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Background. Hepatocellular carcinoma (HCC) is a high mortality malignant tumor with genetic and phenotypic heterogeneity,
making predicting prognosis challenging. Meanwhile, the inflammatory response is an indispensable player in the tumorigenesis
process and regulates the tumor microenvironment, which can affect the prognosis of tumor patients. Methods. Using HCC
samples in the TCGA-LIHC dataset, we explored lncRNA expression profiles associated with the inflammatory response. ,e
inflammatory response-related lncRNA signature was constructed by univariate Cox regression, LASSO regression, and mul-
tivariate Cox regression methods based on inflammatory response-related differentially expressed lncRNAs in HCC. Results.
Seven inflammatory response-related lncRNA signatures were identified in predicting HCC prognosis. Kaplan–Meier (K-M)
survival analysis indicated that high-risk group HCC patients were associated with poor prognosis.,e utility of the inflammatory
response-related lncRNA signatures was proved by the AUC and DCA analysis.,e nomogram further confirmed the accuracy of
the novel signature in predicting HCC patients’ prognoses. In validation, our novel signature is more accurate than traditional
clinicopathological performance for prognosis prediction of HCC patients. GSEA analysis further elucidated the underlying
mechanisms and pathways of HCC progression in the low- and high-risk groups. Moreover, immune cells infiltration responses
and immune function analyses revealed a significant difference between high- and low-risk groups in cytolytic activity, MHC class
I, type I INF response, type II INF response, inflammation-promoting, and T cell coinhibition. Finally, HHLA2, NRP1, CD276,
TNFRSF9, TNFSF4, CD80, and VTCN1 were expressed higher in high-risk groups in the immune checkpoint analysis. Con-
clusions. A novel inflammatory response-related lncRNA signature (AC145207.5, POLHAS1, AL928654.1, MKLN1AS,
AL031985.3, PRRT3AS1, and AC023157.2) is capable of predicting the prognosis of HCC patients and providing new immune
targeted therapies insight.

1. Introduction

Hepatocellular carcinoma (HCC) is the primary histological
subtype of liver cancer, with genetic and phenotypic hetero-
geneity, and the third most invasive and lethal tumor globally
[1]. ,e inflammatory response caused by risk factors such as

chronic hepatitis B, hepatitis C virus infection, smoking, obesity,
and diabetes promotes liver fibrosis, which progresses to cir-
rhosis and ultimately to HCC [2–4]. HCC patients are
asymptomatic early, which delays timely diagnosis. Patients
who are only diagnosed at an advanced stage of liver cancer are
not candidates for radical surgery, and treatment options are
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limited in availability and effectiveness [5]. ,erefore, novel
biomarkers to discriminate high-risk HCC patients are urgently
needed to improve personalized liver cancer therapy.

Over the past few decades, research studies on tumor-
associated inflammatory responses has increased rapidly,
and inflammation is also regarded as one hallmark of cancer
[6]. Many tumors arise from inflammatory responses, a
critical component of the neoplastic process. ,e tumor
microenvironment, primarily orchestrated by inflammatory
cells, is indispensable in promoting tumor proliferation,
survival, and migration [7]. Inflammatory response-related
therapies induction holds promise as an opportunity to
inhibit HCC development. Meanwhile, long non-coding
RNA (lncRNA) is an endogenous cellular RNA molecule
(>200 nucleotide sequences) that regulates gene expression
and is involved in a variety of inflammatory biological
pathways, including oncogenesis, development, and me-
tastasis [8, 9]. Functional lncRNAs are considered to play a
critical role in the process of inflammatory response regu-
lation [10–13]. However, studies elucidating themechanisms
of inflammatory response-related lncRNAs in HCC pro-
gression remain scarce. A systematic evaluation of inflam-
matory response-related lncRNAs prognostic signature in
liver patients may deepen our understanding of HCC
progression mechanisms and offer novel approaches for
specific, precise diagnosis and effective therapies.

In our study, a novel prognostic signature was first
established based on inflammatory response-related differ-
entially expressed lncRNAs. We then studied the roles of the
novel lncRNA signature-associated mRNAs, immune re-
sponses, and N6-methylated adenosine (m6A) modification
status in HCC prognosis.

2. Methods

2.1. Data Collection. RNA sequencing data with complete
clinical information annotation were downloaded from the
public database TCGA-LIHC (https://portal.gdc.cancer.gov/
repository) dataset. Clinical information of HCC patients is
shown in Table 1. ,e corresponding inflammatory response-
related genes were identified from the Molecular Signatures
(http://www.gsea-msigdb.org/gsea/login.jsp) database [14] and
are provided in Table S1. Pearson’s correlation analysis was used
to identify inflammatory response-related lncRNAs by com-
paring the expression levels of inflammatory response-related
genes and lncRNAs. Correlations are considered significant
when the correlation coefficient |R2|>0.4 and the P< 0.05, and
then inflammatory response-related lncRNAs were selected.
,e vital differential expression of lncRNA associated with
inflammatory response was set as |log2fc|≥ 1.00 and false dis-
covery rates (FDR)<0.05. ,e biological functions, including
biological process (BP), cellular component (CC), and molec-
ular function (MF) of inflammatory response-associated dif-
ferentially expressed lncRNAs (DEGs), were investigated using
Gene Ontology (GO). And the pathways of differentially
expressed inflammatory response-related lncRNAs involved in
HCC progression were analyzed using the “clusterProfiler”
package in R software (version 4.1.0) by the Kyoto Encyclopedia
of Genes and Genomes (KEGG).

2.2. Development of the Inflammatory Response-Related
lncRNAs Prognostic Signature. ,e inflammatory response-
related DEGs significantly associated with the prognosis of
HCC patients were first screened via univariate Cox re-
gression analysis. ,en, LASSO regression analysis was used
to reduce the number of lncRNAs filtered by univariate Cox
regression and prevent the risk model of overfitting. Finally,
an inflammatory response-related lncRNA signature was
constructed by multivariate Cox proportional hazards re-
gression analysis, and the risk score formula stratified
HCC patients. ,e formula of risk score
model� 􏽐

7
i xi × yi(X: coefficients, Y: lncRNA expression

level). Additionally, HCC patients were divided into high-
risk and low-risk groups based on the median risk score.

2.3. 'e Predictive Nomogram. A hybrid nomogram model
incorporating independent predictive factors including risk
signature and gender, age, TMN, stage, and grade was
established for predicting the 1-, 3-, and 5-year overall
survival rate of HCC patients. ,en, the fit degree of the
calibration curve versus the actual observed value was used
to judge the accuracy of the hybrid nomogram for clinical
prognosis judgment.

2.4. Immune Profile Analysis. ,e single-sample gene set
enrichment analysis (ssGSEA) proceeded to quantify the
individual specimens’ immune cell infiltration levels of low-
risk and high-risk groups. ,e immune response differences
between the two risk groups were assessed based on the
results of multialgorithms including CIBERSORT [15, 16],
CIBERSORT-ABS [17], QUANTISEQ [18],
MCPCOUNTER [19], XCELL [20], EPIC [21], and TIMER
[22]. In addition, the heatmap demonstrated the differences
of immune responses in two risk groups stratified by in-
flammatory response-related lncRNA signatures under
different algorithms. Moreover, the immune function of
tumor-infiltrating immune cell subsets in the low-risk and
high-risk groups was analyzed.

Table 1: ,e clinical information of HCC patients in the TCGA-
LIHC dataset.

Variable Number of samples
Gender

Male/female 255/122
Age at diagnosis
≤65/>65/NA 235/141/1

Grade
G1/G2/G3/G4/NA 55/180/124/13/5

Stage
I/II/III/IV/NA 175/87/86/5/24

T
T1/T2/T3/T4/NA 185/95/81/13/3

M
M0/M1/NA 272/4/101

N
N0/N1/NA 257/4/116
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2.5. Statistical Analysis. We used packages including
“limma,” “survival,” and “survminer” in RStudio software
(version 1.4.1106) for analyzing data. ,eWilcoxon test and
unpaired Student’s t-test were used to compare nonnormal
and normal distribution expression variables. Based on the
FDR, the differential expressions of lncRNA were corrected
by the Benjamin Hochberg method.,e “GSVA” package in
R was used to compare the ssGSEA-normalized HCC DEGs.
We applied the time-dependent receiver operator charac-
teristic (ROC) and the decision curve analysis (DCA) [23] to
compare the performance between the inflammatory re-
sponse-related lncRNA signature and clinical characteristics
in predicting HCC prognosis. Furthermore, a clinical
heatmap graph with Fisher’s test was utilized to assess the
relationship between inflammatory response-related
lncRNAs and clinical characteristic manifestations. ,e
overall survival of HCC patients was evaluated with a
Kaplan–Meier (K–M) survival analysis based on the in-
flammatory response-related lncRNA signature. P< 0.05
was considered statistically significant in all analyses. ,e
flow chart summarized this study in Figure 1.

3. Results

3.1. Enrichment Analysis of Inflammatory Response-Related
Genes. We identified 154 inflammatory response-related
DEGs between HCC and noncancerous liver tissues (36
upregulated and 118 downregulated; Table S2). Enriched
BP includes inflammatory response, positive regulation of
defense response, and the immune system process.
Meanwhile, the MF of DEGs in HCC were cytokine ac-
tivity, cytokine receptor binding, and receptor ligand ac-
tivity. ,e collagen-containing vesicle lumen, extracellular
matrix, and the plasma membrane were predominantly
enriched in CC. Additionally, pathways of DEGs analysis
by KEGG indicated that the PI3K-AKT signaling pathway,
the NOD-like receptor signaling pathway, focal adhesion,
the TNF signaling pathway, the NF-kappa B signaling
pathway, and proteoglycans in cancer were highly enriched
in Figure 2.

In the primary screening, 62 inflammatory response-related
lncRNAs associated with HCC prognosis were obtained using
univariate Cox analysis from differential expressed inflamma-
tory response-related lncRNAs in HCC (Figure 3(a)). Next,
LASSO regression was used to penalize 62 inflammatory re-
sponse-related lncRNAs (Figures 3(b) and 3(d)). Finally, mul-
tivariate Cox regression analysis constructed seven
inflammatory response-related lncRNA signatures as indepen-
dent prognostic indicators for HCC patients (Figure 3(c);
Table S3). ,en, the novel risk score model was calculated by
formula as follows: risk score� (coefficient AC1452
07.5× expression of AC145207.5)+ (coefficient POLH-
AS1× expression of POLH-AS1)+ (coefficient
AL928654.1× expression AL928654.1)+ (coefficient MKLN1-
AS× expression MKLN1-AS)+ (coefficient AL031985.3×

expression AL031985.3)+ (coefficient PRRT3-AS1× expression
PRRT3-AS1)+ (coefficient AC023157.2× expression
AC023157.2).

Kaplan–Meier analysis confirmed that the high-risk
group patients have worse overall survival than patients in
the low-risk group (Figure 4(a)). Meanwhile, the inflam-
matory response-related lncRNAs signature had the AUC of
0.758, which outperformed traditional clinical characteris-
tics in the prediction of prognosis of HCC patients
(Figure 4(b)). From the risk survival status plots and
heatmaps, it could be seen that a higher risk score is as-
sociated with a lower survival rate of patients with HCC
(Figure 4(c)). ,e AUCs of ROC analysis was 0.784, 0.739,
and 0.670 for the predictive value of HCC patients for 1-year,
3-year, and 5-year survival, respectively (Figure 4(d)). Be-
sides, the net benefit of the DCA plot revealed a stable and
robust prognostic-predictive ability of the inflammatory
response-related lncRNA signature (Figure 4(e) and
Table S4). Univariate and multivariate Cox analyses verified
that the novel risk score model (HR: 1.41, 95 CI: 1.26–1.59) is
an independent prognostic predictor of HCC patients’
overall survival (Figures 5(a) and 5(b)). ,e inflammatory
response-related lncRNA-mRNA interaction was presented
in the correlation network (Figure 5(c)). Also, the clinical
heatmap analyzed the relevance among the inflammatory
response-related lncRNA signature and the clinicopatho-
logical manifestation (Figure 6). ,e calibration curves
showed excellent uniformity between predicted overall
survival and actual observed values with longer follow-up,
which confirmed that the nomogram is reliable (Figure 7).
,us, this nomogram model is suitable for the clinical
management of HCC patients.

3.2. Gene Set Enrichment Analysis. ,e pathways and
bioprocess involved in tumorigenesis were analyzed by
GSEA, which revealed that the inflammatory response-
related lncRNA signature modulated both the progres-
sion of tumor and the essential pathways associated with
immunity, mainly including the JAK-STAT signaling
pathway, the toll-like receptor signaling pathway, the
WNT signaling pathway, the T cell receptor signaling
pathway, the MAPK signaling pathway, the NOTCH
signaling pathway, and natural killer cell-mediated cy-
totoxicity (Figure 8; Table S5).

3.3. Immunological Reaction and Related Gene Expression.
,e heatmap discovered that the expression of immune
responses was markedly different between low- and high-
risk groups using multiple algorithms (Figure 9 and
Table S6). Single-sample GSEA correlation analyses
showed significant differences in the expression of cor-
responding immune functions between the low- and
high-risk groups. In high-risk groups, immune functions
such as T cell coinhibition and costimulation, type-II INF
response, and T cell coinhibition were markedly atten-
uated (Figure 10(a)). Given the critical role of checkpoint
inhibitors in HCC immunotherapy, we examined the
differences in immune checkpoint expression between
the two risk groups. In the high-risk group, immune
checkpoints expression including HHLA2, NRP1,
CD276, TNFRSF9, TMIGD2, TNFSF4, CD80, and
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Figure 2: Go and KEGG enrichment analysis of inflammatory response-related DEGs. (a) GO analysis. (b) KEGG analysis. ,e in-
flammatory response-based lncRNA prognostic signature.
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VTCN1 were higher than in the low-risk group
(Figure 10(b)). Expression comparison of m6A-related
modification in two risk groups indicated that the high-
risk group had higher expression of RNA

methyltransferases (METTL3, METTL14, RBM15, and
WTAP), demethylases (ALKBH5 and FTO), and readers
(YTHDF1, YTHDF2, YTHDC1, YTHDC2, and
HNRNPC) (Figure 11).
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4. Discussion

,e inflammatory response is critical in neoplastic pro-
gression by causing reactive oxygen species and deoxy-
ribonucleic acid damage, increasing the frequency of
genomic DNA mutations and causing oncogenesis [24, 25].
Meanwhile, inflammation-induced changes in the hepatic
immune system make cancer cells prone to escape immune
surveillance and destruction [6, 25]. We first identified 154
inflammatory response-related DEGs by comparing HCC
and normal liver tissues. KEGG analysis discovered that
these DEGs mainly participated in focal adhesion,

proteoglycans in cancer, the PI3K-AKT signaling pathway,
NF-kappa B and TNF signaling pathway. Some recent
studies have shown that inflammatory interferon regulates
cellular metastasis, vasculogenic mimicry, and antiapoptosis
activity of tumor cells, mainly activating the PI3K/AKT/
mTOR pathway [26]. At the same time, FGFR1 and TLR4
regulate tumor cell hyperplasia and migration and promote
proinflammatory response production via the PI3K/Akt
signaling pathway [27]. Studies by Balkwill [28], Ringelhan
et al. [29], and Taniguchi et al. [30] reported that TNFα
activated the NF-κB signaling pathway, contributing to the
promotion and progression of human HCC through hepatic
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inflammation, hepatocyte death, and compensatory
proliferation.

,erefore, blocking the link between inflammation and
liver cancer may inspire a new strategy for HCC treatment.
In our study, the seven inflammatory response-related
lncRNA signature based on clinical features were confirmed
as independent prognostic factors for HCC patients. Among
the seven inflammatory response-related lncRNA signa-
tures, only a small part of lncRNAs have been reported to be

studied. Zhou et al. [31] reported that AC145207.5 and
AL031985.3 were overexpressed in HCC cell lines and were
related to the poor prognosis of HCC patients. MKLN1-AS
could intensify the hyperplasia, migration, and invasion of
liver cancer cells by positively regulating YAP1 expression
[32]. Li et al. [33] revealed that silencing of lncRNA PRRT3-
AS1 could activate the expression of the PPARc gene and
then block the mTOR signaling pathway to inhibit prostate
cancer cell proliferation and promote apoptosis and
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Figure 8: GSEA for inflammatory response-related lncRNAs signature.
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autophagy. Although the other three lncRNAs have not been
reported yet, according to the coexpression network, we
found that POLH-AS1 has a coexpression relationship with
GPS2, DHX9, and MAPK7. AL928654.1 has a coexpression
relationship with PSEN1. AC023157.2 has a coexpression
relationship with FCGR2B and IL20RB. From this, we
speculated that these inflammatory response-related
lncRNAs are likely to participate in the proliferation, mi-
gration, and immune response in cancer. However, the
function of these inflammatory response-related lncRNAs
and their roles in hepatocarcinogenesis and progression
need to be explored through further clinical and experi-
mental studies.

,en, the risk score model classified HCC patients into
high- and low-risk groups. ,e survival analysis determined
that patients in the high-risk group had a poor prognosis for
HCC. Furthermore, the risk score model had an AUC of
0.758 and performed well with the net benefit of DCA
validation. Moreover, the nomogram’s calibration curves
validated that our novel risk score model performs better
than traditional clinicopathological characteristics in pre-
dicting the prognosis of HCC.

,e direct correlation between lncRNAs and cancer-de-
rived inflammatory responses emphasises their potential as
tumor biomarkers and therapeutic targets [34]. Accumulating
evidence suggests that lncRNAs are crucial in mediating
inflammatory responses and dysregulation in HCC [35–38].
So lncRNAs could be the essential class of prevalent genes
involved in the development of liver cancer. However, the
biological andmolecular mechanisms of lncRNAs inHCC are
not fully understood. ,erefore, this novel signature could
help us further explore the roles of lncRNA in cancer. In our
study, GSEA analyzed the immune and tumor-related
pathways of the novel signature in individuals in high- and
low-risk groups. Relevant immune function analysis indicated
that the high-risk group’s patients exhibited significantly
reduced cytolytic activity, type II INF response, and T cell
coinhibition. However, the high-risk group patients had in-
creased expression of immune checkpoints including
HHLA2, NRP1, CD276, TNFRSF9, and TNFSF4. Recently,
lncRNAs have been gaining attention as critical regulators in
gene expression and regulation via versatile interactivity with
DNA, mRNA, or proteins. Notably, lncRNAs play vital roles
in developing diverse immune cells by controlling dynamic
transcriptional programs that are hallmarks of immune cell
activation and inflammatory gene expression [39, 40]. Some
studies have found that activation of inflammatory response
pathways, such as the IFN response, can ameliorate sensitivity
to immune checkpoint inhibitors in cancer patients and have
a positive effect on antitumor activity [41], but also that
lncRNA Mirt2 functions as a checkpoint to prevent aberrant
activation of inflammation [42]. For now, few studies have
delved into the association between inflammatory response
and lncRNAs and immune checkpoint inhibitors. ,us, in-
flammatory response-related lncRNAs may be critical factors
in the immune microenvironment causing HCC
transformation.

Although we revealed a novel inflammatory response-
related lncRNA prognostic risk signature and demonstrated

the reliability of this risk model, our study has several
limitations. ,is bioinformatics research needs to be con-
firmed by multicenter experiments with larger samples.
Further exploration of the relationship between the seven
inflammatory response-related lncRNAs in the model and
immune activity deserves further exploration.

5. Conclusion

A specific inflammatory response-related lncRNA signature
is capable of predicting the prognosis of HCC patients and
providing new immune targeted therapies insight.

Abbreviation

HCC: Hepatocellular carcinoma
TCGA: ,e Cancer Genome Atlas
GO: Gene Ontology
BP: Biological processes
MF: Molecular function
CC: Cellular components
KEGG: Kyoto Encyclopedia of Genes and Genomes
GSEA: Gene set enrichment analyses
FDR: False discovery rate
SsGSEA: Single-sample gene set enrichment analysis.
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