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Abstract A key goal of social neuroscience is to understand the inter-brain neural relationship—
the relationship between the neural activity of socially interacting individuals. Decades of research 
investigating this relationship have focused on the similarity in neural activity across brains. Here, we 
instead asked how neural activity differs between brains, and how that difference evolves alongside 
activity patterns shared between brains. Applying this framework to bats engaged in spontaneous 
social interactions revealed two complementary phenomena characterizing the inter-brain neural 
relationship: fast fluctuations of activity difference across brains unfolding in parallel with slow 
activity covariation across brains. A model reproduced these observations and generated multiple 
predictions that we confirmed using experimental data involving pairs of bats and a larger social 
group of bats. The model suggests that a simple computational mechanism involving positive and 
negative feedback could explain diverse experimental observations regarding the inter-brain neural 
relationship.

Introduction
What is the relationship between the neural activity of socially interacting individuals? This central 
question in social neuroscience has motivated nearly two decades of research spanning a diversity of 
species and methodologies (e.g. Babiloni and Astolfi, 2014; Dumas et al., 2011; Freiwald, 2020; 
Hasson et al., 2012; Hasson and Frith, 2016; Hoffmann et al., 2019; Kingsbury and Hong, 2020; 
Koike et al., 2015; Konvalinka and Roepstorff, 2012; Liu et al., 2018; Montague et al., 2002; 
Redcay and Schilbach, 2019; Scholkmann et al., 2013; Schoot et al., 2016; Testard et al., 2021; 
Tseng et  al., 2018; Wass et  al., 2020). Yet, despite this diversity, nearly all research has tackled 
the study of inter-brain relationship from a single perspective: considering the neural activity of two 
interacting individuals as the two variables of interest and searching for similarities between them. 
Commonly, similarity was assessed using measures related to either correlation (Dikker et al., 2014; 
Kawasaki et  al., 2013; King-Casas et  al., 2005; Kingsbury et  al., 2019; Kinreich et  al., 2017; 
Levy et al., 2017; Liu et al., 2017; Montague et al., 2002; Piazza et al., 2020; Silbert et al., 2014; 
Spiegelhalder et al., 2014; Stephens et al., 2010; Stolk et al., 2014; Tomlin et al., 2006; Zadbood 
et al., 2017; Zhang and Yartsev, 2019) or coherence (Cui et al., 2012; Dikker et al., 2017; Dumas 
et al., 2010; Goldstein et al., 2018; Levy et al., 2017; Lindenberger et al., 2009; Montague et al., 
2002; Mu et al., 2017; Stolk et al., 2014; Yang et al., 2020; Yun et al., 2012).

However, one aspect of the inter-brain neural relationship has remained unexplored: the difference 
in neural activity between brains. We reasoned that inter-brain difference is more than simply a lack 
of inter-brain correlation. Specifically, the detailed dynamics of the difference between brains could 
contain information not captured by measures of inter-brain similarity such as correlation. Therefore, 
here we took an approach that focused on both the similarity and difference in inter-brain activity, 
and on how the two co-evolve over time. We applied this approach to neural activity simultaneously 
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recorded from socially interacting Egyptian fruit bats (Rousettus aegyptiacus), a mammalian species 
known for its high level of sociality (Herzig-Straschil and Robinson, 1978; Harten et al., 2018; Prat 
et al., 2015; Prat et al., 2016; Prat et al., 2017; Omer et al., 2018; Cvikel et al., 2015; Egert-Berg 
et al., 2018; Kwiecinski and Griffiths, 1999). Our recordings targeted the frontal cortex (Figure 1—
figure supplement 1), a region implicated in social cognition in rodents, bats, non-human primates, 
and humans (Adolphs, 2001; Amodio and Frith, 2006; Cao et al., 2018; Chang et al., 2013; Eliades 
and Miller, 2017; Forbes and Grafman, 2010; Haroush and Williams, 2015; Kingsbury et al., 2019; 
Liang et al., 2018; Miller et al., 2015; Nummela et al., 2017; Ong et al., 2021; Pearson et al., 2014; 
Rose et al., 2021; Rudebeck et al., 2008; Tremblay et al., 2017; Zhang and Yartsev, 2019; Zhou 
et al., 2017). We then used modeling to better understand the experimentally observed inter-brain 
relationship, which in turn produced a number of predictions that we subsequently confirmed using 
experimental data. Combined, the insights from the experimental and modeling approaches provide 
a unifying explanation to a range of experimental observations regarding the inter-brain relationship 
during social interactions.

Results
Inter-brain relationships in social and non-social contexts
We performed wireless extracellular neural recording simultaneously from pairs of bats. We recorded 
four types of neural signals: local field potential (LFP) power in the 30–150 Hz and 1–29 Hz bands 
(previously identified as relevant frequency bands in bat frontal cortical LFP [Zhang and Yartsev, 
2019]), multiunit activity, and single unit activity (Materials and methods). The analyses in the main text 
focus on 30–150 Hz LFP power, as previous work has shown that this frequency range exhibits strong 
inter-brain correlation in bats (Zhang and Yartsev, 2019).

To compare the inter-brain relationship between social and non-social conditions, neural activity 
was recorded in two sets of experiments. In one experiment, pairs of bats behaved freely and inter-
acted with each other inside a chamber (‘one-chamber sessions’; Figure 1A). In the second set of 
experiments, the same bats freely behaved in separate, identical chambers (‘two-chambers sessions’; 
Figure 1B). There were three types of two-chambers sessions: (1) two bats each freely behaving in 
isolation; (2) two bats each freely behaving in the presence of identical auditory stimuli (playback 
of bat calls); (3) two bats each freely behaving and interacting with a different partner in separate 
chambers.

Plotting the neural activity of the two bats in one-chamber sessions shows a high degree of simi-
larity between brains (Figure 1C), which is not the case for two-chambers sessions (Figure 1D), as 
demonstrated previously (Zhang and Yartsev, 2019). Such plots highlight the degree of inter-brain 
similarity, but makes it easy to overlook the detailed dynamics of the difference between brains. We 
therefore sought an analysis framework that would enable us to explicitly examine inter-brain differ-
ence and similarity side by side.

Relative magnitudes and timescales of inter-brain difference and mean 
components
When studying the inter-brain relationship, two typical variables of interest are the neural activity 
of each brain (e.g. in Figure  1C, each variable is the normalized LFP power averaged across the 

recording channels of one brain). We can represent them as a two-dimensional vector 
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Figure 1. Relative magnitudes and timescales of the inter-brain difference and mean components. (A) In each one-chamber session, two bats freely 
interacted with each other while neural activity was wirelessly recorded simultaneously from their frontal cortices. (B) In each two-chambers session, 
the same bats from the one-chamber sessions freely behaved in separate, identical chambers, while neural activity continued to be simultaneously 
and wirelessly recorded from their frontal cortices. Two-chambers sessions included three conditions: (1) two bats each freely behaving in isolation; (2) 

Figure 1 continued on next page
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Note that the two components can vary independently—a large (or small) ‍aM
(
t
)
‍ does not necessarily 

imply a small (or large) ‍aD
(
t
)
‍ .

Figure  1E shows the mean and difference activity components for the example session from 
Figure 1C. Visualizing the two components side-by-side, two relationships are immediately apparent. 
First, the mean component had much larger variance than the difference component. This is expected 
given the high degree of similarity in neural activity between the brains: while the variances are not 
entirely determined by inter-brain correlation, a positive correlation does mathematically imply larger 
variance for the mean compared to the difference component (see Materials and methods for details). 
Second, the difference component evolved over time at much faster timescales than the mean compo-
nent. This is even more apparent when examining the autocorrelations of the mean and difference 
components (Figure 1G), where the narrower autocorrelation of the difference indicates that it varied 
faster than the mean.

In contrast, the two-chambers sessions showed a very different picture. Figure 1F shows the mean 
and difference components for the example session from Figure 1D. Here, the variances of the two 
components were comparable, and so were their timescales, which is also apparent from their compa-
rable autocorrelations shown in Figure 1H.

We next quantified the magnitudes and timescales of the mean and difference components for 
30–150 Hz LFP power on all sessions, using variance as a measure for magnitude, and power spec-
tral centroid as a measure for timescale (Figure 1I–L). The power spectral centroid was calculated as 
follows. Given the time series of an activity component, we subtracted from it its average over time 
before calculating its power spectrum, and then computed the weighted average of the frequencies, 
where each frequency was weighted by the power at that frequency (Materials and methods). The 
relationships seen in the one-chamber example above was robust: on every one-chamber session, 
the difference component had smaller magnitudes (Figure 1I) and faster timescales (Figure 1J) than 
the mean component (note that the relative magnitudes are a reflection of inter-brain correlation). On 

two bats each freely behaving while listening to identical auditory stimuli; (3) two bats each freely behaving and interacting with a different partner in 
separate chambers. (C)-(D) Mean normalized LFP power in the 30–150 Hz band (Materials and methods), averaged across all channels for each bat, 
on an example one-chamber session (C) and an example two-chambers session (D). Shown above are the behaviors of the two bats as a function of 
time, which were manually annotated frame-by-frame from recorded video. The example two-chambers session was of the third type illustrated in (B). 
(E) The neural activity of the two bats from (C) after a change of basis, showing the mean and difference between bats. At a given time ‍t‍, the mean and 
difference components are defined as ‍
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bat 1 and bat 2 plotted in (C). Note that the mean component had a large variance, whereas the difference component had a small variance, hovering 
around zero. (F) Same as (E), but for the example session from (D). Note that the variances are more comparable between the mean and difference 
components. (G) Autocorrelations (peak-normalized) of the mean and difference components shown in (E). The autocorrelations were computed after 
subtracting from each time series its average over time. Note that the difference component varied on faster timescales than the mean component. 
(H) Same as (G), but for the example session from (D). Note that the timescales are more comparable between the mean and difference components. 
(I)-(J) Variance (I) and power spectral centroid (J) of mean normalized 30–150 Hz LFP power, for the mean and difference components. Each dot is a 
single one-chamber session (the purple dot is the session shown in (C), (E), and (G)). Variance quantifies activity magnitude, and power spectral centroid 
quantifies timescale (higher centroids mean faster timescales). Note that, on every one-chamber session, the difference component was smaller and 
faster than the mean component. The dotted lines are unity. Note that the power spectral centroid was calculated from time series of mean normalized 
LFP power (e.g., as plotted in (E)), not from time series of LFP itself. (K)-(L) Same as (I)-(J), but for two-chambers sessions. The purple dot is the session 
shown in (D), (F), and (H). The mean and difference components have comparable magnitudes and timescales in the two-chambers sessions. (M)-(P) The 
average variance ratio (mean component variance divided by difference component variance) for mean normalized 30–150 Hz LFP power (M), mean 
normalized 1–29 Hz LFP power (N), multiunits (O), and single units (P). The averages were taken across sessions for LFP power, and across unit pairs 
(pooled from all sessions) for multiunits and single units. Error bars denote standard deviations. *, p < 0.05, Wilcoxon rank sum test. (Q)-(T) Same as (M)-
(P), but for average power spectral centroid ratio (mean component centroid divided by difference component centroid). Note that, for all four neural 
signals, the difference component was smaller and faster than the mean component on one-chamber sessions. See Figure 1—figure supplements 2–4 
for examples and detailed results for 1–29 Hz LFP power, multiunits, and single units.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Neural recording location.

Figure supplement 2. Inter-brain difference and mean components: 1–29 Hz LFP power.

Figure supplement 3. Inter-brain difference and mean components: multiunit activity.

Figure supplement 4. Inter-brain difference and mean components: single unit activity.

Figure 1 continued
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two-chambers sessions, in contrast, the mean and 
difference were comparable (Figure 1K–L). These 
relationships are summarized in Figure 1M–T for 
all four neural signals: LFP power in the 30–150 Hz 
and 1–29  Hz bands, multiunits, and single units 
all showed the same significant trends (see 
Figure 1—figure supplements 2–4 for examples 
and detailed results for 1–29 Hz LFP power, multi-
units, and single units).

Thus, the inter-brain neural relationship during 
social interactions is characterized by two robust 
signatures of the mean and difference compo-
nents: their relative magnitudes (which reflects 
inter-brain correlation) and their relative times-
cales. As mentioned above, the observed relative 
magnitudes are mathematically implied by the 
presence of inter-brain correlation (Materials and 
methods). It is important to determine whether 
the observed relative timescales are also implied 
by inter-brain correlation and the observed rela-
tive magnitudes. As we show in Materials and 
methods (section ‘Surrogate data and the rela-
tionship between inter-brain correlation and 
mean and difference components’), the answer 
is no: having a given combination of correla-
tion, mean component variance, and difference 
component variance does not place constraints 
on the timescales of the two components. Specif-
ically, it does not constrain the difference to be 
faster than the mean. To explicitly demonstrate 
this, we constructed a set of surrogate data as 
a counter-example (Figure  2). The surrogate 
data was designed to have inter-brain correla-
tion, mean component variance, and difference 
component variance that are identical to the 
actual data. However, unlike the actual data, the 
surrogate data was designed to have difference 
components that were slower than the mean 
components, the opposite of what was experi-
mentally observed (Figure 2C and E). Thus, the 
relative timescales of the difference and mean 
components are not dictated by their relative 
magnitudes or by inter-brain correlation.

What, then, might explain the robust rela-
tionships observed between the timescales and 
magnitudes? And are there separate mechanisms 
responsible for the observed relative timescales 
on the one hand, and the observed relative magni-
tudes (and the related phenomenon of inter-brain 
correlation) on the other? To address these ques-
tions, we next model the observed neural activity 
to infer the computational mechanisms governing 
the inter-brain difference and mean components, 
and by extension, mechanisms underlying inter-
brain correlation.
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Figure 2. Relative timescales of the difference and 
mean components are not determined by their 
relative magnitudes or levels of inter-brain correlation. 
(A) Surrogate data generated from the actual data 
shown in Figure 1C, by combining the actual mean 
component with a surrogate difference component 
(Materials and methods). The surrogate was tailored 
such that the difference component variance and 
inter-brain correlation of the original experimental data 
were preserved (the mean component variance was 
also preserved since the actual mean component was 
used in the surrogate data). Shown above are the actual 
behaviors of the two bats replotted from Figure 1C. 
(B) The surrogate data from (A) plotted as the activity 
of its mean and difference components. The mean here 
is identical to the actual mean in Figure 1E, while the 
difference here has the same variance as the actual 
difference in Figure 1E, but with slower timescales. 
(C) The autocorrelations (peak-normalized) of the 
mean and difference components shown in (B) and of 
the actual difference component shown in Figure 1E. 
The autocorrelations were computed after subtracting 
from each time series its average over time. Note 
that for the surrogate data, the difference was slower 
than the mean, the opposite of what was observed 
experimentally. (D)-(E) Variance (D) and power spectral 
centroid (E) of mean normalized 30–150 Hz LFP power, 
for the mean and difference components of the actual 

Figure 2 continued on next page
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Model suggests a feedback 
mechanism governing inter-brain 
neural relationship
We modeled the neural activity of two bats using 
a linear differential equation (see Figure  3A 
for the equation; Dayan and Abbott, 2005). 
In the model, the neural activity variables 

interact through the functional coupling matrix 

‍

C=


 −CS CI

CI −CS




‍

, where ‍CS‍ is the strength of 

functional self-coupling and ‍CI ‍ is the strength of 

functional across-brain coupling. When modeling 

one-chamber sessions, ‍CI > 0‍, so that the activity of each bat influences the other bat’s activity. This 
functional across-brain coupling models the effects of sensorimotor interactions and attentional 
processes (Hasson et al., 2012): for example, when bat 1’s neural activity increases due to its active 
movements (Gervasoni et al., 2004; McGinley et al., 2015), the movements create sensory inputs 
to bat 2, which can drive bat 2’s neural activity to the extent that bat 2 is paying attention (Chun 
et al., 2011; Driver, 2001; Fritz et al., 2007; Reynolds and Chelazzi, 2004). On the other hand, 
when modeling two-chambers sessions, ‍CI = 0‍, so that the activity of each bat does not influence 
the other bat’s activity. Furthermore, in both one-chamber and two-chambers models, the activity of 
each bat is modulated by its own behavior, which is simulated using Markov chains based on empirical 
behavioral transition frequencies (Materials and methods). Note that the usage of the term ‘functional 
across-brain coupling’ in our model should be distinguished from the sense it is sometimes used in 
the literature to simply denote a presence of neural correlation or coherence across brains (e.g. Levy 
et al., 2017).

This model was used to simulate neural activity, which was then analyzed using the same methods 
used to analyze experimental data. The model qualitatively reproduces the experimentally observed 
neural activity patterns: simulated activity shows variability over time, modulation by behavior, and 
correlation across brains (Figure 3B; see Figure 3—figure supplement 1 for a quantitative compar-
ison between model and data). More importantly, the model also qualitatively reproduces all the 
experimentally observed relationships between the magnitudes and timescales of the difference and 
mean components, as can be seen in the activity and autocorrelation of the two components on an 
example simulation (Figure 3C–D). Specifically, the difference component had smaller magnitudes 
and faster timescales than the mean component in the one-chamber model, but not in the two-
chambers model (Figure 3C–F).

What mechanisms in the model are responsible for these results? We now analyze the model to 
answer this (see Materials and methods for the detailed analysis). The model describes the evolving 
neural activity of two bats and uses separate variables to represent the activity of each bat. This is a 
basis in which the neural activity variables are coupled to each other in the one-chamber model: the 
activity of bat 1 influences the activity of bat 2, which in turn feeds back on the activity of bat 1. It is 
much easier to understand how activity evolves if we change to a basis in which the activity variables 
are uncoupled. This basis consists of the eigenvectors of the functional coupling matrix ‍C‍. Under the 
eigenvector basis, the neural activity variables become the mean activity across bats, and the differ-
ence in activity between bats (Figure 3G). Thus, the uncoupled activity variables are precisely our 
variables of interest: the inter-brain mean and difference components. Each of the two components 
provides feedback onto itself, with feedback strengths being the eigenvalues of ‍C‍: ‍−

(
CS − CI

)
‍ for 

the mean component and ‍−
(
CS + CI

)
‍ for the difference component. In the two-chambers model, 

‍CI = 0‍, so the two components receive equal feedback. In the one-chamber model, ‍CI > 0‍, so func-
tional across-brain coupling acts as positive feedback for the mean component, which amplifies the 
mean component while slowing it down. On the other hand, functional across-brain coupling acts as 
negative feedback for the difference component, which suppresses the difference component while 
speeding it up (Figure  3H). Thus, in the model, a single mechanism—opposite feedback, that is, 

data and surrogate data. Each dot is actual data from a 
single one-chamber session (replotted from Figure 1I–
J), and each plus is surrogate data generated from 
the actual data of a single one-chamber session 
(purple dots and pluses denote the example session 
shown in Figure 1C and (A)-(C)). The dotted lines are 
unity. The surrogate data preserve the actual inter-
brain correlations (Materials and methods), as well 
as the variances of the actual mean and difference 
components (pluses in (D) are at the same positions as 
the dots), but have slower difference components than 
mean components (pluses below the unity line in (E)).

Figure 2 continued
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Figure 3. Model explains relationship between difference and mean. (A) The evolving neural activity of two bats are modeled by a linear differential 

equation. 

‍

a
(
t
)

=


 a1

(
t
)

a2
(
t
)




‍

 is the activity of bat 1 and bat 2 at time ‍t‍. 
‍

C=


 −CS CI

CI −CS




‍

 is the functional coupling matrix, where ‍CS‍ is the strength 

of functional self-coupling and ‍CI ‍ is the strength of functional across-brain coupling (note that functional across-brain coupling obviously should not 

be interpreted as direct coupling via actual neural connections). 

‍

b
(
t
)

=


 b1

(
t
)

b2
(
t
)




‍

 is the modulation of each bat’s activity by its behaviors, where the 

behaviors are simulated using Markov chains. See Materials and methods for details on the model and for the values of the parameters. (B) Simulated 
neural activity and behaviors from an example one-chamber simulation. (C) The simulated activity from (B) plotted as the activity of its mean and 
difference components. Note the smaller magnitude of the difference compared to the mean. (D) The autocorrelations (peak-normalized) of the mean 
and difference components shown in (C). The autocorrelations were computed after subtracting from each time series its average over time. Note 
that the difference varied on faster timescales than the mean. (E)-(F) The average variance ratio (E; mean component variance divided by difference 
component variance) and average power spectral centroid ratio (F; mean component centroid divided by difference component centroid), for model 
simulations (purple) or mean normalized 30–150 Hz LFP power from the data (black). The averages were taken across simulations for the model, and 
across sessions for the data. Error bars denote standard deviations. *, p < 0.05, Wilcoxon rank sum test. (G)-(H) Model mechanism. See Materials 
and methods for details. (G) Schematic illustrating a change of basis for representing the model. The model describes the neural activity of two bats 
evolving in a 2D space. Activity in this space can be represented using any choice of axes. The equation in (A) assumes the axes illustrated on the left, 

Figure 3 continued on next page
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positive feedback to the mean component and negative feedback to the difference component—
contributes to all of our observations relating the magnitudes and timescales of the mean and differ-
ence components.

We can gain a more precise understanding of the dependence of model output on functional 
coupling, by analyzing a reduced version of the model. The reduced model assumes a simplified 
structure for behavioral modulation, which allows derivation of simple analytic expressions for the vari-
ance ratio and power spectral centroid ratio of the mean and difference components (Materials and 
methods). Specifically, the variance ratio and centroid ratio can be shown to be approximately ‍

CS+CI
CS−CI ‍ 

and ‍
CS−CI
CS+CI ‍, respectively (Figure 3I–J). This simple dependence on the functional coupling parameters 

‍CS‍ and ‍CI ‍ is consistent with our analysis of the full model above: functional across-brain coupling ‍CI ‍ 
modulates the mean and difference components in opposite directions. Furthermore, it identifies the 
parameter regime in which the experimental observations lie—the parameter regime of positive ‍CI ‍ 
(Figure 3I–J).

In the full version of our model, in addition to functional coupling, behavioral modulation also 
contributes to the inter-brain relationship (the effects of behavioral modulation are analyzed in depth 
in Materials and methods and Figure 3—figure supplement 2). In particular, the tendency of bats 
to engage in the same behavior at the same time (Figure 3—figure supplement 2G) contributes to 
inter-brain correlation. This led us to ask whether this form of behavioral coordination alone is suffi-
cient to explain experimental data in the absence of functional across-brain coupling. One specific 
experimental observation suggests that the answer is no: Figure  4A, B and G show that, after 
removing time periods of coordinated behavior from experimental sessions, inter-brain correlation 
persisted. We found that our model can reproduce this phenomenon (Figure 4C, D and G). Next, 
we simulated an alternative model with behavioral coordination, but without functional across-brain 
coupling (Materials and methods). Figure 4E–G show that, in the absence of functional across-brain 
coupling, inter-brain correlation disappeared after removing time periods of coordinated behaviors. 
Thus, in the framework of our model, functional across-brain coupling is necessary to reproduce the 
experimental results.

In our model, functional across-brain coupling took a simple form: the activity variables of the two 
brains are linearly coupled. We made this modeling choice for its simplicity, but one may wonder, does 
the form of functional across-brain coupling matter, or is any form of coupling capable of reproducing 
the experimental results? While we cannot exhaustively test all alternative ways of modeling functional 
coupling, we sought to explore one alternative, the Kuramoto model, because it is a well-known 
model of coupling between oscillatory variables (Strogatz, 2000; Acebrón et al., 2005). The Kura-
moto model has been widely used to model diverse synchronization phenomena in physics, chemistry, 
and biology, including neural synchronization both within and across brains (e.g. Breakspear et al., 
2010; Cumin and Unsworth, 2007; Dumas et al., 2012; Schmidt et al., 2015). Here, we adapted 
it to model inter-brain synchronization in bats. In this model, the fluctuating neural activity of the 
interacting bats are abstracted as oscillators whose phases are dynamically coupled depending on 
their phase difference (Materials and methods). This phase-coupling mechanism is able to reproduce 

where each axis is the neural activity of one bat. After a rotation of 45 degrees, the axes now represent the mean and difference components (illustrated 
on the right), which are also the eigenvectors of the functional coupling matrix ‍C‍. (H) The neural activity variables of the two bats are coupled to each 
other (left). Changing to the eigenvector basis transforms them into uncoupled variables: the mean and difference components (right). The mean and 
difference components each provides feedback onto itself, with feedback strengths being the eigenvalues of ‍C‍, which depend on the functional across-
brain coupling ‍CI ‍. In the one-chamber model, ‍CI > 0‍, so functional across-brain coupling amplifies and slows down the mean component through 
positive feedback, and suppresses and speeds up the difference component through negative feedback. (I)-(J) The dependence of variance ratio 
(I) and power spectral centroid ratio (J) on the coupling strength parameters, for a reduced model where the behavioral modulation for the mean and 
difference components have identical, flat power spectra. The variance ratio and centroid ratio are approximately ‍

CS+CI
CS−CI ‍ and ‍

CS−CI
CS+CI ‍, respectively; thus, 

the parameter regime that qualitatively reproduces experimental observations is the regime of positive functional across-brain coupling ‍CI ‍ (delimited 
by dashed lines). The white spaces are regions of the parameter space where the model is unstable. Note that the color maps are in log scale. See 
Materials and methods for details.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Comparing actual and simulated neural activity as a function of time.

Figure supplement 2. Behavior models.

Figure 3 continued
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Figure 4. Comparing models with and without functional across-brain coupling. (A) Mean normalized LFP power in the 30–150 Hz band, averaged 
across all channels for each bat, on an example one-chamber session. Shown above are the annotated behaviors. Note that the activity of the two 
bats are highly correlated (correlation coefficient indicated above the activity traces). (B) The same data as in (A), after removing all time periods of 
coordinated behavior (i.e., time periods when both bats engaged in the same behavior). Inter-brain correlation was re-calculated and indicated above 
the activity traces. Note that the inter-brain correlation is lower than in (A), but still highly positive. (C)-(D) Same as (A)-(B), but for simulated neural 
activity and behaviors from an example one-chamber simulation of our main model. Note that inter-brain correlation remained after removing time 
periods of coordinated behavior, reproducing the experimental result. (E)-(F) Same as (C)-(D), but simulated without functional across-brain coupling. 
Specifically, the same simulated behavior and behavioral modulation ‍b

(
t
)
‍ was used as in (C)-(D); the difference from (C)-(D) is that the strength of 

functional across-brain coupling ‍CI ‍ was set to 0. Note that inter-brain correlation disappeared after removing time periods of coordinated behavior, 
unlike the experimental result. (G) Inter-brain correlation over entire sessions or after removing coordinated behavior, for data (black; mean normalized 
LFP power in the 30–150 Hz band), the main model (purple; with functional across-brain coupling), and the model without functional across-brain 
coupling (blue). The simulations of the two models were done in pairs: each simulation of the model without functional across-brain coupling used 
the same behavioral modulation (including behavioral modulation noise) as one simulation of the main model, as done in (C)-(F). Plotted are averages 
(± standard deviation) across experimental sessions or simulations. Note that functional across-brain coupling is required in the model to reproduce 
persisting inter-brain correlation after the removal of coordinated behaviors. See Materials and methods for details.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. A Kuramoto model of the inter-brain relationship.

https://doi.org/10.7554/eLife.70493
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inter-brain correlation and the relative magnitudes of the mean and difference components from the 
data; importantly, however, it does not reproduce the relative timescales of the mean and difference 
components from the data (Figure 4—figure supplement 1). This demonstrates that not all forms of 
functional coupling are equally able of reproducing the inter-brain relationship.

In summary, our main model provides a simple explanation for a set of robust, yet puzzling relation-
ships between the inter-brain mean and difference components. Namely, through opposite feedback 
to the mean and difference components, functional across-brain coupling simultaneously modulates 
both their magnitude and timescales in opposite directions—the amplification and slowing down of 
the mean and the suppression and speeding up of the difference are all manifestations of a single 
mechanism.

Testing predictions emerging from the model
In addition to explaining experimental observations, the model also makes novel predictions about 
previously unexamined aspects of the inter-brain relationship. In this section, we describe three 
predictions about disparate aspects of the inter-brain relationship: (1) correlation between neural 
activity variables defined by rotations of the two-bat activity space axes; (2) relationship between the 
difference and mean components across sessions, rather than within sessions; (3) the encoding of the 
behaviors of one bat by the neural activity of the other bat. While the three predictions are seemingly 
unrelated to one another, they are in fact all motivated by the same model mechanism of functional 
across-brain coupling. After describing each prediction, we turn back to the data to test it. If the data 
can confirm the predictions, it would support the validity of the model.

In the model, the neural activity of each bat is a variable. These two activity variables can be 
thought of as evolving within a two-dimensional space, that is, a space whose axes are the neural 
activity of each of the two bats (Figure 3G left). The evolution of activity in this space can be equiva-
lently described using alternative sets of activity variables: for example, by rotating the axes by 45°, 
the activity variables become the difference and mean components (Figure 3G right). Rotating the 
axes in this way changes not only the activity variables, but also the strength of functional coupling 
between the variables. In the one-chamber model, if we rotate the axes smoothly, the strength of 
functional coupling also changes smoothly (Figure 5A). In particular, the coupling strength is positive 
and at its maximum when the axes correspond to the activity of each bat, and it decreases to zero as 
the axes rotate by 45° (corresponding to the mean and difference components), and finally becoming 
negative as the axes rotate further (Figure 5A). After any amount of rotation, we can calculate the 
correlation between the activity variables. The model predicts that, as the axes rotate, the correlation 
between the neural activity variables would mirror the coupling strength (Figure 5B). This effect is 
not due to the changing behavioral modulation upon axes rotation, as can be seen after regressing 
out the influence of behavior from the activity (brown curve in Figure 5B; see Materials and methods 
for procedures used to regress out behavior). As we turn back to the data, we found that it clearly 
confirmed the model predictions: correlation as a function of rotation showed the same relationship as 
in the model (Figure 5C). Similarly, data from the two-chambers sessions (Figure 5F) also confirmed 
the predictions of the two-chambers model (Figure 5D–E): namely, near zero correlation across all 
axes rotation angles.

In the previous sections, we have examined in detail the relationships between the magnitudes 
and timescales of the inter-brain activity components in single sessions, but the model also makes 
predictions regarding their relationship across sessions. As described above and in Materials and 
methods, functional across-brain coupling acts as positive feedback for the mean component and 
negative feedback for the difference component, modulating both their magnitudes and timescales 
in opposite directions (Figure 3H). Thus, the model predicts that the relative magnitudes and rela-
tive timescales of the two components are tied together by this mechanism and do not vary inde-
pendently. This can be seen by plotting the relative magnitudes against the relative timescales for 
different simulations, which shows linear relationships between them (Figure 5G; see Materials and 
methods for detailed analysis of these relationships). Turning to the data, we see similar linear rela-
tionships, again confirming the predictions of the model (Figure 5H). It is important to note that these 
are very specific predictions that were not at all obvious or expected from our previous knowledge of 
the inter-brain relationship. The fact that they were verified by the data provides strong support for 
the validity of the model.

https://doi.org/10.7554/eLife.70493
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In the model, the neural activity of each bat is directly modulated by its own behavior; moreover, 
it is indirectly modulated by the behavior of the other bat, through functional across-brain coupling. 
This suggests that the neural activity of each bat should represent the behavior of the other bat 
independently from encoding its own behavior. To quantify this in the model, we first regressed out 

0 45 90
Activity axes rotation angle (degree)

-1

0

1

C
or

re
la

tio
n

Two-chambers data

0 45 90
Activity axes rotation angle (degree)

-1

0

1

C
or

re
la

tio
n

One-chamber model

Original
After regressing
out behavior

Mean

Difference

Bat 2

Bat 1

0 2 4 6 8 10 12
Variance ratio,

mean/difference

0

0.5

1

1.5

2

Po
w

er
 s

pe
ct

ra
l c

en
tr

oi
d 

ra
tio

,
m

ea
n/

di
ffe

re
nc

e

Data

Model predictions Data

A B C

0 45 90
Activity axes rotation angle (degree)

-1

0

1

C
or

re
la

tio
n

One-chamber data

D E F

0 2 4 6 8 10 12
Variance ratio,

mean/difference

0

0.5

1

1.5

2

Po
w

er
 s

pe
ct

ra
l c

en
tr

oi
d 

ra
tio

,
m

ea
n/

di
ffe

re
nc

e

Model

One-chamber sessions
Two-chambers sessions

G H

0 45 90
Activity axes rotation angle (degree)

-1

0

1

Fu
nc

tio
na

l c
ou

pl
in

g
(n

or
m

al
iz

ed
)

One-chamber model

0 45 90
Activity axes rotation angle (degree)

-1

0

1

Fu
nc

tio
na

l c
ou

pl
in

g
(n

or
m

al
iz

ed
)

Two-chambers model

0 45 90
Activity axes rotation angle (degree)

-1

0

1

C
or

re
la

tio
n

Two-chambers model

Figure 5. Testing model predictions. (A), (B), (D), (E), and (G) show model results and predictions, and (C), (F), and (H) show the corresponding data. 
(A) The neural activity of two bats can be represented in a 2D space, using any choice of axes orientation for the space. In our model, the axes 
orientation determines the strength of coupling between the activity variables represented by the axes. Here, functional coupling between the activity 
variables in the one-chamber model is plotted against the axes orientation defining the activity variables. When the activity variables correspond to the 
activity of each bat (0° rotation), functional coupling is at its positive maximum. Functional coupling decreases as the axes rotate, becoming zero when 
the activity variables correspond to the mean and difference components (45° rotation). Three orientations of the axes are illustrated below the plot. The 
plotted functional coupling was normalized by the functional coupling at 0° rotation. (B) Correlation between the activity variables in the one-chamber 
model, plotted against the orientation of the axes of the activity space that defines the activity variables. Correlations were shown both before (teal) 
and after (brown) regressing out the behaviors of both bats from each activity variable. Shading indicates standard deviation across simulations. Note 
that the shape of the correlation curves mirrors that of functional coupling shown in (A), and that regressing out behaviors changes the magnitude, but 
not the shape of the correlation curve. (C) Same as (B), but for data from one-chamber sessions. Shading indicates standard deviation across sessions. 
Note that the data confirms the model predictions from (B). (D)-(F) Same as (A)-(C), but for the two-chambers model and data. Note that the data again 
confirms model predictions. (G) Scatter plot of power spectral centroid ratio (mean component centroid divided by difference component centroid) vs. 
variance ratio (mean component variance divided by difference component variance). Each circle is a simulation (filled: one-chamber model; open: two-
chambers model). Red dashed lines are total least squares regression lines. Note that the model predicts linear relationships between the variance ratio 
and centroid ratio. See Figure 5—figure supplement 1 and Materials and methods for detailed analysis of these relationships. (H) Same as (G), but for 
the data. Note that the prediction from (G) is confirmed by the data.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Analysis of linear relationship between power spectral centroid ratio and variance ratio.
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the behavior of each bat from its own neural activity, then examined to what extent the residual 
neural activity encodes the behavior of the other bat, using the receiver operating characteristic (ROC) 
curve. The reason we first regress out each bat’s behavior is the following. If two bats happened to 
engage in the same behavior at the same times, the activity of each bat would appear to encode the 
behavior of the other bat, when it was simply encoding its own behavior. By regressing out each bat’s 
own behavior, this approach eliminates such potential spurious correlation between one bat’s activity 
and another bat’s behavior caused by coordinated behaviors between the bats. Figure 6A shows an 
example of one bat’s activity encoding the other bat’s behavior independently of its own behavior, 
and the strength of the encoding was quantified using the ROC curve in Figure 6B. Across simula-
tions, we found that the encoding of the other bat’s behavior was significantly stronger for the one-
chamber model than the two-chambers model (Figure 6C), consistent with the presence of functional 
across-brain coupling in the one-chamber model. Applying the same approach to the data, we saw 
similar neural encoding of the other bat’s behavior (example in Figure 6D, corresponding ROC curve 
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Figure 6. Testing further model predictions. (A)-(C) show model results and predictions, and (D)-(F) show the 
corresponding data. (A) Distributions of the neural activity of bat 1 conditioned on the behavior of bat 2. Bat 1’s 
behavior has been regressed out of its neural activity. Two distributions are shown from an example simulation, 
for two example behaviors by bat 2 (behavior A: probing; behavior B: resting). Note that bat 1’s activity encodes 
bat 2’s behavior independently of its own behavior. (B) The extent to which bat 1’s activity encodes the two 
behaviors of bat 2 in the example from (A) is quantified using an ROC curve, which illustrates the discriminability 
of the two distributions from (A). The area under the ROC curve is indicated above the plot (larger area indicates 
better discriminability). (C) Area under the ROC curve is averaged across all simulations, bats, and behavior 
pairs, separately for one-chamber simulations and two-chambers simulations. When using one bat’s activity to 
discriminate the other bat’s behavior, discriminability is significantly higher in one-chamber simulations. Error bars 
denote standard deviations. *, p < 0.05, Wilcoxon rank sum test. (D)-(F) Same as (A)-(C), but for mean normalized 
30–150 Hz LFP power from the data. For the example in (D), behaviors A and B are active non-social and social 
grooming, respectively. Note that the data is consistent with model predictions.
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in Figure 6E). Across all data sessions, the encoding was stronger on one-chamber sessions than two-
chambers sessions, confirming the model predictions (Figure 6F).

In summary, we tested and confirmed three disparate predictions of the model that all stem from 
the model mechanism of functional across-brain coupling. The fact that three seemingly unrelated 
experimental observations can all be explained by our model underscores its explanatory power.

Modeling inter-brain neural relationship during group social 
interactions
So far, our analysis has been exclusively focused on social interactions between two individuals. 
However, social interactions also occur among larger groups in many species, including the group-
living Egyptian fruit bats (Herzig-Straschil and Robinson, 1978; Kwiecinski and Griffiths, 1999). 
Although the inter-brain relationship between two interacting individuals have been studied exten-
sively, the inter-brain relationship among larger social groups have received far less attention (but see 
Dikker et al., 2017; Rose et al., 2021). While there are many open questions regarding the group 
inter-brain relationship, in the context of the current study, we ask two questions that are natural 
extensions of our two-bat findings. First, can the opposite feedback mechanism be generalized to 
the larger group context? Second, what would such a mechanism predict about the group inter-brain 
relationship? To answer these questions, we extended our model to larger groups, which offered 
direct predictions regarding the group inter-brain relationship. We then tested these predictions using 
social group data in bats.

To extend the two-bat model to interactions among a group of ‍n‍ bats, we used the same equation 
shown in Figure 3A, except that the activity ‍a‍ and behavioral modulation ‍b‍ are now ‍n‍-dimensional 
rather than 2-dimensional, and the functional coupling matrix ‍C‍ is similarly ‍n × n‍. As in the two-bat 
model, the activity of each bat in the ‍n‍-bat model is influenced by the same functional self-coupling 

‍−CS‍ , and the activity of each pair of bats are functionally coupled with the same positive coupling ‍CI ‍.
The mechanism that governs the two-bat model naturally generalizes to the ‍n‍-bat model (see 

Materials and methods for details). For the ‍n‍-bat model, the mean component corresponds to 
the mean activity across all bats. On the other hand, a difference subspace takes the place of the 
difference component of the two-bat model. In ‍n‍-bat activity space, the difference subspace is the 

‍
(
n − 1

)
‍-dimensional subspace orthogonal to the direction of the mean component (Figure 7B). This 

subspace contains all inter-brain activity patterns that correspond to activity differences across any of 
the brains. Similar to the two-bat model, functional across-brain coupling acts as positive and negative 
feedback to the ‍n‍-bat mean component and the difference subspace, respectively, amplifying and 
slowing down the ‍n‍-bat mean component while suppressing and speeding up activity patterns in the 
difference subspace.

The opposite feedback mechanism in the ‍n‍-bat model thus gives rise to predictions that can be 
tested experimentally. Specifically, one prediction is that activity patterns in the difference subspace 
would have smaller magnitudes than the ‍n‍-bat mean component: as we show using simulations of a 
4-bat model, the average variance of the difference subspace is smaller than the variance of the 4-bat 
mean component (Figure 7C). Another prediction is that activity patterns in the difference subspace 
would have faster timescales than the ‍n‍-bat mean component: 4-bat simulations show that the 
difference subspace has a higher average power spectral centroid than the 4-bat mean component 
(Figure 7D). Finally, similar to the two-bat model (see Figure 5A–B), correlation between activity vari-
ables depends on their functional coupling. In particular, the positive functional across-brain coupling 
between the activity of different bats would give rise to positive inter-brain correlations for each pair 
of bats within the group; on the other hand, the mean component is not functionally coupled with 
activity patterns in the difference subspace, so they would therefore be uncorrelated. This prediction 
is illustrated in Figure 7E using simulations of a 4-bat model.

Next, we tested these predictions using experimental data collected from a group of socially inter-
acting bats. In this data set, neural activity was simultaneously and wirelessly recorded from the frontal 
cortices of four bats while they interacted in a chamber, under the same condition as the one-chamber 
sessions described above (Rose et al., 2021). As with the two-bat experiment, we focused on LFP 
power in the 30–150 Hz band. Applying the same analyses used for the 4-bat model simulations in 
Figure 7C–E, we found that the data qualitatively confirmed all model predictions: activity patterns 
in the difference subspace had smaller magnitudes (Figure  7F) and faster timescales (Figure  7G) 

https://doi.org/10.7554/eLife.70493
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Figure 7. Group inter-brain relationship: model predictions and experimental tests. (A) The two-bat model 
can be generalized to model the neural activity of a group of more than two socially interacting bats (the ‍n‍-bat 
model). (B) The mechanism underlying the ‍n‍-bat model, illustrated for the case of ‍n = 3‍ bats (three was chosen 
here only because higher-dimensional spaces cannot be illustrated). Shown are the mean component and the 
difference subspace in the activity space of ‍n‍ bats. The mean component, corresponding to the mean activity 
across all bats, is a vector pointing towards the first octant. The difference subspace is the ‍

(
n − 1

)
‍-dimensional 

subspace orthogonal to the direction of the mean component, and it contains all inter-brain activity patterns that 
correspond to activity differences across brains. Similar to the two-bat model, functional across-brain coupling acts 
as positive feedback to the ‍n‍-bat mean component, amplifying it and slowing it down; and as negative feedback 
to activity patterns in the difference subspace, suppressing them and speeding them up. (C)-(E) Model predictions 
from simulations of an ‍n‍-bat model where ‍n = 4‍. Plotted are averages (± standard deviation) across simulations. 
(C) Model predictions on the variance of the mean component and the average variance of the difference 
subspace (total variance in the difference subspace divided by ‍n − 1‍). (D) Model predictions on the power spectral 
centroid of the mean component and the average power spectral centroid of the difference subspace (averaged 
across the power spectral centroids of activity in 1000 random directions in the difference subspace for a given 
simulation). (E) The model predicts positive inter-brain correlation and zero average correlation between the mean 
component and activity patterns in the difference subspace. Here, for each simulation, inter-brain correlation 
was averaged across all pairs of bats, and average correlation was calculated between the mean component 
and activity in 1000 random directions in the difference subspace. (F)-(H) Experimental tests. Neural activity was 

Figure 7 continued on next page
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than the 4-bat mean component, there was positive inter-brain correlation between bats in the group 
(Figure 7H), and there was no correlation between the 4-bat mean component and activity patterns 
in the difference subspace (Figure 7H). Note that the 4-bat experimental data and the model predic-
tions differ quantitatively, because the 4-bat model did not include realistic behavioral modeling as 
did the two-bat model (Materials and methods).

In conclusion, we modeled the group inter-brain relationship and experimentally confirmed the 
model predictions. Through this, we found that the opposite feedback mechanism is not restricted to 
pair social interactions, but naturally generalizes to larger social groups.

Discussion
Here we studied the inter-brain relationship between socially interacting bats, by analyzing the mean 
and difference between the bats’ neural activity. We found that the difference in activity has smaller 
magnitudes and faster timescales than the mean, which is a robust neural signature of social inter-
actions. We reproduced this finding using a simple model, which suggests a specific computational 
mechanism shaping the inter-brain neural relationship: functional coupling across brains acting as 
opposite feedback to the difference and mean activity components. This mechanism gave rise to 
a number of predictions, which we then confirmed using experimental data from bats engaging in 
paired and group social interactions. Furthermore, this mechanism has broad explanatory power, and 
can account for a range of previously observed features of the inter-brain neural relationship, as we 
discuss below.

First, it is well known that neural activity is correlated between the brains of socially interacting indi-
viduals, in mice, bats, and humans (e.g. Dikker et al., 2014; Kingsbury et al., 2019; Kinreich et al., 
2017; Levy et al., 2017; Montague et al., 2002; Piazza et al., 2020; Spiegelhalder et al., 2014; 
Stolk et al., 2014; Zadbood et al., 2017; Zhang and Yartsev, 2019). Through negative feedback to 
the difference component, functional across-brain coupling suppresses the inter-brain difference and 
keeps it small. At the same time, positive feedback to the mean component amplifies the common 
activity covariation between brains, so that the neural activity in each is dominated by their common 
activity pattern. Together, these would result in the inter-brain correlation observed during social 
interactions in diverse species.

Second, in a shared social environment, neural correlation across brains is above and beyond what 
would be expected from behavioral coordination between individuals (Kingsbury et al., 2019; Piazza 
et al., 2020; Zhang and Yartsev, 2019). This can be understood because, through opposite feedback 
to the difference and mean components, functional across-brain coupling contributes to correlation 
independently from behavioral coordination. As a consequence of this, even in the absence of behav-
ioral coordination, the opposite feedback results in correlation across brains in the model (Figure 4), 
consistent with previous experimental observations (Kingsbury et  al., 2019; Piazza et  al., 2020; 
Zhang and Yartsev, 2019).

Third, the neural correlation between socially interacting individuals varies as a function of times-
cale: correlation across brains is higher for activity at slower timescales, and lower for activity at faster 
timescales (Kingsbury et al., 2019; Zhang and Yartsev, 2019). This would be a natural consequence 
of the opposite feedback mechanism. Positive feedback to the mean amplifies it and slows it down, 
while negative feedback to the difference suppresses it and speeds it up. Thus, at slower timescales, 
the activity of the two brains is dominated by the mean component, that is, the activity of the two 
brains are very similar at slower timescales and thus have higher correlations. On the other hand, at 
faster timescales, the increasing presence of the difference component lowers the correlation across 
brains.

simultaneously recorded from the frontal cortices of four bats while they interacted in a chamber, under the same 
condition as the one-chamber sessions from Figure 1A. Mean normalized 30–150 Hz LFP power from the four bats 
were analyzed using the same methods as in (C)-(E). Note that the experimental results confirm the qualitative 
trends from the model predictions (although the data differ quantitatively from the predictions; see Materials and 
methods). *, p < 0.05, Wilcoxon signed rank test.

Figure 7 continued

https://doi.org/10.7554/eLife.70493


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Zhang et al. eLife 2022;11:e70493. DOI: https://doi.org/10.7554/eLife.70493 � 16 of 36

In summary, our model offers a particularly simple explanation for diverse aspects of the inter-brain 
neural relationship during both pair and group social interactions, including: (1) neural correlation 
across brains and the relative magnitudes of inter-brain mean and difference components (Figure 3E; 
Figure  7F and H); (2) neural correlation beyond behavioral coordination; (3) neural correlation as 
a function of timescale; (4) the relative timescales of inter-brain mean and difference components 
(Figure  3F; Figure  7G); (5) correlation between activity variables under rotated activity bases 
(Figure 5B–C); (6) the relationship between the magnitudes and timescales of activity components 
across sessions (Figure  5G–H); and (7) modulation of one bat’s neural activity by the behavior of 
another bat (Figure 6). Importantly, there is no reason a priori to suspect that these disparate obser-
vations are all related; only in light of the model is it apparent that they are all manifestations of a 
single underlying computational mechanism. Collectively, these results thus suggest opposite feed-
back to the difference and mean as a unifying computational mechanism governing the inter-brain 
relationship during social interactions. This points to a major avenue of future research: elucidating the 
biological implementation of this computational mechanism. Such research will likely involve studying 
the distributed neural circuits mediating sensorimotor interactions and attentional processes during 
social interactions, to understand how they might functionally act as opposite feedback to the inter-
brain difference and mean components. To do so, a relevant experiment is to record from multiple 
brain regions and examine how signals related to social interactions are transformed across regions. 
This will also reveal the extent to which inter-brain correlation varies across regions, allowing compar-
ison to the human literature, where variations across brain structures have long been studied using 
EEG and fMRI.

Another important future direction is comparative studies of the inter-brain relationship to eluci-
date similarity and differences across species. So far, this has been studied in three non-human species: 
bats, mice (Kingsbury et al., 2019), and birds (Hoffmann et al., 2019). While bats and mice showed 
qualitatively similar inter-brain relationships, birds were different, showing anti-correlated neural 
activity across brains during a duetting behavior (Hoffmann et  al., 2019). It would be interesting 
to study the inter-brain relationship in species with different levels of sociality and different types of 
social behaviors, for exmple, solitary animals that only socially interact for mating, or animals that 
live in large groups. Such comparative studies, with careful behavioral quantification, would identify 
neural mechanisms that underlie social interactions in general versus species-specific social behav-
iors. Moreover, the analytic and modeling methods used here can be easily applied to other species, 
enabling comparison across species under the same framework. In particular, studying the timescales 
of inter-brain activity patterns during different social behaviors in different species could lead to a 
more general understanding of functional across-brain coupling.

Further future directions are motivated by the limitations of our model. For simplicity, our model 
took functional across-brain coupling to be static, that is, taking the same functional form and having 
the same strength independent of the bats’ behaviors. In reality, the coupling is mediated through 
behavioral interaction between the bats. Thus, it is likely dynamic, taking different forms and varying in 
strength depending on the bats’ dynamic behaviors. For example, when one bat is actively grooming 
another passively resting bat, functional coupling might be asymmetric between them, stronger in 
one direction than the other. Conversely, when two bats are fighting with each other, their functional 
coupling might be more symmetric. Furthermore, the timescales of functional coupling could also 
vary: different behaviors might couple neural activity with different time courses and delays. Future 
study focusing on specific behaviors (e.g. grooming, fighting, etc.), with fine-timescale behavioral 
tracking (Mathis et al., 2018; Pereira et al., 2019), will be needed to identify the detailed behavior-
specific dynamics of functional across-brain coupling.

Another limitation of our model is the ‘open-loop’ nature of the relationship between behavior and 
neural activity. Specifically, we modeled neural activity as being modulated by behavior, but behavior 
was modeled using a Markov chain that is independent from the neural activity. In reality, neural 
activity and behavior form a closed-loop, with different social behaviors being controlled by the neural 
activity of specific neural populations in specific brain regions. Thus, an important future direction is to 
close the loop by incorporating neural control of social behaviors into models of the inter-brain rela-
tionship in bats. This will require future experimental studies to identify which frontal cortical regions 
and populations in bats are necessary or sufficient to control social behaviors, as well as the detailed 
causal relationship from neural activity to social behavior. Furthermore, as social interactions can occur 
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at multiple timescales, it will be interesting to investigate how these are controlled by neural activity 
at different timescales, and how those timescales are shaped by functional across-brain coupling. In 
summary, such a closed-loop model will shed light on how inter-brain activity patterns and dynamic 
social interactions co-evolve and feedback onto each other.

Materials and methods
Request for resources
Further information and requests for resources should be directed to Michael M. Yartsev (​myartsev@​
berkeley.​edu).

Experimental and data processing methods
The data analyzed in this study have been previously published in Zhang and Yartsev, 2019 and 
Rose et al., 2021. The details of experimental methods and data processing methods for the two-bat 
social interaction experiments were published in Zhang and Yartsev, 2019; the details for the group 
social interaction experiments were published in Rose et al., 2021; therefore, here we present a brief 
summary of the published methods. All data processing was performed using MATLAB (MathWorks).

Experimental subjects
Data was collected from eight adult male Egyptian fruit bats (Rousettus aegyptiacus). All procedures 
were approved by the Animal Care and Use Committee of UC Berkeley.

Experimental setup
Experiments were conducted inside 40.6 × 33.7 × 52.1 cm (length × width × height) cages, placed 
in dark chambers. High-speed infrared video cameras (Flea3 or Chameleon3, FLIR) were used to 
record videos of the bats, and ultrasonic microphones (USG Electret Ultrasound Microphone, Avisoft 
Bioacoustics) were used to record audio.

The experiments included one-chamber sessions and two-chambers sessions. In the one-chamber 
sessions, bats behaved freely and interacted with each other inside a chamber. In the two-chambers 
sessions, bats behaved freely in separate, identical chambers. There were three types of two-chambers 
sessions: (1) two bats each freely behaving in isolation; (2) two bats each freely behaving in the pres-
ence of identical auditory stimuli (playback of bat calls); (3) two bats each freely behaving and inter-
acting with a different partner in separate chambers.

Behavior annotation
For the two-bat experiments, the behaviors of the bats were manually annotated by experienced 
observers. The annotated behaviors and their definitions are as follows.

•	 Resting. A bat hanging by its feet, with its head and body still.
•	 Active non-social. A bat engaging in any kind of active behavior that does not involve social 

interaction, including: the bat hanging by its feet or feet and thumbs, and moving its head or 
body; the bat climbing or crawling around; the bat shaking its body; the bat jumping or flying 
off from the roof of the cage.

•	 Self-grooming. A bat either licking or scratching itself.
•	 Social grooming. A bat either licking or scratching another bat.
•	 Probing. A bat poking its snout at the head or body of another bat.
•	 Fighting. A bat moving its wings or thumbs to quickly hit another bat, or biting another bat.
•	 Mating. A male bat inserting or attempting to insert its penis into a female bat’s vagina.
•	 Wing covering. A bat struggling with another bat in order to cover the other bat’s body with 

its opened wings.
•	 Reaching. A bat attempting to reach over the body or wings of another bat with its head or 

thumbs.
•	 Blocking. A bat using its wings to actively block another bat from accessing a location.
•	 Other interactions. Any social interaction other than the ones already defined.

https://doi.org/10.7554/eLife.70493
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Surgery
Anesthesia and surgery were performed as described previously in Yartsev and Ulanovsky, 2013 to 
implant the bats with four-tetrode microdrives (Harlan 4 Drive, Neuralynx). To target the frontal cortex, 
the center of craniotomy was positioned at 1.7 mm lateral to the midline and 12.19 mm anterior to the 
transverse sinus located between cortex and cerebellum.

Electrophysiological recording
Electrophysiology was performed using a wireless neural data logging system (Neurolog-16 and 
MouseLog-16, Deuteron Technologies). Tetrodes were advanced ventrally every one to two days 
(mostly by 20–160 µm), to record activity at different sites.

Histology
To determine the neural recording sites, we performed histology as previously described (Yartsev and 
Ulanovsky, 2013), using Nissl staining.

Preprocessing of electrophysiological data
To obtain LFP, we low-pass filtered the raw voltage traces (cut-off frequency: 200 Hz), and then downs-
ampled it to 496.6 Hz (the two-bat experiments) or 520.8 Hz (the four-bat experiments).

We detected spikes from band-pass filtered (600–6000 Hz) voltage traces using threshold crossing. 
Spike sorting was done automatically using SNAP Sorter (Neuralynx), then manually checked using 
SpikeSort3D (Neuralynx). For each tetrode on each session, all spikes not assigned to single units were 
grouped into a multiunit. All units with firing rate below 2 Hz were excluded from further analysis.

Calculation of LFP spectrograms
To calculate LFP spectrograms, power spectra were calculated using the multitaper method for 
5 s sliding windows of the LFP trace, with 2.5 s overlap between consecutive windows. To analyze 
different frequencies of the LFP on equal footing, we separately peak-normalized the power at each 
frequency for each spectrogram.

Calculation of firing rates
Firing rates for single units and multiunits were computed in 5  s bins with 2.5  s overlap between 
consecutive bins.

Dimensionality reduction of LFP
Previously, we found that the spectrograms of bat frontal cortical LFP can be reduced to two signals, 
power in the 1–29 Hz band and the 30–150 Hz band (Zhang and Yartsev, 2019). To analyze these 
signals, for a given normalized LFP spectrogram (with power peak-normalized for each frequency), 
we averaged the normalized power values across 1–29 Hz and across 30–150 Hz at each time bin. 
This is the ‘mean normalized LFP power’ used for all analyses in this paper involving LFP power (e.g. 
Figure 1C).

Analysis and modeling
All analysis and modeling were performed using MATLAB (MathWorks).

Statistical tests
The statistical tests used are stated in the figure legends. A significance level of 0.05 was used for all 
tests. Tests were two-tailed unless otherwise indicated.

Inter-brain difference and mean components: definition and quantification

The neural activity of two bats can be represented as a two-dimensional vector 

‍


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(
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
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‍

, where 

‍a1
(
t
)
‍ and ‍a2

(
t
)
‍ are the neural activity (normalized LFP power, multiunit activity, or single unit activity) 

of bat 1 and bat 2 at time ‍t‍, respectively. Through a change of basis, the same activity can be 
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represented under another orthogonal basis as the mean and difference between the two brains: 
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brains.
To quantify the magnitude of an activity component on a given session, we computed the variance 

of its time series over the session. To quantify the timescales of an activity component on a given 
session, we computed its power spectral centroid as follows. Given the time series of an activity 
component over the session, we subtracted from it its average over time, multiplied it with a Hamming 
window, and then computed the periodogram estimate of its power spectrum. The power spectral 
centroid is then computed as a weighted average of frequency, with the power at each frequency 
as its weight. A higher power spectral centroid means that the activity has more power at higher 
frequencies, so that the time series varied at faster timescales. Note that the power spectral centroid 
was always calculated from time series of mean normalized LFP power or firing rate, and not from time 
series of LFP itself.

Surrogate data and the relationship between inter-brain correlation and 
mean and difference components
In our data from one-chamber sessions, the mean component had large magnitudes and slow times-
cales, and the difference component had small magnitudes and fast timescales. The relative magni-
tudes of the two components are expected, given that activity from the two bats showed similar 
patterns over time (Figure 1C), with high positive inter-brain correlations (Zhang and Yartsev, 2019); 
as explained below, a positive correlation mathematically implies larger variance for the mean compo-
nent compared to the difference component. What about their timescales? Are the observed relative 
timescales of the two components necessary mathematical consequences of high inter-brain correla-
tions, large mean components, and small difference components?

To answer this, we examine the relationship between inter-brain correlation and the mean and 
difference components. Let’s use ‍A1‍, a column vector, to denote the activity of bat 1 during a session, 
and similarly, ‍A2‍ for the activity of bat 2. ‍A1‍ and ‍A2‍ are ‍N ‍-dimensional vectors, where ‍N ‍ is the number 
of time points in the session. The activity of the mean component is ‍AM =

(
A1 + A2

)
/2‍, and the activity 

of the difference component is ‍AD =
(
A1 − A2

)
/2‍. We use ‍̂A1‍ to denote the mean-subtracted version 

of ‍A1‍ (here ‘mean-subtracted’ refers to subtracting the average across the elements of a vector, that 
is, across time, not to be confused with the average across bats, as in the ‘mean component’), and 
similarly, ‍̂A2‍, ‍̂AM‍, and ‍̂AD‍ for mean-subtracted versions of the respective vectors. Then, the Pearson 
correlation coefficient between the activity of two brains is:

	﻿‍
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ÂT

2 Â2
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‍N ‍ times the variance of the mean component, and ‍̂A
T
DÂD‍ is ‍N ‍ times the variance of the difference 

component. A positive correlation requires the numerator in equation (1) to be positive, in other 
words, the mean component having larger variance than the difference component, as stated above.

Equation (1) also shows that having a given combination of correlation, mean component vari-
ance, and difference component variance does not place constraints on the timescales of the mean 
and difference components. Specifically, it does not constrain the difference component to be faster 
than the mean. To explicitly demonstrate this, we generated surrogate data with identical inter-brain 
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correlation, mean component variance, and difference component variance as actual data, but having 
a slower difference component than the mean component (Figure 2).

The surrogate data in Figure 2A–C were generated from the actual 30–150 Hz LFP power data 
of the example session shown in Figure 1C, by keeping the mean component of the actual data, 
and replacing the difference component with a surrogate, using the following procedure. Below we 
denote the actual data by ‍AD‍, ‍̂AD‍, etc. as above, and denote their surrogate counterparts by ‍SD‍, 

‍̂SD‍, etc. We generated a random ‍N × 1‍ activity vector by picking each element independently from 
the uniform distribution between 0 and 1, smoothed it with a 1000-second moving average filter, 
and subtracted from it the average across its elements. Let’s call the resulting vector ‍̂R‍. Due to the 
smoothing, ‍̂R‍ varied on slow timescales. We then found the component of ‍̂R‍ that is orthogonal to 

‍̂AM : R̂O = R̂ − [(R̂TÂM)/(ÂT
MÂM)]ÂM‍. Next, we constructed a vector ‍̂S

′
D‍ as a linear combination of ‍̂AM‍ 

and ‍̂RO : Ŝ′
D =‍ ‍cot[arccos(ÂT

MÂD/
√

ÂT
MÂMÂT

DÂD)]ÂM/
√

ÂT
MÂM ‍ ‍+R̂O/

√
R̂T

OR̂O ‍. The surrogate for ‍̂AD‍ is the 

vector ‍̂SD‍, obtained by scaling ‍̂S
′
D‍ to have the same vector norm as ‍ÂD : ŜD = (

√
ÂT

DÂD/
√

Ŝ′T
D Ŝ′

D)Ŝ′
D‍. The 

surrogate difference component is then ‍SD = ŜD + ĀD‍, where every element of the vector ‍̄AD‍ is equal 
to the average across the elements of ‍AD‍. The surrogate activity of bat 1 and bat 2 are, respectively, 

‍S1 = AM + SD‍ and ‍S2 = AM − SD‍. This procedure ensures that ‍̂S
T
DŜD = ÂT

DÂD‍ and 
‍

(
ÂT

MŜD

)2
=
(

ÂT
MÂD

)2

‍
, 

so that the surrogate data had identical inter-brain correlation, mean component variance, and differ-
ence component variance as the actual data from which it was generated. Note that here we chose to 
leave the mean component ‍AM‍ from the actual data unchanged in generating the surrogate data, so 
that the surrogate ‍S1‍ and ‍S2‍ show qualitatively similar behavioral modulation over time as the actual 
data ‍A1‍ and ‍A2‍, but it is also possible to replace both ‍AM‍ and ‍AD‍ with surrogate counterparts.

For Figure 2D–E, we repeated the above procedure for each of the one-chamber sessions from the 
actual data set, using the actual 30–150 Hz LFP power data.

Modeling: procedure
Our goal of modeling was to reproduce the observed relationship between difference and mean 
components using a model that is simple and parsimonious, in order to unambiguously identify the 
underlying computational mechanisms. We modeled the time evolution of the neural activity of two 
bats using the following differential equation:

	﻿‍ τ
da

(
t
)

dt = Ca
(
t
)

+ b
(
t
)
‍� (2)

 

Here, ‍τ ‍ is a time constant; ‍t‍ is time; 

‍

a
(
t
)

=


 a1

(
t
)

a2
(
t
)




‍

 is the activity of bat 1 and bat 2 at time 

‍t‍; 
‍

C=


 −CS CI

CI −CS




‍

 is the functional coupling matrix, where ‍CS‍ is the strength of functional self-

coupling and ‍CI ‍ is the strength of functional across-brain coupling; 

‍

b
(
t
)

=


 b1

(
t
)

b2
(
t
)




‍

 is the strengths 

of behavioral modulation, where ‍b1
(
t
)
‍ is the modulation of the neural activity of bat 1 by the behavior 

of bat 1 at time ‍t‍, and similarly for ‍b2
(
t
)
‍ .

The functional across-brain coupling term, ‍CI ‍, represents the indirect influence (as opposed to 
direct influence from an actual neural connection) one bat’s neural activity has on the other bat’s 
neural activity. For one-chamber sessions, ‍CI > 0‍, which models positive functional coupling when the 
two bats share a social environment (Hasson et al., 2012). For example, when bat 1’s neural activity 
(say, 30–150 Hz LFP power) increases due to its active movements (Gervasoni et al., 2004; McGinley 
et al., 2015), the movements create sensory inputs to bat 2, which can increase bat 2’s neural activity 
to the extent that bat 2 is paying attention (Chun et al., 2011; Driver, 2001; Fritz et al., 2007; Reyn-
olds and Chelazzi, 2004). For two-chambers sessions, ‍CI = 0‍ since the two bats are separated. To 
ensure stability (so that neural activity do not go to infinity), ‍−CS‍ must be negative and must have a 
larger absolute value than ‍CI ‍ ; thus, ‍0 ≤ CI < CS‍ .

To generate ‍b
(
t
)
‍ for a simulation, we first simulated the bats’ behaviors using a Markov chain. Each 

state of the Markov chain corresponds to the behaviors of the two bats at a given time: for example, 
bat 1 resting and bat 2 self-grooming would be one state. For the Markov chain for one-chamber 
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sessions, the transition probability matrix, initial distribution, and state space were determined as 
follows. The transition probability from one state to another is taken to be the empirical frequency of 
that transition during all one-chamber sessions. To calculate the empirical frequency, the behavior of 
each bat was sampled every 2.5 s, at the same time points as the neural activity (i.e. the center time 
point of each window used to calculate LFP power). A transition was counted for each consecutive 
pair of time points (in the rare instances where a bat engaged in multiple behaviors at the same time 
point, one transition was counted for each of the simultaneous behaviors). The initial distribution was 
taken to be the distribution of the behavioral state at the first time point of each one-chamber session. 
For these calculations, the two bats were assumed to be symmetrical, in the following sense. Using 
‘AB’ to denote the state of ‘bat 1 engaging in behavior A, bat 2 engaging in behavior B’, we consider 
the transitions ‘AB→CD’ and ‘BA→DC’ to have the same transition probability. When calculating the 
empirical transition frequencies, the count for ‘AB→CD’ and the count for ‘BA→DC’ were each taken 
to be the sum of the actual counts for ‘AB→CD’ and ‘BA→DC’. This applied also to states where both 
bats were engaging in the same behavior: for exmple, the count for the transition ‘AA→AA’ was taken 
to be double the actual count. This symmetry assumption was made for simplicity, and to allow behav-
ioral data from different pairs of bats to be pooled together. Once the empirical transition frequencies 
were calculated, if there were less than 100 transitions from a given state, then that state was excluded 
from the state space. The same procedures were used to determine the transition probability matrix, 
initial distribution, and state space for the two-chambers Markov chain. The transition probability 
matrices for one-chamber and two-chambers sessions are shown in Figure 3—figure supplement 
2C-D.

For each simulated session, we simulated the bats’ behaviors for 100 minutes using the Markov 
chain (with 2.5 s between steps, the behavioral sampling period used when calculating the empir-
ical transition frequencies). The first state of each simulated session was drawn randomly from the 
appropriate initial distribution. From the simulated behaviors, ‍b

(
t
)
‍ was determined at the discrete 

time points of the Markov chain steps (at integer multiples of 2.5 s). At the time point of a given 
Markov chain step, say ‍t1‍, ‍b

(
t1
)
‍ was the sum of the noiseless deterministic behavioral modulation 

‍bd
(
t1
)
‍ and the behavioral modulation noise ‍bn

(
t1
)
‍. ‍bd

(
t1
)
‍ depended on the behaviors of the two 

bats at time ‍t1‍. For example, if bat 1 was resting and bat 2 was engaging in self-grooming at time ‍t1‍, 

then 

‍

bd
(
t1
)

=


 bresting

bself−grooming


 + bconstant

‍

, where ‍bresting‍ and ‍bself−grooming‍ are parameters specifying 

the level of behavioral modulation associated with the two behaviors, and ‍bconstant‍ is a constant offset 
that differs between the one-chamber and two-chambers models, reflecting the effects of the general 
level of arousal that differs between the two conditions. See section ‘Modeling: parameters’ below 
for the parameter values for all the behaviors and ‍bconstant‍. For the behavioral modulation noise, the 
two elements (for the two bats) of ‍bn

(
t1
)
‍ was each drawn independently from a Gaussian distribution 

with zero mean and standard deviation ‍σn‍. After determining ‍b
(
t
)

= bd
(
t
)

+ bn
(
t
)
‍ at the discrete time 

points of the Markov chain steps, ‍b
(
t
)
‍ at time points in-between were linearly interpolated.

Having simulated the behaviors and generated ‍b
(
t
)
‍ for a 100 minute session, we set the initial 

condition ‍a
(
0
)
‍ to be the fixed point under the initial noiseless behavioral modulation ‍bd

(
0
)
‍: 

‍a
(
0
)

= −C−1bd
(
0
)
‍. Then, equation (2) was numerically integrated (ode45 function in MATLAB) to 

simulate neural activity ‍a
(
t
)
‍. The only differences between simulations of one-chamber and two-

chambers sessions were the value of ‍CI ‍ and the behavior transition probability matrix. For analyses 
and figures involving ‍a

(
t
)
‍, ‍b

(
t
)
‍, ‍bd

(
t
)
‍, and ‍bn

(
t
)
‍ (Figures 3–7 and their figure supplements), we used 

their values taken at discrete time points corresponding to the Markov chain steps (i.e. same sampling 
period as the data).

Modeling: comparing behavior models
As described in the previous section, we modeled the behavior of the bats using a Markov chain. To 
justify this choice, we tested the Markov assumption by comparing three behavior models, including 
the Markov chain model we used. The first model is the independent model, where the behavioral 
state at a given time point is independent from the state at other time points. The second model 
is the first-order dependency model, where the behavioral state at a given time point depends on 
the state at the previous time point only; this was implemented as a part of our main model in the 
previous section, and it corresponds to the Markov assumption. The third model is the second-order 
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dependency model, where the behavioral state at a given time point depends on the states at the 
two previous time points. Models with longer time-dependencies (≥ 3) were not tested because the 
number of parameters grows exponentially with model order and cannot be fitted with our dataset.

The three models were each fitted separately for the one-chamber and two-chambers sessions. 
Each type of sessions was split into a training set and a test set of sessions (80% of the sessions for 
training and 20% for test). The models were fit by setting the probabilities or conditional probabilities 
of behaviors to the empirically observed frequencies (Laplace smoothing was used to avoid assigning 
zero probability to unobserved events). Then, the log-likelihood of the test set under each model was 
calculated. This procedure was repeated for 100 random splits of the data into training and test sets, 
and the log-likelihoods are shown in Figure 3—figure supplement 2A, B.

As shown in Figure 3—figure supplement 2A, B, the first-order model had the highest likelihood 
on average. This does not necessarily prove that bat behavior obeys the Markov assumption (e.g. 
given more data, it is possible that better second-order and higher order models could be fit). But it 
does mean that, given the amount of data we have, the best behavior model that we can fit is the first-
order Markov chain, supporting its use in our main model described in the previous section.

Modeling: comparing actual and simulated neural activity as a function of 
time
To compare neural activity as a function of time between the data and the model, we simulated our 
model using experimentally observed behaviors. In other words, rather than generating ‍b

(
t
)
‍ from 

behaviors simulated using a Markov chain, we generated ‍b
(
t
)
‍ based on the actual behaviors observed 

on a given experimental session. Neural activity was then simulated and compared to the actual neural 
activity on that experimental session. To quantify how well the model reproduces neural activity over 
time, we calculated the correlation between simulated and actual neural activity for each session 
and each bat: the average correlation over all sessions and bats is 0.72 (standard deviation 0.10). An 
example session is shown in Figure 3—figure supplement 1.

Modeling: magnitudes and timescales of mean and difference components
How is the model able to reproduce the set of experimental observations relating the magnitudes 
and timescales of the mean and difference components (Figure 3E–F)? To understand the mech-
anisms in the model, we examine equation (2). In general, in equations of this form, the activity 
variables are coupled: for example, in the one-chamber model, the activity of bat 1 ‍a1

(
t
)
‍ influences 

the activity of bat 2 ‍a2
(
t
)
‍, which in turn feeds back on ‍a1

(
t
)
‍. It is easier to understand how the 

activity evolves if we express the equation in a basis in which the activity variables uncouple. This 
basis consists of the eigenvectors of the functional coupling matrix ‍C‍. The eigenvectors of ‍C‍ are 

‍


1

1




‍

 and 

‍


 1

−1




‍

, with respective eigenvalues ‍−CS + CI ‍ and ‍−CS − CI ‍. We define ‍V ‍ to be the matrix 

whose columns are the eigenvectors: 

‍

V=


 1 1

1 −1




‍

. Expressed in the eigenvector basis, the 

activity variables become the mean activity across bats, and the difference in activity between bats: 

‍

V−1


 a1

(
t
)

a2
(
t
)


 = 1

2


 a1

(
t
)

+ a2
(
t
)

a1
(
t
)
− a2

(
t
)


 =


 aM

(
t
)

aD
(
t
)




‍

. Thus, the uncoupled activity variables are 

precisely what we are interested in: the mean and difference components. Similarly, in the eigenvector 
basis, the behavioral modulation variables are the mean behavioral modulation and the difference 

in behavioral modulation: 

‍

V−1


 b1

(
t
)

b2
(
t
)


 = 1

2


 b1

(
t
)

+ b2
(
t
)

b1
(
t
)
− b2

(
t
)


 =


 bM

(
t
)

bD
(
t
)




‍

. Thus, in the eigen-

vector basis, equation (2) is

	﻿‍

τ d
dt


 aM

(
t
)

aD
(
t
)


 =


 −CS + CI 0

0 −CS − CI





 aM

(
t
)

aD
(
t
)


 +


 bM

(
t
)

bD
(
t
)




‍�
(3)

In the one-chamber model, ‍CI > 0‍, so functional across-brain coupling acts as positive feedback 
to the mean component and negative feedback to the difference component. The effects of such 
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opposite feedback to the two components can be seen more clearly by rewriting equation (3) as the 
following uncoupled differential equations:

	﻿‍
τ

CS−CI

daM
(

t
)

dt = −aM
(
t
)

+ bM
(

t
)

CS−CI ‍� (4)

	﻿‍
τ

CS+CI

daD
(

t
)

dt = −aD
(
t
)

+ bD
(

t
)

CS+CI ‍� (5)

Thus, at any given time ‍t‍, ‍aM
(
t
)
‍ is exponentially approaching ‍

bM
(

t
)

CS−CI ‍ with effective time constant 

‍
τ

CS−CI ‍, and ‍aD
(
t
)
‍ is exponentially approaching ‍

bD
(

t
)

CS+CI ‍ with effective time constant ‍
τ

CS+CI ‍. In the one-
chamber model, ‍0 < CI < CS‍, so ‍0 < CS − CI < CS + CI ‍. This means that in the one-chamber model, 
relative to the two-chambers model where ‍CI = 0‍, the positive feedback provided by functional 
across-brain coupling amplifies the mean component and slows it down. On the other hand, the nega-
tive feedback suppresses the difference component and speeds it up. Thus, the model suggests this 
opposite feedback to be a potential computational mechanism that explains all of our observations 
relating the magnitudes and timescales of the mean and difference components.

The only differences between the one-chamber and two-chambers models were the value of ‍CI ‍ 
and the behavioral transition probability matrix. Having understood the effects of ‍CI ‍ , we now turn to 
the effects of the different transition probability matrices, which govern the Markov chain behavior 
models. For each Markov chain, we calculated its stationary distribution as the eigenvector of its 
transition probability matrix corresponding to an eigenvalue of 1, which was confirmed numerically 
in Figure 3—figure supplement 2E, F. Figure 3—figure supplement 2E, F shows that, for both the 
one-chamber and two-chambers models, the respective Markov chains approach stationary distribu-
tions in ~5 minutes, that is, the distribution of states no longer changes with time after ~5 min. The 
stationary distribution for the two-chambers model shows that states where the two bats engage 
in the same behavior are about equally likely as states where they engage in different behaviors 
(Figure 3—figure supplement 2G), as expected given that the two bats behave independently in 
separate chambers. For the one-chamber model, same-behavior states (probability 0.58) are more 
likely than different-behavior states (Figure  3—figure supplement 2G). The noiseless behavioral 
modulation ‍bd

(
t
)
‍ depends on the behaviors of the two bats, while the behavioral modulation noise 

‍bn
(
t
)
‍ does not. Through ‍bd

(
t
)
‍, same-behavior states contribute to behavioral modulation of the mean 

component, and the only noiseless behavioral modulation of the difference component comes from 
different-behavior states. In the one-chamber model, with increased coordinated behavioral modu-
lation compared to the two-chambers model, the mean noiseless behavioral modulation across bats 
has larger magnitudes and slower timescales than its difference between bats (blue lines in Figure 3—
figure supplement 2H, I). On the other hand, because the behavioral modulation noise is indepen-
dent across bats, it does not distinguish between the mean and difference components. Thus, adding 
the noise to the noiseless behavioral modulation decreases the differential modulation of the mean 
and difference components (red lines in Figure 3—figure supplement 2H, I). However, even if the 
noise strongly reduces differential behavioral modulation of the mean and difference components, the 
experimentally observed levels of relative magnitudes and timescales can still result from functional 
across-brain coupling (purple lines in Figure 3—figure supplement 2H, I).

Thus, our model suggests two mechanisms behind our observations on the mean and difference 
components: opposite feedback by functional across-brain coupling, and coordinated behavioral 
modulation. Due to these mechanisms, in a shared social environment, the activity of the two bats 
become dominated by their common activity pattern, and when the activity of the two bats diverge, 
they rapidly converge again. As a result, the activity of two socially interacting bats are highly correlated 
with each other. We found that inter-brain correlation remained even when the bats were engaged 
in different behaviors (Figure 4A–B; see also Zhang and Yartsev, 2019), which suggests that coordi-
nated behavioral modulation alone is not sufficient to explain the data, and that opposite feedback 
by functional across-brain coupling is needed. To explicitly test this, we performed an additional set of 
simulations of the one-chamber model. Here, after we generated each instantiation of ‍b

(
t
)
‍, we used 

it to simulate neural activity twice: once with functional across-brain coupling and once without. Note 
that the same ‍b

(
t
)
‍ is used for both simulations, including the same ‍bd

(
t
)
‍ generated from the one-

chamber Markov chain and the same instantiation of randomly generated ‍bn
(
t
)
‍. Figure 4C, D and G 

shows that the model with functional across-brain coupling reproduced the experimental observation: 
inter-brain correlation remained after removing periods of coordinated behaviors. On the other hand, 
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without functional across-brain coupling, inter-brain correlation disappeared after removing coordi-
nated behaviors (Figure 4E–G). Thus, we conclude that, in the framework of our model, opposite 
feedback by functional across-brain coupling is necessary to reproduce the data.

Modeling: mean and difference components in a reduced model
To gain a more precise understanding how the relative variances and timescales of the mean and 
difference components depend on model parameters, we studied a reduced version of the model. 
In the reduced model, instead of generating ‍b

(
t
)
‍ based on simulated behavior, ‍bM

(
t
)
‍ and ‍bD

(
t
)
‍ are 

simply noise with identical, flat power spectra. Such noise amounts to inputs with the same variance 
and same timescales to both the mean and difference components. Thus, the relative variances and 
timescales of the two components are solely determined by the coupling parameters ‍CS‍ and ‍CI ‍. In 
the following, we derive expressions for the variance ratio and the power spectral centroid ratio of the 
mean and difference components, as functions of the coupling parameters.

Rewriting equation (3) and assuming ‍τ = 1‍ for simplicity (as ‍τ ‍ is a redundant parameter and can be 
absorbed into the other parameters), the reduced model can be written as

	﻿‍
daM
dt = −

(
CS − CI

)
aM + bM‍�

	﻿‍
daD
dt = −

(
CS + CI

)
aD + bD‍�

The solutions to these equations are:

	﻿‍ aM
(
t
)

= aM
(
0
)

fM
(
t
)

+
´ t

0 dt′bM
(
t′
)

fM
(
t − t′

)
‍� (6)

	﻿‍ aD
(
t
)

= aD
(
0
)

fD
(
t
)

+
´ t

0 dt′bD
(
t′
)

fD
(
t − t′

)
‍� (7)

In the above, ‍fM
(
t
)
‍ and ‍fD

(
t
)
‍ are the neural decay functions for the mean and difference 

components:

	﻿‍ fM
(
t
)

= e−
(

CS−CI
)

t = eλMt
‍� (8)

	﻿‍ fD
(
t
)

= e−
(

CS+CI
)

t = eλDt
‍� (9)

where ‍λM = −CS + CI ‍ and ‍λD = −CS − CI ‍ are the eigenvalues of ‍C‍.
The convolution theorem can be used to approximate the solutions (6) and (7) in the frequency 

domain:

	﻿‍
∼aM,k ≈

√
T
∼
bM,k

∼
f M,k‍� (10)

	﻿‍
∼aD,k ≈

√
T
∼
bD,k

∼
f D,k‍� (11)

Here, ‍T ‍ is the duration of a simulated session, and the tilde denotes a Fourier coefficient, for 

exmple, ‍
∼
f M,k‍ is the Fourier coefficient of ‍fM

(
t
)
‍ at frequency ‍k‍: 

‍

∼
f M,k = 1√

T

´ T
0 dt fM

(
t
)

e−i 2πkt
T

‍
. The 

approximation of (10) and (11) assumes periodic convolutions and ‍a
(
0
)

= 0‍ in (6) and (7), but it is 
still accurate when ‍a

(
0
)
‍ is smaller or comparable to the scale of ‍b

(
t
)
‍ and ‍T ‍ is large compared to the 

effective time constants ‍
1

CS−CI ‍ and ‍
1

CS+CI ‍.
We first consider the variance ratio. Using Parseval’s theorem and (10), the variance of the mean 

component can be approximated in the frequency domain as

	﻿‍

VarM = 1
T
´ T

0 dt
[
aM

(
t
)
− 1

T
´ T

0 dt′aM
(
t′
)]2

= 2
T
∑∞

k=1

���∼aM,k

���
2

≈ 2
∑∞

k=1

����
∼
bM,k

����
2 ����

∼
f M,k

����
2

‍�
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In the reduced model, ‍bM‍ has a flat power spectrum: 
‍

∣∣∣∣
∼
bM,k

∣∣∣∣
2

= p
‍
 for all ‍k ≥ 1‍. Then, 

‍
VarM ≈ 2p

∑∞
k=1

����
∼
f M,k

����
2

‍
. Transforming back to the time domain, plugging (8) in, and evaluating the 

integrals, we have

	﻿‍

VarM ≈ p
´ T

0 dt fM
(
t
)2 − p

T

(´ T
0 dt fM

(
t
))2

= p
(

1
2λM

− 1
Tλ2

M

)(
e2λMT − 1

)
+ 2p

Tλ2
M

eλMT
‍�

(12)

The same calculation applied to the variance of the difference component shows that it is

	﻿‍
VarD ≈ p

(
1

2λD
− 1

Tλ2
D

)(
e2λDT − 1

)
+ 2p

Tλ2
D

eλDT
‍� (13)

Assuming ‍λM < 0‍ and ‍λD < 0‍ (required for stability), for large ‍T ‍, (12) and (13) can be approximated 
as

	﻿‍ VarM ≈ − p
2λM ‍� (14)

	﻿‍ VarD ≈ − p
2λD ‍� (15)

Thus, the variance ratio (variance of the mean divided by variance of the difference) is

	﻿‍ rVar = VarM
VarD

≈ CS+CI
CS−CI ‍�

Next, we consider the power spectral centroid ratio. Using (10), the power spectral centroid of the 
mean component can be approximated as

	﻿‍

PSCM =
∑∞

k=1 k
���∼a M,k

���2

∑∞
j=1

���∼a M,j

���2

≈
∑∞

k=1 k
����
∼
b M,k

����
2����

∼
f M,k

����
2

∑∞
j=1

����
∼
b M,j

����
2����

∼
f M,j

����
2

=
∑∞

k=1 k
����
∼
f M,k

����
2

∑∞
j=1

����
∼
f M,j

����
2

= 2p
VarM

∞∑
k=1

k
����
∼
f M,k

����
2

‍�

(16)

The Fourier coefficients of ‍fM
(
t
)
‍ are 

‍

∼
f M,k = 1√

T

´ T
0 dt eλMte−i 2πkt

T = 1√
T

1
λM−i 2πk

T

(
eλMT − 1

)
‍
. Plugging 

this into (16), we have:

	﻿‍
PSCM ≈ 2p

VarM

(
eλMT − 1

)2 T
4π2

∞∑
k=1

1
αM

k +k‍�

where ‍αM = T2λ2
M

4π2 ‍. The series 
‍

∑∞
k=1

1
αM

k +k‍
 can be shown to be divergent by comparison to 

‍
1

αM+1
∑∞

k=1
1
k‍, the harmonic series scaled by ‍

1
αM+1‍: ‍

1
αM

k +k ≥ 1
αMk+k‍

 for all ‍k ≥ 1‍.

The same calculation applied to the power spectral centroid of the difference component shows 
that it is

	﻿‍
PSCD ≈ 2p

VarD

(
eλDT − 1

)2 T
4π2

∑∞
k=1

1
αD

k +k‍�

where ‍αD = T2λ2
D

4π2 ‍.
While the power spectral centroids involve divergent series, we can define the power spectral 

centroid ratio (centroid of the mean divided by centroid of the difference) using a limit of the ratio of 
partial sums:
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	﻿‍
rPSC ≈ VarD

VarM

(
eλMT−1

)2

(
eλDT−1

)2 lim
n→∞

∑n
k=1

1
αM

k +k∑n
k=1

1
αD

k +k ‍�
(17)

For simplicity, we rewrite the limit in (17) as 
‍
lim

n→∞
βM

n
βD

n ‍
 where 

‍
βM

n =
∑n

k=1
1

αM
k +k‍

 and 
‍
βD

n =
∑n

k=1
1

αD
k +k‍

. 

Note that ‍β
D
n ‍ is strictly increasing and 

‍
lim

n→∞
βD

n = ∞
‍
, so we can evaluate the limit in (17) using the 

Stolz–Cesàro theorem:

	﻿‍
lim

n→∞
βM

n
βD

n
= lim

n→∞
βM

n+1−βM
n

βD
n+1−βD

n
= lim

n→∞

αD
n+1 +n+1
αM
n+1 +n+1 = 1

‍�

Thus, assuming ‍λM < 0‍ and ‍λD < 0‍, for large ‍T ‍, (17) can be approximated as

	﻿‍ rPSC ≈ CS−CI
CS+CI ‍�

The results ‍rVar ≈ CS+CI
CS−CI ‍ and ‍rPSC ≈ CS−CI

CS+CI ‍ show the simple dependence of the variance ratio and 
power spectral centroid ratio on the coupling parameters (visualized in Figure 3I–J). The experimental 
results, where the mean component had higher variance and lower power spectral centroid than the 
difference component, correspond to the parameter regime of ‍0 < CI < CS‍. In this regime, consistent 
with the earlier analysis of the full model, ‍CI ‍ acts as positive feedback to the mean component to 
amplify it and slow it down, and acts negative feedback to the difference component to suppress it 
and speed it up.

Modeling: Kuramoto model
We explored an alternative mechanism for inter-brain coupling using the Kuramoto model (Strogatz, 
2000; Acebrón et al., 2005). In this model, the activity of the two brains are treated as two oscillators, 
whose phases are coupled:

	﻿‍

dθi
(

t
)

dt = ωi + K
2∑

j=1
sin

(
θj
(
t
)
− θi

(
t
))

, i = 1, 2
‍�

(18)

Here ‍θ1
(
t
)
‍ and ‍θ2

(
t
)
‍ are the phases of the two oscillators at time ‍t‍, and the corresponding activity 

of the two brains at time ‍t‍ are ‍a1
(
t
)

= sin
(
θ1
(

t
))

+1
2 ‍ and ‍a2

(
t
)

= sin
(
θ2
(

t
))

+1
2 ‍; ‍ω1‍ and ‍ω2‍ are the natural 

frequencies of the two oscillators; ‍K ‍ is the coupling strength between the oscillators: ‍K > 0‍ for simu-
lations of one-chamber sessions, and ‍K = 0‍ for simulations of two-chambers sessions.

For each simulation, ‍ω1‍ and ‍ω2‍ were drawn from lognormal distributions with means ‍̄ω1‍ and ‍̄ω2‍, 
respectively, and the same standard deviation ‍σω‍. ‍̄ω1‍, ‍̄ω2‍, and ‍σω‍ were set to make ‍ω1‍ and ‍ω2‍ different 
from each other, to avoid the two brains trivially synchronizing by having the same natural frequency. 
To simulate the Kuramoto model, equation (18) was numerically integrated (ode15s function in 
MATLAB) with initial condition ‍θ1

(
0
)

= θ2
(
0
)

= 0‍. The phases ‍θ1
(
t
)
‍ and ‍θ2

(
t
)
‍ were then converted to 

activity ‍a1
(
t
)
‍ and ‍a2

(
t
)
‍, which were plotted in Figure 4—figure supplement 1A-D and analyzed in 

Figure 4—figure supplement 1E-F. This shows that the phase-coupling mechanism of the Kuramoto 
model is able to reproduce inter-brain correlation and the relative magnitudes of the mean and differ-
ence components from the data; however, it does not reproduce the relative timescales of the mean 
and difference components from the data.

Modeling: correlation between activity variables under rotated activity bases
The neural dynamics in the model are governed by (2). To express (2) under a different basis, ‍a

(
t
)
‍, ‍C‍, 

and ‍b
(
t
)
‍ are transformed to ‍a

′ (t
)

= U−1a
(
t
)
‍, ‍C

′ = U−1CU‍, and ‍b
′ (t

)
= U−1b

(
t
)
‍, respectively, where 

the columns of the matrix ‍U‍ are the new basis vectors. If 

‍

U=


cosθ −sinθ

sinθ cosθ




‍

, then the new basis 

corresponds to a counter-clockwise rotation of the original basis (where each axis is the activity of one 
bat) by an angle of ‍θ‍. By rotating the basis, the functional coupling between the activity variables (i.e. 
between the two elements of ‍a

′ (t
)
‍) changes as a function of the rotation angle (Figure 5A and D). 

This functional coupling in turn determines the correlations between those activity variables, which 
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forms a set of predictions of the model (Figure 5B and E). These predictions are confirmed in the data 
in Figure 5C and F.

Additionally, we examined the influence of behavioral modulation on correlation between the 
activity variables under rotated bases, by regressing out behavior from the activity variables. To do 
this, for each behavior (e.g. resting, self-grooming, probing, etc.), each bat, and each simulation or 
experimental session, we used a binary vector to represent the time course of the bat engaging in 
that behavior: the elements of the vector correspond to time points, and the values of the elements 
are ‘1’ at time points when the bat was engaging in that behavior, and ‘0’ when it was not. Then, we 
performed linear regression to predict each activity variable over time under each basis using the set 
of all behavioral binary vectors of both bats as predictors. The linear regression fit was then subtracted 
from the activity, and correlation was calculated between these residuals. The results are shown in 
Figure 5B, C, E and F (brown lines): for both model and data, regressing out behaviors changes the 
magnitudes, but not the shapes of the correlation curves.

Modeling: relationship between variance ratio and power spectral centroid 
ratio
Here we analyze the relationship between the mean/difference ratio of the variance (‍rVar‍) and the 
mean/difference ratio of the power spectral centroid (‍rPSC‍) in the model (seen in Figure 5G). ‍rVar‍ 
and ‍rPSC‍ are functions of the behavioral modulation ‍b

(
t
)
‍, which differs from simulation to simulation. 

Figure 5G shows that ‍rVar‍ and ‍rPSC‍ corresponding to different instances of ‍b
(
t
)
‍ tend to covary linearly. 

To examine whether this linear relationship is due to a systematic relationship between different 
instances of ‍b

(
t
)
‍, or due to the neural dynamics, we examine the effect of random perturbations 

to behavioral modulation on the relationship between ‍rVar‍ and ‍rPSC‍. To do so, we first express ‍rVar‍ 
and ‍rPSC‍ in the frequency domain, and then examine whether and how they covary given random 
perturbations.

We first follow the procedure of the earlier section on the reduced model to approximate the 
variance and the power spectral centroid. In that section, we analyzed the reduced model with ‍τ = 1‍ 

and 
‍

∣∣∣∣
∼
bM,k

∣∣∣∣
2

=
∣∣∣∣
∼
bD,k

∣∣∣∣
2

= p
‍
 for ‍k ≥ 1‍; here we consider arbitrary ‍τ ‍, 

‍

∣∣∣∣
∼
bM,k

∣∣∣∣
2

‍
, and 

‍

∣∣∣∣
∼
bD,k

∣∣∣∣
2

‍
. In this case, the 

neural decay functions are ‍fM
(
t
)

= e−
CS−CI

τ t
‍ and ‍fD

(
t
)

= e−
CS+CI

τ t
‍, and the variance and power spectral 

centroid of the mean component are

	﻿‍ VarM ≈ 2
τ 2

∑∞
k=1 BM,kFM,k‍�

	﻿‍
PSCM ≈

∑∞
k=1 kBM,kFM,k∑∞

j=1 BM,jFM,j ‍�

where 
‍
BM,k =

∣∣∣∣
∼
bM,k

∣∣∣∣
2

‍
 and 

‍
FM,k =

∣∣∣∣
∼
f M,k

∣∣∣∣
2

‍
. The expressions for the difference component are similar.

Then, the mean/difference ratio of the variance is

	﻿‍
rVar ≈

∑∞
k=1 BM,kFM,k∑∞
j=1 BD,jFD,j ‍� (19)

The mean/difference ratio of the power spectral centroid is

	﻿‍
rPSC ≈

∑∞
k=1 kBM,kFM,k∑∞

j=1 BM,jFM,j

∑∞
h=1 BD,hFD,h∑∞

g=1 gBD,gFD,g ‍� (20)

To examine how ‍rVar‍ and ‍rPSC‍ change with changes in behavioral modulation, we calculate the 
following partial derivatives. The partial derivative of ‍rVar‍ with respect to the power of the mean 
component of behavioral modulation at frequency ‍k‍ is

	﻿‍
∂rVar
∂BM,k

= 1∑∞
j=1 BD,jFD,j

FM,k‍� (21)

The partial derivative of ‍rVar‍ with respect to the power of the difference component of behavioral 
modulation at frequency ‍k‍ is
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	﻿‍

∂rVar
∂BD,k

= −
∑∞

h=1 BM,hFM,h(∑∞
j=1 BD,jFD,j

)2 FD,k
‍�

(22)

The partial derivative of ‍rPSC‍ with respect to the power of the mean component of behavioral 
modulation at frequency ‍k‍ is

	﻿‍

∂rPSC
∂BM,k

=
∑∞

j=1 BD,jFD,j(∑∞
h=1 BM,hFM,h

)(∑∞
q=1 qBD,qFD,q

)FM,k

(
k −

∑∞
p=1 pBM,pFM,p∑∞
g=1 BM,gFM,g

)

‍�
(23)

The partial derivative of ‍rPSC‍ with respect to the power of the difference component of behavioral 
modulation at frequency ‍k‍ is

	﻿‍

∂rPSC
∂BD,k

=
∑∞

p=1 pBM,pFM,p(∑∞
g=1 BM,gFM,g

)(∑∞
l=1 lBD,lFD,l

)FD,k

(
1 − k

∑∞
j=1 BD,jFD,j∑∞

q=1 qBD,qFD,q

)

‍�
(24)

In subsequent calculations, the infinite sums were truncated at ‍kt‍ such that ‍
kt
T = 0.2‍ Hz, which is the 

Nyquist frequency for the sampled simulated activity used for our analyses.
We now consider perturbations to the power spectra of behavioral modulation. We concatenate 

the power spectra of the behavioral modulation of the mean and difference components to form

	﻿‍

B=




BM,1
...

BM,kt

BD,1
...

BD,kt




‍�

We perturb a given ‍B‍ by adding ‍δB‍, drawn from a uniform distribution on the hypersphere centered 
at 0. To see whether and how ‍rVar‍ and ‍rPSC‍ covary given random perturbations to behavioral modu-
lation, we next determine the covariance matrix between the changes in ‍rVar‍ and ‍rPSC‍ resulting from 
perturbations ‍δB‍.

Considering ‍rVar‍ and ‍rPSC‍ as functions of ‍B‍, their gradients are

	﻿‍

∇rVar =




∂rVar
∂BM,1

...
∂rVar
∂BM,kt
∂rVar
∂BD,1

...
∂rVar
∂BD,kt




,∇rPSC =




∂rPSC
∂BM,1

...
∂rPSC
∂BM,kt
∂rPSC
∂BD,1

...
∂rPSC
∂BD,kt




‍�

where the partial derivatives are given in (21)-(24). Given a small perturbation ‍δB‍, the resulting 
changes to ‍rVar‍ and ‍rPSC‍ are approximately ‍δBT∇rVar‍ and ‍δBT∇rPSC‍, respectively. To calculate the 
covariance matrix between ‍δBT∇rVar‍ and ‍δBT∇rPSC‍, we first perform an orthogonal transformation 
to any orthonormal basis whose first basis vector is ‍∇rVar/ ∥∇rVar∥‍, where ‍∥·∥‍ denotes vector norm. 
We use ‍δB̂‍, ‍∇r̂Var‍, and ‍∇r̂PSC‍ to denote ‍δB‍, ‍∇rVar‍, and ‍∇rPSC‍ under the new basis, respectively. The 
variance of ‍δBT∇rVar‍ is

	﻿‍

Var
(
δBT∇rVar

)
= Var

(
δB̂T∇r̂Var

)

= E
((

δB̂T∇r̂Var

)2
)

= ∥∇rVar∥2 E
(
δB̂2

1
)

= ∥δB∥2

2kt
∥∇rVar∥2

‍�
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Similarly, the variance of ‍δBT∇rPSC‍ is ‍
∥δB∥2

2kt
∥∇rPSC∥2

‍. The covariance between ‍δBT∇rVar‍ and 

‍δBT∇rPSC‍ is

	﻿‍

cov
(
δBT∇rVar, δBT∇rPSC

)
= cov

(
δB̂T∇r̂Var, δB̂T∇r̂PSC

)

= E
(
δB̂T∇r̂Var δB̂T∇r̂PSC

)

= E

(
δB̂1||∇rVar||

2kt∑
j=1

δB̂j∇r̂PSC j

)

= E

(
δB̂2

1||∇rVar||
∇rT

Var
||∇rVar ||∇rPSC +

2kt∑
j=2

δB̂1δB̂j||∇rVar||∇r̂PSC j

)

= ∇rT
Var∇rPSCE(δB̂2

1)

= ||δB||2
2kt

∇rT
Var∇rPSC ‍�

Thus, the covariance matrix between ‍δBT∇rVar‍ and ‍δBT∇rPSC‍ is

	﻿‍

∥δB∥2

2kt


 ∥∇rVar∥2 ∇rT

Var∇rPSC

∇rT
Var∇rPSC ∥∇rPSC∥2




‍�
(25)

The eigenvector of this matrix corresponding to the larger eigenvalue is the direction of the local 
linear trend, whereas the relative sizes of the eigenvalues indicate the strength of the linear trend (the 
larger the difference between the eigenvalues, the stronger the linear trend).

We examined the eigenvectors and eigenvalues of (25) across different simulations (Figure 5—
figure supplement 1; in computing (25), integrals were evaluated numerically). We found that ‍rVar‍ 
and ‍rPSC‍ resulting from random perturbations to ‍B‍ consistently show linear relationships. Further-
more, the slopes of these local linear relationships, which are not influenced by systematic variations 
of behavioral modulation ‍b

(
t
)
‍ across simulations, are consistent with the slopes of the global linear 

relationships seen in Figure 5G.

Modeling: using the neural activity of one bat to discriminate the behavior 
of the other bat
In the model, the neural activity of each bat is directly modulated by its own behavior (e.g. ‍a1

(
t
)
‍ is 

modulated by ‍b1
(
t
)
‍). Additionally, in the one-chamber model, the activity of each bat is indirectly 

modulated by the behavior of the other bat, through functional across-brain coupling (e.g. ‍a1
(
t
)
‍ is 

modulated by ‍b2
(
t
)
‍ through the coupling ‍CI ‍). This naturally suggests that the neural activity of each 

bat should encode the behavior of the other bat independently from encoding its own behavior.
We used the following method to quantify this. Before examining whether the activity of one bat 

can discriminate the behavior of the other bat, we first regressed out the behavior of each bat from its 
own neural activity, using the method described in the earlier section ‘Modeling: correlation between 
activity variables under rotated activity bases’. Importantly, this eliminates potential spurious correla-
tion between one bat’s activity and another bat’s behavior caused by any coordinated behaviors 
between the bats. We then asked whether the neural activity of a given bat discriminates between a 
given pair of behaviors by the other bat (e.g., using bat 1’s neural activity to discriminate whether bat 
2 is resting or engaging in social grooming), by plotting the receiver operating characteristic (ROC) 
curve and calculating the area under the curve (Figure 6B and E; Dayan and Abbott, 2005). For each 
discrimination, positive and negative class assignments for the two behaviors were made so that the 
area under the ROC curve is greater than or equal to 0.5. We then averaged the area under the ROC 
curve across bats, pairs of behaviors, and simulations or sessions (Figure 6C and F). This showed that 
the activity of each bat was modulated by the behaviors of the other bat independently of its own 
behavior, in both the model and the data.

We note that for both the model and the data, the area under the ROC curve was above 0.5 for 
the two-chambers sessions—this is a necessary consequence of noise and finite sample size. To illus-
trate this, we can consider a hypothetical example where neural activity does not encode behaviors 
A and B, that is, the distributions of neural activity during these two behaviors are identical. If we 
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have infinite amount of data, or if the neural activity is noiseless during these two behaviors, then the 
empirically observed distributions of activity during these two behaviors would be exactly identical, so 
that the area under the ROC curve would be exactly 0.5. However, in reality we have finite amounts of 
noisy data, so that the two empirically observed distributions would not be identical. These different 
empirical distributions would then necessarily result in an area under the ROC curve greater than 0.5, 
since positive and negative classes were assigned to the two behaviors such that the area under the 
ROC curve is greater than or equal to 0.5.

Modeling: inter-brain relationship during group social interactions
To generalize our two-bat model to more than two bats, we used the same equation (2), with ‍a

(
t
)
‍ and 

‍b
(
t
)
‍ now being ‍n‍-dimensional vectors, and ‍C‍ being an ‍n × n‍ matrix, where ‍n‍ is the number of inter-

acting bats. ‍C‍ retains the same structure from the two-bat model: all diagonal elements (functional 
self-coupling) are ‍−CS‍, and all off-diagonal elements (functional across-brain coupling) are ‍CI ‍.

To understand the ‍n‍-bat model, we examine the eigenvectors and eigenvalues of ‍C‍. Note that the 
‍n‍-dimensional vector whose elements are all 1s is an eigenvector, with eigenvalue ‍

(
n − 1

)
CI − CS‍. 

This eigenvector corresponds to the direction of the mean activity across all bats, and is thus the 
‍n‍-bat analogue of the mean component from the two-bat model. Any vector orthogonal to the 
‍n‍-bat mean component is also an eigenvector, with eigenvalue ‍−CI − CS‍. These eigenvectors define 
an ‍

(
n − 1

)
‍-dimensional subspace, which contains all inter-brain activity patterns that correspond to 

activity differences across brains; we call this subspace the difference subspace, which is the multi-
dimensional analogue of the difference component from the two-bat model. To ensure stability (so 
that neural activity do not go to infinity), we take our parameter regime to be ‍0 <

(
n − 1

)
CI < CS‍. 

Thus, ‍−CI − CS <
(
n − 1

)
CI − CS < 0‍. This means that, similar to the two-bat model, the ‍n‍-bat mean 

component is amplified and slowed down by the positive feedback provided by functional across-
brain coupling, whereas activity patterns in the difference subspace are suppressed and sped up by 
negative feedback. This results in the predictions that, for ‍n‍ socially interacting bats, activity in the 
‍n‍-bat mean component will have larger magnitude and slower timescales than activity in the differ-
ence subspace on average (Figure 7C–D).

Another prediction concerns the correlation between activity variables during group interactions. 
Because the activity of pairs of bats are positively functionally coupled in the ‍n‍-bat model, the model 
would predict positive inter-brain correlations (Figure  7E). On the other hand, because the ‍n‍-bat 
mean component and vectors in the difference subspace are all eigenvectors, they are functionally 
uncoupled. Thus, the model would predict zero average correlation between the ‍n‍-bat mean compo-
nent and activity variables in the difference subspace (Figure 7E).

For the simulations in Figure 7C–E, we used an ‍n‍-bat model with ‍n = 4‍ and performed the simula-
tions using the same procedures as for the two-bat model. Because we do not have behavioral statis-
tics for four-bat group interactions, we opted to use noise for ‍b

(
t
)
‍, so that model predictions based 

on functional across-brain coupling would not be biased by structures in ‍b
(
t
)
‍ (e.g. the ‍n‍-bat mean 

component could have larger magnitudes than the difference subspace if ‍b
(
t
)
‍ has such a structure). 

To generate ‍b
(
t
)
‍ for the ‍n‍-bat model, we used the following procedure. For a given simulated session 

and a given bat i, we generated ‍bi
(
t
)
‍ independently of the other bats. We generated a random vector 

‍bpre‍, whose dimensionality was the number of time points spaced 2.5 s apart in the simulated session 
(matching the time step size of the Markov chain from the two-bat model). The elements of ‍bpre‍ were 
drawn independently from a Gaussian distribution with mean ‍bmean‍ and standard deviation ‍bstd‍. We 
smoothed ‍bpre‍ with a 1200-point moving average filter, then added independent Gaussian noise to 
its elements (0 mean, standard deviation ‍σn‍) as in the two-bat model. The resulting vector contained 
the values of ‍bi

(
t
)
‍ at 2.5 s intervals; ‍bi

(
t
)
‍ at time points in-between were linearly interpolated. The 

same procedure was repeated for each bat. Note that, because ‍b
(
t
)
‍ was randomly generated noise, 

the simulations only offered qualitative predictions. Indeed, the data confirmed the qualitative trends 
seen in the simulations, but differed from them quantitatively (Figure 7C–H).

Modeling: parameters
In our data, all four neural signals (30–150 Hz LFP power, 1–29 Hz LFP power, multiunits, and single 
units) show the same qualitative phenomena: faster and smaller difference component compared to 
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the mean component, on one-chamber sessions but not two-chambers sessions (Figure 1). The four 
signals differed quantitatively in the extent they showed the same qualitative phenomena. The goal 
of our model is not to quantitatively fit any one of the four neural signals in particular, but to provide 
mechanistic explanations for the general qualitative phenomena that do not require fine-tuning of 
parameters. As explained above, the opposite feedback mechanism depends simply on ‍0 < CI < CS‍ , 
whereas the coordinated behavioral modulation mechanism is a manifestation of the empirical behav-
ioral transition frequencies.

The focus of the model is to reproduce and explain the qualitative trend of the difference compo-
nent being faster and smaller than the mean component. Other aspects of the data could be repro-
duced by extending the model with additional parameters, but we chose not to do so in the interest 
of keeping the model simple and focused. For example, the 30–150 Hz LFP power data showed more 
variability across sessions compared to the model simulations (Figure 3E–F). The higher variability 
could be reproduced if we introduced variability across simulations in the behavioral transition prob-
abilities or the strength of functional across-brain coupling.

The model parameters for the two-bat models are: ‍CS = 1‍, ‍CI = 0.4‍ for simulations with func-
tional across-brain coupling, ‍CI = 0‍ for simulations without functional across-brain coupling, ‍τ = 15s‍, 
‍σn = 0.15‍, ‍T = 100‍ minutes, ‍bresting = 0.158‍, ‍bactive non−social = 0.269‍, ‍bself−grooming = 0.264‍, ‍bsocial grooming = 0.223‍, 

‍bprobing = 0.284‍, ‍bfighting = 0.355‍, ‍bmating = 0.367‍, ‍bwing covering = 0.364‍, ‍breaching = 0.321‍, ‍bblocking = 0.339‍, 

‍bother interactions = 0.291‍, ‍bconstant = −0.08‍ for one-chamber simulations and ‍bconstant = 0‍ for two-chambers 
simulations. The behavioral modulation parameter for each behavior listed above (‍bresting‍, etc.) was 
set as the average 30–150 Hz mean normalized LFP power during that behavior from the data: take 
a given bat, for each session, average its 30–150 Hz mean normalized LFP power across all channels, 
pool together these averaged power values from all time points when the bat engaged in the given 
behavior from all sessions (including both one-chamber and two-chambers), then pool across all bats, 
and then average across all such pooled data. ‍bconstant‍, ‍CS‍, ‍CI ‍, ‍τ ‍, and ‍σn‍ were chosen so that the 
levels of simulated neural activity roughly match the levels of 30–150 Hz mean normalized LFP power 
observed during the experiments.

The model parameters for the four-bat model are: ‍CS = 1‍, ‍CI = 0.1‍, ‍bmean = 0.2‍, and ‍bstd = 3.5‍. All 
other parameters are the same as in the two-bat model.

The model parameters for the Kuramoto model are: ‍K = 0.0035‍ for simulations of one-chamber 
sessions, ‍K = 0‍ for simulations of two-chambers sessions, ‍̄ω1 = 0.005‍, ‍̄ω2 = 0.01‍, and ‍σω = 0.0005‍.

Sample sizes
In this section we list the sample sizes for all results that were presented as averages.

Figure 1M, N, Q and R: n = 52 sessions for one-chamber sessions, and 18 sessions for two-chambers 
sessions.

Figure 1O and S: n = 675 multiunit pairs for one-chamber sessions, and 284 multiunit pairs for 
two-chambers sessions.

Figure 1P and T: n = 256 single unit pairs for one-chamber sessions, and 65 single unit pairs for 
two-chambers sessions.

Figure 3E–F: for data, n = 52 sessions for one-chamber sessions, and 18 sessions for two-chambers 
sessions; for model, n = 100 simulations for one-chamber model, and 100 simulations for two-chambers 
model.

Figure 4G: for data, n = 50 sessions; for model, n = 100 simulations with functional across-brain 
coupling, and 100 simulations without functional across-brain coupling.

Figure 5B: n = 100 simulations.
Figure 5C: n = 52 sessions.
Figure 5E: n = 100 simulations.
Figure 5F: n = 18 sessions.
Figure 6C: n = 8,235 simulations × bats × behavior pairs for one-chamber simulations, n = 1,848 

simulations × bats × behavior pairs for two-chambers simulations.
Figure 6F: n = 2086 sessions × bats × behavior pairs for one-chamber sessions, n = 200 sessions × 

bats × behavior pairs for two-chambers sessions.
Figure 7C–E: n = 100 simulations.
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Figure 7F–H: n = 20 sessions.
Figure 3—figure supplement 2A, B: n = 100 cross-validation test sets.
Figure 3—figure supplement 2H, I: for data, n = 52 sessions for one-chamber sessions, and 18 

sessions for two-chambers sessions; for model, n = 100 simulations for one-chamber model, and 100 
simulations for two-chambers model.

Figure 4—figure supplement 1E, F: for data, n = 52 sessions for one-chamber sessions, and 18 
sessions for two-chambers sessions; for the Kuramoto model, n = 100 simulations for one-chamber 
model, and 100 simulations for two-chambers model.

Figure 5—figure supplement 1C, E: n = 100 simulations for one-chamber model, and 100 simu-
lations for two-chambers model.
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