.885 0.667 0.805 0.800 0.806 0.788

Sigmoid kernel SVM 0.542 0.607 0.778 0.716 0.670 0.804 0.556

Random Forest
classifier 0.511 0.967 0.222 0.595 0.680 0.663 0.818

Femoral Neck
BMD ≤ −2.5

Training/
Validation
Dataset CT
Attenuation
Threshold

AUC Sensitivity Specificity AUC Accuracy
Positive

Predictive
Value (PPV)

Negative
Predictive

Value (NPV)

Radius 132.495 0.569 0.00 1.00 0.394 0.810 - 0.810

Radius UD 184.154 0.618 0.789 0.531 0.660 0.580 0.283 0.915

Radius 33% 20.908 0.625 0.00 1.00 0.426 0.810 - 0.810

Ulna 67.121 0.603 0.789 0.556 0.673 0.600 0.294 0.918

Ulna UD 82.730 0.581 0.526 0.790 0.658 0.740 0.370 0.877

Ulna 33% 35.520 0.621 0.00 1.00 0.375 0.810 - 0.810

Scaphoid 202.916 0.657 0.632 0.679 0.655 0.670 0.316 0.887

Lunate 224.838 0.684 0.526 0.864 0.695 0.800 0.476 0.886

Triquetrum 208.334 0.667 0.632 0.728 0.680 0.710 0.353 0.894

Pisiform 121.626 0.736 0.00 1.00 0.415 0.810 - 0.810

Trapezium 149.597 0.627 0.632 0.691 0.661 0.680 0.324 0.889

Trapezoid 207.953 0.663 0.632 0.679 0.655 0.670 0.316 0.887

Capitate 248.039 0.647 0.737 0.667 0.702 0.680 0.341 0.915

Hamate 185.743 0.600 0.842 0.568 0.705 0.620 0.314 0.939

1 MC 0.530 0.710 0.579 0.642 0.610 0.630 0.275 0.867

2 MC −7.273 0.681 0.526 0.630 0.578 0.610 0.250 0.850

3 MC −47.251 0.609 0.895 0.136 0.515 0.280 0.195 0.846

4 MC −13.146 0.672 0.00 1.00 0.458 0.810 - 0.810

5 MC 24.690 0.737 0.00 1.00 0.398 0.810 - 0.810

Linear kernel SVM 0.915 0.947 0.593 0.795 0.660 0.535 0.980

Radial basis function
kernel SVM 0.997 0.579 0.864 0.770 0.810 0.500 0.897

Sigmoid kernel SVM 0.736 0.947 0.531 0.749 0.610 0.321 0.977

Random Forest
classifier 0.489 0.421 0.901 0.661 0.810 0.500 0.869

Femoral Neck
BMD < −1

Training/
Validation
Dataset CT
Attenuation
Threshold

AUC Sensitivity Specificity AUC Accuracy
Positive

Predictive
Value (PPV)

Negative
Predictive

Value (NPV)

Radius 130.336 0.603 0.00 1.00 0.415 0.270 - 0.270

Radius UD 163.209 0.558 0.00 1.00 0.492 0.270 - 0.270

Radius 33% 10.942 0.605 0.00 1.00 0.423 0.270 - 0.270

Ulna 94.009 0.647 0.740 0.652 0.696 0.720 0.857 0.486

Ulna UD 185.544 0.684 0.00 1.00 0.363 0.270 - 0.270

Ulna 33% 27.406 0.618 0.727 0.739 0.733 0.730 0.883 0.500

Scaphoid 229.799 0.719 0.558 0.913 0.736 0.660 0.953 0.439

Lunate 268.193 0.707 0.00 1.00 0.331 0.270 - 0.270
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Table 4. Cont.

Test Dataset

Femoral Neck
BMD < −1

Training/
Validation
Dataset CT
Attenuation
Threshold

AUC Sensitivity Specificity AUC Accuracy
Positive

Predictive
Value (PPV)

Negative
Predictive

Value (NPV)

Triquetrum 287.366 0.641 0.831 0.565 0.698 0.760 0.836 0.556

Pisiform 221.709 0.714 0.00 1.00 0.437 0.270 - 0.270

Trapezium 165.624 0.722 0.558 0.870 0.714 0.640 0.911 0.418

Trapezoid 236.041 0.693 0.610 0.696 0.653 0.640 0.849 0.404

Capitate 257.499 0.693 0.545 0.870 0.708 0.790 0.842 0.625

Hamate 160.072 0.584 0.00 1.00 0.299 0.270 - 0.270

1 MC 26.390 0.710 0.714 0.609 0.661 0.680 0.825 0.432

2 MC 9.576 0.700 0.623 0.870 0.746 0.680 0.918 0.451

3 MC 54.574 0.491 0.00 1.00 0.424 0.270 - 0.270

4 MC 5.199 0.616 0.00 1.00 0.427 0.270 - 0.270

5 MC 1.294 0.674 0.597 0.696 0.647 0.630 0.846 0.396

Linear kernel SVM 0.895 0.468 0.826 0.678 0.550 0.900 0.317

Radial basis function
kernel SVM 0.987 0.584 0.957 0.818 0.670 0.978 0.407

Sigmoid kernel SVM 0.627 0.844 0.739 0.818 0.820 0.915 0.586

Random Forest
classifier 0502 0.987 0.043 0.515 0.770 0.776 0.500

Radius—distal third of the radius; Radius UD—ultradistal radius (radius epiphysis/metaphysis); Radius 33%—
distal third of the radial shaft; Ulna—distal third of the ulna; Ulna UD—distal ulna (ulnar epiphysis/metaphysis);
Ulna 33%—distal third of the ulnar shaft; 1 MC—proximal third of the first metacarpal; 2 MC—proximal third
of the second metacarpal; 3 MC—proximal third of the third metacarpal; 4 MC—proximal third of the fourth
metacarpal; 5 MC—proximal third of the fifth metacarpal; -—Undefined.

3.1. Predicting Osteoporosis
3.1.1. Training/Validation Dataset

We found that the CT attenuation of each bone was a significant predictor of osteo-
porosis in the training/validation dataset (Supplementary Figure S1). The highest AUC
was for the hamate (optimal CT threshold 170.166 Hounsfield units (HU), AUC = 0.769),
capitate (optimal CT threshold 248.039 HU, AUC = 0.763), and first metacarpal (optimal
CT threshold −7.772 HU, AUC = 0.752). The radius 33% had an AUC of 0.705 in the
training/validation dataset. The linear kernel SVM (AUC = 0.894) and radial basis function
(RBF) kernel SVM (AUC = 0.987) had the highest AUCs of the machine learning models in
the training/validation dataset.

3.1.2. Test Dataset

The performances of the CT attenuation thresholds obtained from the training/ val-
idation dataset were evaluated in the test dataset. The hamate (AUC = 0.393), capitate
(AUC = 0.636), first metacarpal (AUC = 0.639), and radius 33% (AUC = 0.576) showed
slightly lower predictive abilities in the test dataset compared to the training dataset. The
RBF kernel SVM (AUC = 0.818) had a higher AUC than any of the CT attenuation thresholds
for each bone. The RBF kernel SVM was better than the radius 33% model (p = 0.020).

3.2. Predicting Osteopenia/Osteoporosis
3.2.1. Training/Validation Dataset

When predicting osteopenia/osteoporosis in the training/validation dataset, we found
that the CT attenuation of each bone was predictive of osteoporosis/osteopenia (Supple-
mentary Figure S2). The first metacarpal (optimal CT threshold 27.779 HU, AUC = 0.823),
scaphoid (optimal CT attenuation threshold 250.749 HU, AUC = 0.773), and lunate (optimal
CT attenuation threshold 258.091 HU, AUC = 0.768) were the most predictive, whereas
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the radius UD (AUC = 0.528), third metacarpal (AUC = 0.529), and fourth metacarpal
(AUC = 0.579) were the least predictive bones. The radius 33% had an AUC of 0.716 regard-
ing predicting osteopenia/osteoporosis in the training/validation dataset. The RBF kernel
SVM (AUC = 0.969) had the highest AUC of all the machine learning methods investigated
regarding predicting osteopenia/osteoporosis in the training/validation dataset.

3.2.2. Test Dataset

In the test dataset, we found that the CT attenuations thresholds obtained from the
training/validation dataset for the first metacarpal (AUC = 0.445), scaphoid (AUC = 0.651),
and lunate (AUC = 0.433) were less predictive in the test dataset. The radius 33% CT
attenuation threshold had an AUC of 0.563 in the test dataset. However, the RBF kernel
SVM (AUC = 0.805) had the highest AUC and accuracy in the test dataset. The RBF kernel
SVM (p = 0.068) was not significantly better than the radius 33% in the test dataset.

3.3. Predicting Femoral Neck BMD T-Score ≤ −2.5
3.3.1. Training/Validation Dataset

When predicting femoral neck BMD T-score ≤ −2.5, we found that the CT attenu-
ation of each of the bones studied was predictive (Supplementary Figure S3). The fifth
metacarpal (optimal CT attenuation threshold 24.690 HU, AUC = 0.737), pisiform (optimal
CT attenuation threshold 121.626 HU, AUC = 0.736), and first metacarpal (optimal CT
attenuation threshold 0.530 HU, AUC = 0.710) were the best bones for predicting femoral
neck BMD T-score ≤ −2.5 in the training/validation dataset, whereas the CT attenuation
of the radius (AUC = 0.569), ulna UD (AUC = 0.581), and lunate (AUC = 0.600) were the
bones that were the worst predictors of femoral neck BMD T-score ≤ −2.5. The RBF kernel
SVM (AUC = 0.997) had the highest AUC in the training/validation dataset.

3.3.2. Test Dataset

In the test dataset, we found that the CT attenuation thresholds obtained from the
training/validation dataset for the fifth metacarpal (AUC = 0.398), pisiform (AUC = 0.415),
first metacarpal (AUC = 0.618), and radius 33% (AUC = 0.426) were less predictive. The
RBF kernel SVM had an AUC of 0.770 regarding identifying patients with a femoral neck
BMD T-score ≤ −2.5. The RBF kernel SVM (AUC = 0.770, p < 0.001) model was better than
the model using the radius 33% CT attenuation threshold.

3.4. Predicting Femoral Neck BMD T-Score < −1
3.4.1. Training/Validation Dataset

We found that a CT attenuation threshold of the trapezium (optimal CT attenuation
threshold 165.624 HU, AUC = 0.722) had the best AUC to predict femoral neck BMD
T-score <−1 in the training/validation dataset (Supplementary Figure S4). The scaphoid
(optimal CT attenuation threshold 229.799 HU, AUC = 0.719) and pisiform (optimal CT
attenuation threshold 221.709 HU, AUC = 0.714) were the next best predictors of having
a femoral neck BMD T-score < −1. The radius 33% (AUC = 0.605), radius (AUC = 0.603),
radius UD (AUC = 0.558), and hamate (AUC = 0.584) were the worst predictors of having a
femoral neck BMD < −1 in the training/validation dataset. The RBF kernel SVM (AUC =
0.987) had the highest AUC of all the multivariable machine learning models regarding
predicting femoral neck BMD T-score < −1 in the training/validation dataset.

3.4.2. Test Dataset

In the test dataset, we found that the CT attenuations thresholds obtained from the
training/validation dataset for the scaphoid (AUC = 0.736), trapezium (AUC = 0.714),
pisiform (AUC = 0.437), and radius 33% (AUC = 0.423) were less predictive in the test
dataset. The RBF kernel SVM (AUC = 0.818, p < 0.001) had a significantly higher AUC than
radius 33% (AUC = 0.423) in the test dataset.
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4. Discussion

We found strong positive correlations between the CT attenuation of the wrist/forearm
bones. There were stronger correlations between the CT attenuations of the radius and ulna
measurements, stronger correlations between the carpal CT attenuations, and stronger corre-
lations between the metacarpal CT attenuations. The CT attenuations of the wrist/forearm
bones were largely positively correlated with the DEXA measurements. The RBF kernel
SVM was best for predicting osteoporosis with a higher AUC (AUC = 0.818) than other
models and statistically better than radius 33%. The RBF kernel SVM also had the highest
AUC (AUC = 0.805) regarding predicting patients with osteoporosis/osteopenia. We found
that the RBF kernel SVM was best for predicting a femoral neck BMD T-score ≤ −2.5 and
was statistically better than the CT attenuation of radius 33%. The data also showed that
the RBF kernel SVM was the best for predicting a femoral neck BMD T-score < −1 and
statistically better than the CT attenuation of radius 33%.

These results have significant clinical implications. We showed that opportunistic
screening for osteoporosis and osteopenia can be performed using routine CT scans of the
wrist/forearm obtained for clinical care. We also showed that the accuracy of a machine
learning model using the CT attenuation of multiple bones and clinical/demographic
variables exceeded that of a single bone. We provided CT attenuation thresholds for
each wrist/forearm bone that could be used to identify patients who should go on to get
screened for osteoporosis or osteopenia/osteoporosis with a formal DEXA study. This has
the potential to identify patients earlier in their course of BMD loss and get patients to
clinical care earlier.

The radius transmits the majority of the force from the wrist to the elbow and is
therefore often fractured when individuals with diminished BMD fall on an outstretched
hand [6,7,27]. Forearm fractures, in particular, distal radius fractures, are often frailty frac-
tures related to diminished BMD. Although the radius is often evaluated on DEXA studies
for the prediction of osteopenia/osteoporosis and osteoporosis, we found that the CT atten-
uation of the radius was not the single best bone for predicting osteopenia/osteoporosis
and osteoporosis in the analysis. Bone homeostasis is regulated by the activities of three cell
types, namely, the osteoclasts, osteocytes, and osteoblasts, and is generally kept in dynamic
equilibrium to maintain bone mass [28]. Our data suggested that all bones may be differen-
tially affected when there is diminished bone mass because of the lack of perfect correlation
between the CT attenuation of bones and the likely BMD of each bone [29]. Each bone also
likely has a different trabecular bone structure in order to best suit its mechanical/structural
demands, and this may affect the mean CT attenuation between bones.

The CT attenuation of the hamate had the best performance to differentiate patients
with osteoporosis from those without osteoporosis. The patients in this study were aged
50 years or older, and likely had degenerative changes of the wrist. Degenerative changes
of the carpus often affect the scaphoid, trapezium, and trapezoid (triscaphe and first
carpometacarpal joint degenerative changes), scapholunate, and the pisotriquetral articula-
tions. These degenerative changes are manifested by increased sclerosis and eburnation,
and this increased sclerosis likely affects the CT attenuation of each bone. We hypothesized
that the hamate was least likely to be affected by degenerative changes and this was likely
the reason it had the best performance. One strength of the multivariable SVM and ran-
dom forest models was that these models utilized the CT attenuation of all the bones and,
therefore, had better performance than the CT attenuation of any individual bone.

A prior study noted that the second metacarpal cortical index can be used for oppor-
tunistic screening for osteoporosis [22]. We showed that the CT attenuation of the second
metacarpal is predictive of osteoporosis and osteopenia/osteoporosis. We showed that
the CT attenuation of the other metacarpals was also predictive of osteoporosis and os-
teopenia/osteoporosis. However, the CT attenuation of the metacarpals was less accurate
than the multivariable machine learning models for the diagnosis of osteoporosis and
osteopenia/osteoporosis.
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One limitation of this study was the small sample size. We found that most patients
with CT scans of the wrist/forearm at our institution did not have concurrent DEXA
studies, which suggests that there is under-screening/inadequate screening for osteopenia
and osteoporosis. Our method may help to identify patients who had a CT scan of the
wrist/forearm who should go on to have a formal DEXA study to screen for osteopenia
and osteoporosis in the near future. Patients all had their CT scans of the wrist/forearm
performed using Siemens scanners, which is a limitation; however, a recently published
article suggests that there is minimal bias in CT attenuation measurements between CT
manufacturers [30]. This study was a retrospective study at a single multi-center tertiary
care academic institution. Another limitation is that most patients were white; therefore, it
is unclear how our results will port to other races/ethnicities. While we showed methods
regarding how to categorize patients as osteoporotic or osteopenic/osteoporotic using
the CT attenuation of the wrist/forearm bones based on DEXA studies, further work is
required to evaluate how well these measurements predict future frailty fractures.

5. Conclusions

In summary, opportunistic screening for osteoporosis and osteopenia/osteoporosis
could be performed using the CT attenuation of each of the bones from CT scans of the
wrist/forearm. We used machine learning to show that using the CT attenuation of multiple
bones was more accurate than using the CT attenuation of a single bone. DEXA scans
currently evaluate only the lumbar spine and the hips to assess global bone mineral density.
CT attenuation data from routine CT scans of the wrist and forearm can be used to identify
patients at risk for osteoporosis who should go on to have formal screening for osteoporosis
using DEXA scans.
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