Skip to main content
. Author manuscript; available in PMC: 2022 Apr 1.
Published in final edited form as: Neuroimage. 2022 Jan 10;249:118900. doi: 10.1016/j.neuroimage.2022.118900

Table 3.

Linear models assessing the relationship between classification accuracy and residual correlations in attended and ignored conditions.

Hemisphere Lobe Variable Estimate Std. Error t value p

Left Occipital Intercept 0.069 0.140 0.494 0.625
Residual Correlations 2.081 0.554 3.760 6.85 × 10−4***
Condition 0.023 0.089 0.263 0.794
Residual Correlations × Condition −0.554 0.375 −1.478 0.149
Temporal Intercept 0.091 0.037 2.425 0.018*
Residual Correlations 2.094 0.307 6.825 4.32 × 10−9***
Condition 0.042 0.024 1.786 0.079
Residual Correlations × Condition −0.814 0.196 −4.164 9.85 × 10−5***
Parietal Intercept 0.172 0.036 4.818 5.85 × 10−6***
Residual Correlations 0.720 0.229 3.148 0.002
Condition 0.003 0.024 0.120 0.905
Residual Correlations × Condition −0.286 0.160 −1.794 0.076
Frontal Intercept 0.211 0.015 14.344 < 2.00 × 10−16***
Residual Correlations 0.192 0.129 1.492 0.138
Condition −0.005 0.010 −0.548 0.584
Residual Correlations × Condition −0.108 0.082 −1.315 0.190
Right Occipital Intercept 0.218 0.180 1.209 0.235
Residual Correlations 1.981 0.788 2.512 0.017*
Condition −0.024 0.114 −0.207 0.837
Residual Correlations × Condition −0.664 0.504 −1.318 0.197
Temporal Intercept 0.118 0.030 3.896 2.43 × 10−4***
Residual Correlations 2.157 0.286 7.552 2.37 × 10−10***
Condition 0.021 0.019 1.060 0.293
Residual Correlations × Condition −0.764 0.180 −4.251 7.28 × 10−5***
Parietal Intercept 0.160 0.036 4.440 2.55 × 10−5***
Residual Correlations 0.938 0.244 3.840 2.29 × 10−4***
Condition 0.009 0.023 0.407 0.685
Residual Correlations × Condition −0.391 0.157 −2.496 0.014*
Frontal Intercept 0.210 0.014 15.519 < 2.00 × 10−16***
Residual Correlations 0.022 0.130 0.167 0.868
Condition −0.007 0.008 −0.793 0.429
Residual Correlations × Condition −0.008 0.082 −0.097 0.923

Residual correlations in the attended and ignored conditions were used to predict classification accuracy values in each lobe and hemisphere. Bold values represent p-values surviving multiple comparisons correction (Bonferroni, 8 linear models).

*

p<.05.

**

p<.01.

***

p<.001.